Avondale Property Site Birmingham, Jefferson County, Alabama ADEM VCP Site #: 461-073-25043

Fact Sheet

An initial Voluntary Property Assessment Report and Environmental Covenant have been found to be technically adequate by the Alabama Department of Environmental Management (ADEM) for **The Avondale Property** in Birmingham, Alabama. This fact sheet has been prepared to briefly advise the public of the principal legal and policy issues of the VCP.

I. VCP PROCESS

The VCP provides a mechanism for the implementation of a cleanup program that encourages applicants to voluntarily assess, remediate, and reuse rural and urban areas of actual or perceived contamination. The program does not relieve any "responsible person" for the liability for administrative, civil, or criminal fines or penalties which are otherwise authorized by law and imposed as a result of the illegal or unpermitted disposal of solid waste, hazardous waste, hazardous constituents, hazardous substances, petroleum products, and/or pollutants to the land, air, or waters of the State on an identified property. The program is designed to expedite the voluntary cleanup process and has been designed for entry at any stage of the cleanup process as long as all applicable criteria have been met up to the point of entry.

II. PROCEDURES FOR REACHING A FINAL DECISION

ADEM is proposing to issue the Avondale Property Site an Environmental Covenant for the site remediation. The Voluntary Property Assessment Report and Environmental Covenant include a proposal of the implementation of institutional controls by placing an environmental covenant on the subject property that prohibits the installation or use of a water production well for potable water supply or irrigation.

ADEM Admin Code R. 335-15-6-.02 requires that the public be given a 30-day comment period from the date of the notice. The comment period will begin on October 1, 2025 which is the date of publication of the public notice in major local newspaper(s) of general circulation and will end on October 31, 2025.

All persons wishing to comment on any of the conditions of the VCP Remediation should submit their comments in writing to ADEM, Permits and Services Division, 1400 Coliseum Blvd. (Zip 36110). P.O. Box 301463 (Zip 36130-1463) Montgomery, Alabama, ATTENTION: Mr. Russell Kelly. Written comments on the VCP activities should be submitted to ADEM and be received by October 31, 2025.

ADEM will consider all written comments received during the comment period while making a final decision on this issue. When ADEM makes its final decision, notice will be given to the applicant and each person who has submitted written comments or requested notice of the final decision.

III. FACILITY DESIGN

PPM Consultants, Inc. (PPM) has completed site investigation activities under the VCP at the Avondale Property Site located at 4121 3rd Avenue South, Birmingham AL. Currently the subject property consists of an empty rectangular lot with a large asphalt pad in the center. PPM Consultants proposes to implement institutional control through an environmental covenant to restrict the installation or use of a water production well for potable water supply or irrigation.

IV. TECHNICAL CONTACT

Angel Leon-Rodriguez, Project Manager Redevelopment Section Industrial Hazardous Waste Branch Land Division Alabama Department of Environmental Management 1400 Coliseum Boulevard (Zip 36110) P.O. Box 301463 (Zip 36130-1463) Montgomery, Alabama (334) 394-4387

ALABAMA DEPARTMENT OF ENVIRONMENTAL MANAGEMENT

NOTICE OF A PROPOSED VOLUNTARY CLEANUP PLAN UNDER THE ALABAMA LAND RECYCLING AND ECONOMIC REDEVELOPMENT ACT (ALRERA) AND REQUEST FOR COMMENTS

PUBLIC NOTICE - 461

Jefferson County

PPM Consultants, Inc. (PPM) has submitted a Voluntary Property Assessment Report and Environmental Covenant for the facility located at **4121** 3rd **Avenue South, Birmingham, in Jefferson County, Alabama.** The site has undergone extensive soil and groundwater sampling and will be subject to remedial activities. ADEM has completed the review of the draft Voluntary Property Assessment Report and Environmental Covenant and found them to be technically adequate. The property will require institutional and engineering controls to be used at the site.

Copies of the fact sheet and Voluntary Cleanup Plan are available for public inspection electronically via http://adem.alabama.gov/newsEvents/publicNotices.cnt. and at the following location Monday — Friday (except legal holidays) during the hours of 8:00 a.m. to 5:00 p.m. for 30 days from the date of this notice. A nominal fee for copying and/or mailing may be charged. Arrangements for copying should be made in advance.

Russell A. Kelly, Chief
Permits and Services Division
Alabama Department of Environmental Management
P.O. Box 301463 (Zip 36130-1463)
1400 Coliseum Boulevard (Zip 36110-2400)
Montgomery, Alabama
(334) 271-7714

Persons wishing to comment may do so, in writing, to the Department's named contact above within 30 days following the publication date of this notice. In order to affect final decisions, comments must offer technically substantial information that is applicable to the proposed plan.

The Department maintains a list of interested individuals who are mailed legal notices regarding proposed permits. If you wish to receive such notices, contact the Permits & Services Division via telephone (334-271-7714), e-mail (permitsmail@adem.alabama.gov), or postal service (P.O. Box 301463, Montgomery, AL 36130-1463).

This notice is hereby given on **1**st **of October 2025**, by authorization of the Alabama Department of Environmental Management.

Edward F. Poolos, Director

Nondiscrimination Statement: The Department does not discriminate on the basis of race, color, national origin, sex, religion, age or disability in the administration of its programs.

September 4, 2025

Ms. Crystal Collins Chief, Redevelopment Section Alabama Department of Environmental Management 1400 Coliseum Boulevard Montgomery, Alabama 36110

RE: Voluntary Cleanup Program Application and Cleanup Plan Avondale Property The Kelsey 4121 3rd Avenue South Birmingham, Alabama PPM Project No. 40191403

Dear Ms. Collins:

On behalf of The Kelsey, PPM Consultants, Inc. (PPM) is submitting an application to enter the referenced property into the Voluntary Cleanup Program (VCP), administered by the Alabama Department of Environmental Management (ADEM). Due to very minor environmental impacts present at the site, the Voluntary Cleanup Plan will include utilization of an environmental covenant that prohibits the installation of a water production well for the use of groundwater for potable or irrigation purposes on the subject property. Additional details are provided below.

1.0 VCP APPLICATION

The Kelsey retained PPM to complete a Phase I Environmental Site Assessment (ESA) and subsequent Phase II ESA at the subject property This work was completed from February 2024 through January 2025. The VCP Application is included as Attachment A and includes a description of the subject property and a summary of the findings of the Phase I and Phase II ESA Reports. Soil, groundwater, and shallow soil gas samples were collected during the Phase II ESA and one constituent of concern (COC), bromomethane, was identified in the groundwater at a concentration greater than the Environmental Protection Agency (EPA) Regional Screening Levels (RSLs), dated November 2024. The Phase II ESA Report is included as Attachment B.

2.0 SITE CONCEPTUAL EXPOSURE MODEL

As discussed in the Phase II ESA, the only RSL exceedance in soil or groundwater was the groundwater sample from temporary monitoring well TMW-1 in which bromomethane was detected at a concentration of 0.006 milligrams per liter (mg/L). The tapwater RSL for bromomethane is 0.00075 mg/L. Bromomethane was the only detected volatile organic compound (VOC) in soil samples and the concentrations were an order of magnitude below the residential soil RSL; therefore, ingestion, dermal contact, and inhalation of soil are not routes of exposure. Fourteen VOCs were detected in the shallow soil gas samples. PPM utilized the EPA Vapor Intrusion Screening Levels (VISL) calculator to evaluate the individual and cumulative risks to residential receptors. Based on the model outputs, soil gas is not a route of exposure.

Based on the data collected during the Phase II ESA, the only COC is bromomethane and the only potential route of migration to human receptors is ingestion of groundwater. This information is summarized in **Attachment C**, **Site Conceptual Exposure Model**.

3.0 RECOMMENDED CLEANUP ACTIONS

As discussed above and documented in the Phase II ESA Report, the only current route of exposure to human receptors is ingestion of groundwater containing bromomethane. To eliminate this route of exposure, The Kelsey intends to place an environmental covenant on the subject property that prohibits the installation or use of a water production well for potable water supply or irrigation. This will further enforce the existing City of Birmingham ordinance (Birmingham City Code, Chapter 3, Health and Sanitation, Article A, Section 6-3-3) that prohibits the installation of a domestic water supply well within 100 feet of an approved public water supply main or pipe. This institutional control will serve as the remedial method to receive a Letter of Concurrence from your Department. A copy of the **Draft Environmental Covenant** is included as **Attachment D**.

4.0 ADEM FEES

The Kelsey has included a check in the amount of \$28,035 for entry of the subject property into the VCP as a non-responsible party. This fee includes the Application fee (\$5,060); review of the assessment report (\$4,260); Letter of Concurrence (\$4,210); public notice (\$800); and registry fee for the environmental covenant (\$13,705).

Ms. Crystal Collins September 4, 2025 Page 3

If you have any questions or need additional information, please contact us at (205) 836-5650.

Sincerely,

PPM Consultants, Inc.

Matthew J. Ebbert, P.G.

Senior Geologist

Michael D. McCown, P.G

Michal D. M. Com

Principal

Attachments: A – VCP Application

B – Phase II ESA Report

C – Site Conceptual Exposure Model D – Draft Environmental Covenant

Cc: The Kelsy, Gulf Coast Housing Partnership

Voluntary Cleanup Program Alabama Department of Environmental Management

Application to Participate

A. <u>APPLICANT INFORMATION</u>

Name: <u>The Kelsey</u>
Mailing Address: 1 Sansome Street, Suite 3500
San Francisco, CA 94104
Telephone Number: (860) 573-7392 Fax: ()
Owner or Responsible Corporate Official:
Name: Micaela Connery
Email Address: micaela@thekelsey.org
Is the Applicant a Responsible Party as defined in ADEM Admin. Code 335-15-1 .02(vv)?
Yes No _X
B. <u>SITE INFORMATION</u>
Name of Site: Avondale Property
Physical Address: 4121 Third Avenue South
Birmingham, AL 35222
Billingiani, 112 30222
Site Owner(s) Name: The Kelsey
Mailing Address: 1 Sansome Street, Suite 3500
San Francisco, CA 94104
Email Address: micaela@thekelsey.org
Telephone Number: (860) 573-7392 Fax: ()
Location of Site:
Latitude: 33.52390 Longitude: -86.77276
Area of the Site: <u>0.77</u> acres County: <u>Jefferson</u>
Estimated Population within One Mile Radius of the Site: 7,109
Estimation Method: EJScreen Multisite Report

Legal description of the Property: BEGINNING AT A NORTHWEST CORNER OF LOT 2-A OF SAID AVONDALE RESURVEY OF BLOCK 13, SAID POINT BEING A MAG NAIL WITH WASHER ON THE SOUTHEAST RIGHT OF WAY OF 3RD AVENUE SOUTH; THENCE CONTINUE ALONG SAID RIGHT OF WAY, RUN N 59°53'55" E FOR A DISTANCE OF 190.03 FEET TO A 3/4" CRIMP PIPE; THENCE CONTINUE ALONG SAID RIGHT OF WAY, RUN N 59°45'56" E FOR A DISTANCE OF 50.02 FEET TO A 3/4" PIPE, SAID POINT BEING AT THE INTERSECTION OF THE SOUTHEAST RIGHT OF WAY OF 3RD AVENUE NORTH WITH THE SOUTHWEST RIGHT OF WAY, RUN S 30°01'01" E FOR A DISTANCE OF 139.59 FEET TO A 3/4" CRIMP PIPE, SAID POINT BEING AT THE INTERSECTION OF THE SOUTHWEST RIGHT OF WAY OF 42ND STREET SOUTH WITH THE NORTHWEST RIGHT OF WAY AN ALLEY; THENCE CONTINUE ALONG SAID ALLEY RIGHT OF WAY, RUN S 59°28'05" W FOR A DISTANCE OF 49.64 FEET TO A 5/8" CAPPED REBAR STAMPED "SOUTHERN CROSS CA 1050"; THENCE CONTINUE ALONG SAID ALLEY RIGHT OF WAY, RUN S 59°55'31" W FOR A DISTANCE OF 189.92 FEET TO A 5/8" CAPPED REBAR; THENCE LEAVING SAID ALLEY RIGHT OF WAY, RUN N 30°12'51" W FOR A DISTANCE OF 139.76 FEET TO THE POINT OF BEGINNING. SAID LOT 2-A BEING, 0.77 ACRES, MORE OR LESS.

The survey is included a	is Attachment A	Α <u>.</u>			
Is the site located in a B	rownfield Rede	evelopmen	t District?		
Yes	No	X			
If yes, name of the Brov	vnfield Redevel	lopment D	istrict:		

C. <u>SITE HISTORY</u>

The Phase I Environmental Site Assessment (ESA) conducted at the site in March 2024, by PPM Consultants, Inc., for The Kelsey prior to purchase indicated that the subject property was formerly the site of a single-story motel and a single-family residence; however, the only structure remaining on the property was a billboard in the northwestern corner. The eastern side of the property slopes toward the west, and it becomes relatively flat near the center and western portions. A recently built loose-asphalt drive led from a gate on the eastern side to a large asphalt pad in the center of the property. The property is located in a heavily developed mixed-use area of the Avondale area of Birmingham that has been composed of residential and commercial areas since at least 1891. At the time of the Phase I, the property was surrounded by residential areas to the east and south and commercial areas to the north and west. The subject property is bordered to the east by 42nd Street South, to the south by 3rd Alley South, to the west by 41st Street South, and to the north by 3rd Avenue South. To the east of 42nd Street South and south of 3rd Alley South, the adjoining properties were residential, with an apartment building adjoining to the east. To the west, the subject property was adjoined by Munchies Chevron Station, and to the north of 3rd Avenue South, the adjoining properties were either vacant or commercial.

The Phase I ESA report identified two recognized environmental conditions (RECs) that included:

- Munchies Chevron, Adjoining to the West. This property is currently in use as a retail petroleum station. The facility utilizes two 10,000-gallon gasoline USTs. As far as can be determined, the facility is in compliance with all UST regulations and is covered by the Alabama Underground and Aboveground Tank Trust Fund. However, because there are USTs in use on this property and because the property adjoins the subject property, there is a material threat of release that could affect the subject property. Therefore, the current use of this site as a retail petroleum station was considered a REC.
- Rowe's Automotive, 127 feet southwest. Rowe's Automotive was in operation as a filling station from at least 1940 to at least 1956 and an automotive repair shop from at least 1967 to at least 2011 under various names and ownership. It is located approximately 127 feet south-southwest of the subject property. There are no records for this facility in the Alabama

Department of Environmental Management's (ADEM) eFile database. Google Street View Images show that the repair shop was converted into a restaurant sometime around 2015 and currently operates as a restaurant and bar. Because of the site's location cross gradient to the subject property and the lack of information about possible underground storage tanks (USTs) or petroleum usage, and because the site operated as a filling station and auto repair shop for many years before current environmental regulations were established, the historical uses of this property were considered a REC.

Based on the RECs identified in the Phase I ESA, The Kelsey retained PPM to complete a Phase II ESA to evaluate if shallow soil, soil vapor, and groundwater have been impacted by regulated constituents of concern (COC) in relation to the RECs. Three soil borings (SB-1 through SB-3) were advanced to probe refusal that was encountered at depths ranging from 4.5 to 14.6 feet below ground surface (BGS). Temporary monitoring wells were installed in SB-1 and SB-2 and groundwater samples were collected from these wells. Three soil vapor points (SV-1 through SV-3) were installed to approximately 5 feet BGS for collection of shallow soil gas samples.

Soil at the subject property was described as sandy clay, gravelly clay, and clay. No odors or staining were noted in the soil samples and initial saturation was not observed in any of the soil borings. Static water levels were measured at 10.9 feet BGS in TMW-1 and 7.7 feet BGS in TMW-2. Only one analyte, bromomethane, was detected in the soil and groundwater samples. Bromomethane was the key ingredient in a soil fumigant once used to treat for pests (nematodes) and in a pesticide used to control rats. The concentrations did not exceed the Regional Screening Levels (RSLs) established by EPA for residential soil (May 2024). The detected bromomethane concentration in groundwater at TMW-1 of 0.006 milligrams per liter (mg/L) exceeded the RSL of 0.00075 mg/L.

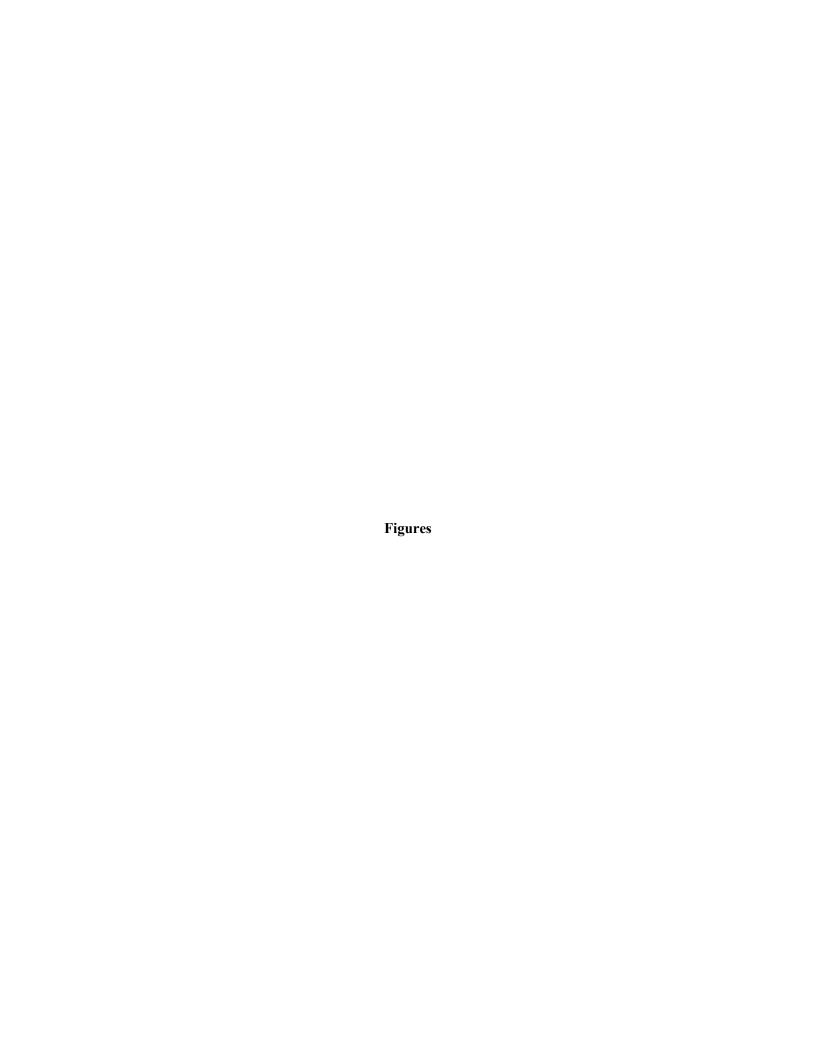
Soil vapor sampling was also completed during the Phase II ESA. Fourteen analytes were detected in the soil vapor samples including 2-butanone [also known as methyl ethyl ketone (MEK)], carbon disulfide, chloromethane, dichlorodifluoromethane, ethylbenzene, 4-ethyltoluene, 2-hexanone, styrene, tetrachloroethene, toluene, 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, m,p-xylenes, and oxylenes. Bromomethane was not detected in soil vapor samples. Vapor Intrusion Screening Levels (VISLs), particularly target levels for near-source soil, were determined using the EPA VISL Calculator published on their website for each analyte detected in soil vapor. The target concentrations were calculated using both a carcinogenic risk (CR) of 1E-05 and 1E-06 and a hazard quotient (HQ) of both 1 and 0.1. As a first step, the actual soil vapor concentrations were compared to target concentrations calculated at the lesser risk level (CR=1E-06 and HQ=0.1). Only the actual vapor concentration for 2hexanone exceeded the target risk at that level. The commercial production of 2-hexanone was discontinued in the United States in 1979; however, it may still be indirectly produced through wood pulping operations and some oil and gas extraction operations. Some evidence exists that it may be produced from decomposition of wood waste or of biosolids in sewage. To complete the soil vapor evaluation at this site, a cumulative risk for all of the compounds that were detected in vapor was determined using the VISL Calculator. The highest cumulative risk at any one sample point was a HO of 0.327 at SV-2 and a CR of 2.28E-07 at SV-3. For risk evaluations, ADEM uses a cumulative risk of 1E-05 and an HQ of 1 and the cumulative risk calculated at the subject property fell below that level.

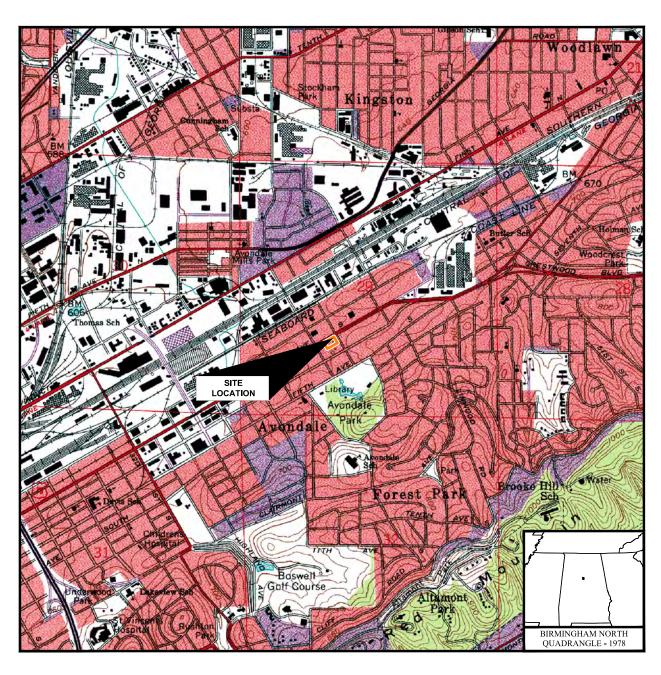
D. <u>CURRENT PROPERTY FEATURES</u>

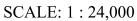
The only structure remaining on the subject property is a billboard in the northwestern corner. The eastern side of the property slopes toward the west, and it becomes relatively flat near the center and western portions. A recently built loose-asphalt drive leads from a gate on the eastern side to a large asphalt pad in the center of the property.

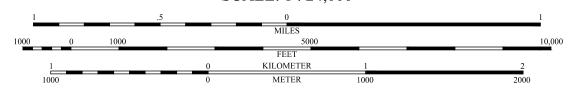
E. MAPS

Site Location Map, Site Map, and Area Map are included in Figures.


F. COMPLIANCE WITH PERMITS, STATUTES OR REGULATIONS

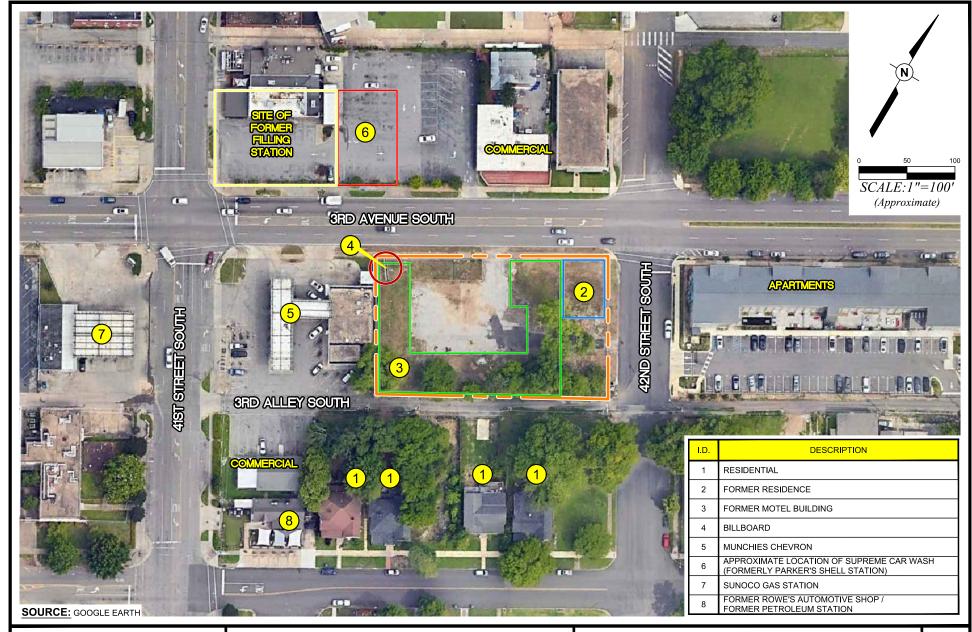

There are no orders, citations, or notices of violation issued to the applicant for any violations or alleged violations of environmental permits, laws and/or regulations.


G. PROPERTY ELIGIBILITY CRITERIA


The property meets the following ADEM criteria:

	a. It is not listed on the National Priorities List pursuant to CERCLA;
	b. It is not currently undergoing response activities required by an order of ADEM;
	c. It is not currently undergoing response activities required by an order of EPA issued pursuant to CERCLA;
	d. It is not a hazardous waste treatment, storage, or disposal facility subject to the permitting requirements of 335-14-801 through 335-14-808.
Is this Site	eligible for participation in the voluntary cleanup program?
Ye	
As such, T	e Kelsey will not be asking for a variance.
н. <u>о</u>	HER INFORMATION
Plan that i installation time of this	wishes to enter the subject property into the Voluntary Cleanup Program. A Voluntary Clea cludes the placing an Environmental Covenant on the subject property that prohibits of water wells for use for potable water or irrigation, has been prepared and is submitted at application. The groundwater restriction will eliminate the ingestion and dermal contact rought from the Site-Conceptual Model, thus eliminating risks to human receptors.
I. FI	<u>es</u>
responsible public noti	the amount of \$28,035 is included for entry into the Voluntary Cleanup Program as a non-party (\$5,060); review of the assessment report (\$4,260); Letter of Concurrence (\$4,210); e (\$800); and registry fee for the environmental covenant (\$13,705).
J. <u>CI</u>	RTIFICATION
or supervis and evalua system, or to the best penalties fo	der penalty of law that this document and all attachments were prepared under my direct on in accordance with a system designed to assure that qualified personnel properly gate the information submitted. Based on my inquiry of the person or persons who manage tose persons directly responsible for gathering the information, the information submitted my knowledge and belief, true, accurate, and complete. I am aware that there are significate submitting false information, including the possible revocation of the limitations of liabilation the program."
Responsib	Corporate Official of Applicant:
	Signature) Title: CEO of The Kelsey
	Micaela Connery Date: 9/2/25
	(printed name name)

PPM		NSULTANTS, INC.
DRAWN BY:		DRAWN DATE:
JC	Р	02/15/24
PROJECT NUM	MBER:	PHASE:
40191	1401	ESAI


THE KELSEY

AVONDALE PROPERTY

4121 3RD AVENUE SOUTH
BIRMINGHAM, ALABAMA

SITE LOCATION MAP

FIGURE NUMBER

 PPM CONSULTANTS, INC.

 www.ppmco.com

 DRAWN BY:
 DRAWN DATE:

 JCP
 02/15/24

 PROJECT NUMBER:
 PHASE:

 40191401
 ESAI

THE KELSEY

AVONDALE PROPERTY

4121 3RD AVENUE SOUTH
BIRMINGHAM, ALABAMA

SITE MAP

FIGURE NUMBER

2

PPM CONSULTANTS, INC.

www.ppmco.com

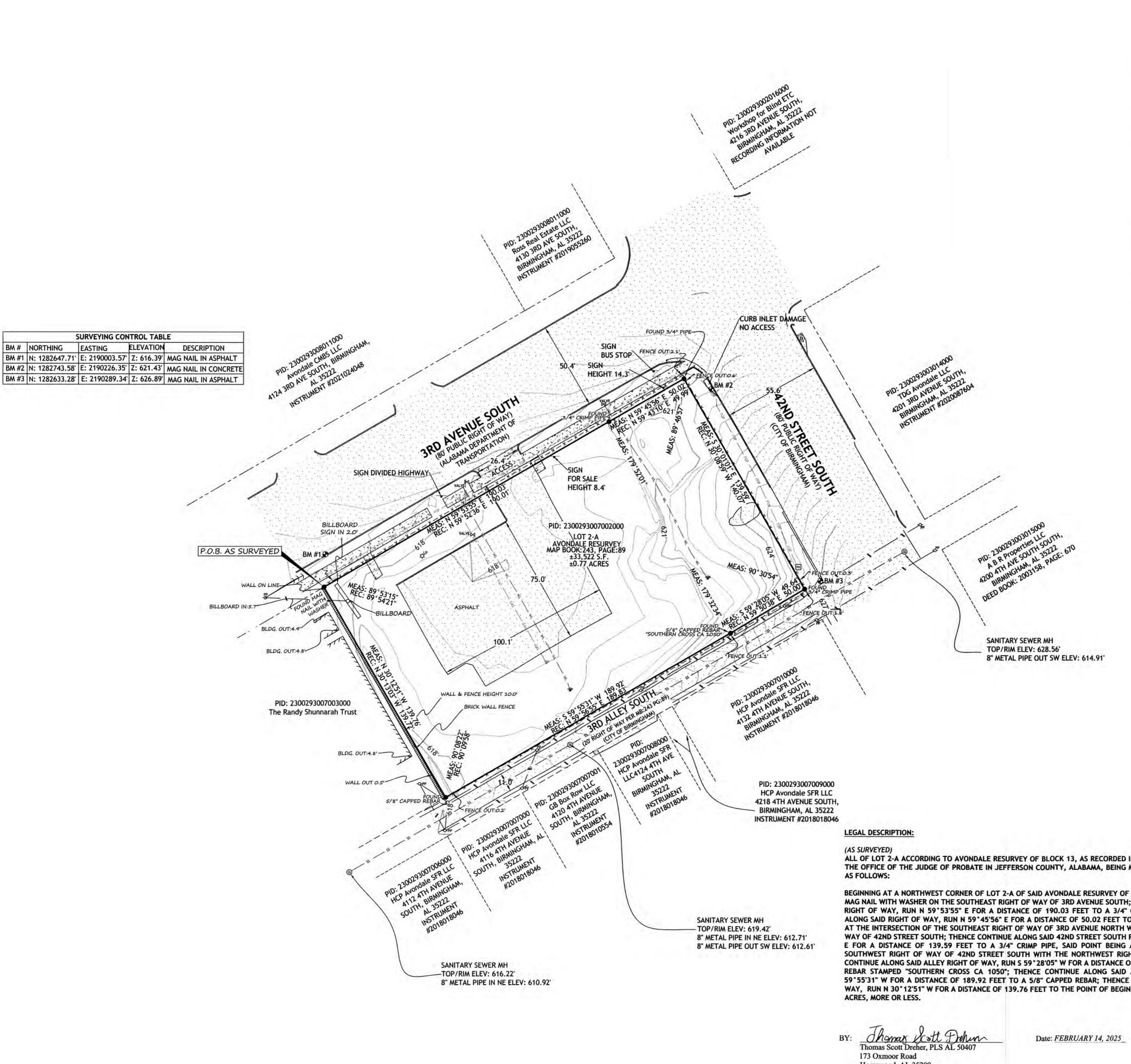
DRAWN BY:

JCP

02/15/24

PROJECT NUMBER:

40191401


ESAI

THE KELSEY

AVONDALE PROPERTY

4121 3RD AVENUE SOUTH
BIRMINGHAM, ALABAMA

SCHEDULE B-II (PER FILE NO. A-07464)

- (a) Taxes or assessments that are not shown as existing liens by the records of any taxing authority that levies taxes or assessments on real property or by the Public Records; (b) proceedings by a public agency that may result in taxes or assessments, or notices of such proceedings, whether or not shown by the records of such agency or by the Public Records. -NOT A SURVEY MATTER.
- 2. Any facts, rights, interests, or claims that are not shown by the Public Records but that could be ascertained by an inspection of the Land or that may be asserted by persons in possession of the Land. -DOCUMENTS NOT PROVIDED.
- Easements, liens or encumbrances, or claims thereof, not shown by the Public Records. -DOCUMENTS NOT PROVIDED.
- 4. Any encroachment, encumbrance, violation, variation, or adverse circumstance affecting the Title that would be disclosed by an accurate and complete land survey of the Land and not shown by the Public Records. -APPLIES, SHOWN ON SURVEY.
- 5. Any dispute as to the boundaries caused by a change in the location of any water body within or adjacent to the Land prior to Date of Policy, and any adverse claim to all or part of the Land that is, at Date of Policy, or was previously, under water.
- 6. Any lien, or right to a lien, for services, labor, or material unless such lien is shown by the Public Records at Date of Policy. -DOCUMENTS NOT PROVIDED.
- 7. Any claim to (a) ownership of or rights to minerals and similar substances, including but not limited to ores, metals, coal, lignite, oil, gas, uranium, clay, rock, sand, and gravel located in, on, or under the Land or produced from the Land, whether such ownership or rights arise by lease, grant, exception, conveyance, reservation, or otherwise; and (b) any rights, privileges, immunities, rights of way, and easements associated therewith or appurtenant thereto, whether or not the interests or rights excepted in (a) or (b) appear in the Public Records or are shown in Schedule B. -DOCUMENTS NOT PROVIDED.
- 8. Taxes and assessments for the year 2025 and subsequent years, not yet due and payable.

VICINITY MAP NOT TO SCALE

- 9. Easement, Building Line(s), Notes and Restrictions as shown on the map recorded in Map Book 243, Page 89. -DOES APPLY SHOWN ON SURVEY.
- 10. Rights of interested parties under outstanding unrecorded leases. -NOT A SURVEY MATTER.
- 11. Unpaid and unrecorded sewer liens filed after the date of the policy. -NOT A SURVEY MATTER.

SURVEY CONTROL: THE BASIS OF BEARINGS SHOWN ON THIS SURVEY ARE BASED ON ALABAMA STATE PLANE WEST ZONE, GRID NORTH, NAD 83(2011), AND THE VERTICAL DATUM IS NAVD 88 (GEOID 18). ELEVATION AND POSITION WERE OBTAINED FROM STATIC GPS OBSERVATION USING NOAA OPUS SOLUTION AS CONTROL.

UTILITY PEDESTAL GAS METER FIRE HYDRANT LIGHT POLE STORM MANHOLE **CURB STORM INLET** GRATED INLET O OCO CLEANOUT SANITARY MANHOLE DRAINAGE INLET GAS VALVE INTW UTILITY VAULT SIGN BOLLARD ELECTRIC BOX ELECTRIC METER -x FENCE OVERHEAD POWER 77777 BUILDING LINE LOST SIGNAL - FOR - UNDERGROUND FIBER OPTIC

- GAS - UNDERGOUND GAS

- WL - UNDERGORUND WATER

LEGEND

ASPHALT BUILDING

RESIDENCE

MEAS: MEASURED

CALCULATED

RECORDED

TANGENT **EASEMENT**

HEADWALL

OVERHANG PORCH COVERED

DECK

CONCRETE RETAINING WALL GUY ANCHOR

POWER POLE

MANHOLE WATER METER

RIGHT OF WAY

AIR CONDITIONER

FOUND/SET CROSS EXIST. CONC. MON

CALCULATED POINT SQUARE FEET PLUS OR MINUS

RON PIN FOUND (IPF CONTROL POINTS

ASP BLDG

RES CALC

TAN

POINT OF COMMENCEMENT

POINT OF TERMINATION

IN ACCORDANCE WITH TABLE A ITEM #1, MONUMENTS HAVE BEEN PLACED AT ALL MAJOR CORNERS OF THE BOUNDARY OF THE SURVEYED PROPERTY, UNLESS PREVIOUSLY MARKED.

IN ACCORDANCE WITH TABLE A ITEM #2, THE ADDRESS OF THE SURVEYED PROPERTY IS AS FOLLOWS:

4121 3RD AVENUE SOUTH, BIRMINGHAM, AL 35222, PER JEFFERSON COUNTY TAX RECORDS. IN ACCORDANCE WITH TABLE A ITEM #3, THE PROPERTY IS NOT LOCATED IN A SPECIAL FLOOD HAZARD

(ZONE X) PER FIRM PANEL #01073C0394G DATED 09/29/2006. IN ACCORDANCE WITH TABLE A ITEM #4 THE GROSS LAND AREA OF THE SURVEYED PROPERTY IS AS

FOLLOWS: ±33,522 S.F. OR ±0.77 ACRES. IN ACCORDANCE WITH TABLE A ITEM #5, VERTICAL RELIEF MEASUREMENTS ARE SHOWN ON THIS

SURVEY; CONTOURS SHOWN ARE DRAWN AT 0.5' INTERVALS.

IN ACCORDANCE WITH TABLE A ITEM #6, THE SURVEYED IS LOCATED IN THE B-2 GENERAL BUSINESS

DISTRICT WITH THE FOLLOWING REQUIREMENTS:

> MAXIMUM STRUCTURE HEIGHT OF 75 FEET

> FRONT SETBACK: NONE > REAR SETBACK: NONE

> SIDE SETBACK: NONE

> MINIMUM LOT WIDTH: 5000 S.F. SINGLE FAMILY, 2500 S.F. TWO-FAMILY, 1600 S.F. ATTACHED/SEMI ATTACHED, 1000 S.F. MULTIPLE DWELLINGS > MINIMUM LOT WIDTH: 50 FEET

IN ACCORDANCE WITH TABLE A ITEM #8, ALL SUBSTANTIAL FEATURES ARE SHOWN ON THIS SURVEY IN ACCORDANCE WITH TABLE A ITEM #9, O REGULAR PARKING SPACES AND O HANDICAP PARKING

SPACES WERE OBSERVED AT THE TIME OF THIS SURVEY.

IN ACCORDANCE WITH TABLE A ITEM #10, NO PARTY WALLS WERE OBSERVED AT THE TIME OF THIS

10. IN ACCORDANCE WITH TABLE A ITEM #11(b), The Subsurface utilities shown on this survey were marked by "GPRS" on 02-10-2025 under Work Order #750247. Weygand makes no claim towards the

accuracy of said markings. The Subsurface utilities shown should be considered approximate.

11. IN ACCORDANCE WITH TABLE A ITEM #13, NAMES OF ALL ADJOINING PROPERTY OWNERS, ACCORDING

TO CURRENT TAX RECORDS, ARE SHOWN ON THIS SURVEY. 12. EXISTING ENCROACHMENTS ARE AS FOLLOWS:

> NO ENCROACHMENTS ON ADJOINING LOTS, HOWEVER THE FENCE AROUND THE RIGHT OF WAYS DOES ENCROACH INTO THE RIGHT OF WAY.

13. THE PROPERTY DESCRIBED HAS DIRECT PHYSICAL ACCESS TO 3RD AVENUE SOUTH, 42ND STREET SOUTH, 3RD ALLEY SOUTH, EACH BEING A DULY DEDICATED AND ACCEPTED PUBLIC RIGHT-OF-WAY. THE RIGHT-OF -WAY LINE FOR EACH SUCH PUBLIC RIGHT-OF-WAY AND THE BOUNDARY LINE OF THE SUBJECT PROPERTY ARE COTERMINOUS AS SHOWN ON THE SURVEY AND CONTAIN NO INTERVENING

14. THE SURVEYED PROPERTY IS ZONED B2 GENERAL BUSINESS DISTRICT HAVING A MINIMUM OF A 25'

SETBACK PER THE CITY OF BIRMINGHAM AL PLANNING AND ZONING DEPARTMENT THIS SURVEY WAS PERFORMED WITH THE BENEFIT OF THE FOLLOWING DOCUMENTS OBTAINED FROM THE OFFICE OF THE JUDGE OF PROBATE IN JEFFERSON COUNTY, ALABAMA:

> DEED BOOK: 1 PAGE: 221 > DEED BOOK: 98 PAGE: 57 > DEED BOOK: 243 PAGE: 89

STRIPS, GAPS, GORES, OR OVERLAPS.

LOT 2-A ACCORDING TO THE AVONDALE RESURVEY OF BLOCK 13 RECORDED IN MAP BOOK 249, PAGE 89 IN THE OFFICE OF THE JUDGE OF PROBATE OF JEFFERSON COUNTY, ALABAMA.

THE LAND SURVEYED, SHOWN AND DESCRIBED HEREON ARE THE SAME LANDS DESCRIBED IN TITLE COMMITMENT ISSUED BY FIRST AMERICAN TITLE INSURANCE COMPANY, FILE NUMBER A-07464, DATED 02/05/2024.

> MAP BOOK: 1 PAGE: 221

"STATE OF ALABAMA) COUNTY OF JEFFERSON)

LEGAL DESCRIPTION:

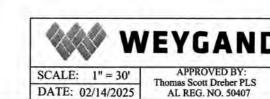
(PER TITLE COMMITMENT)

"ALTA/NSPS LAND TITLE SURVEY"

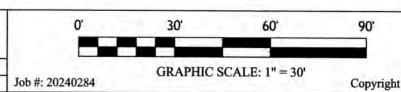
TO: Alabama Housing Finance Authority, & The Kelsey Avondale LP

AVONDALE PARK

I, Thomas Scott Dreher, a Licensed Professional Land Surveyor in the State of Alabama of the firm Weygand, LLC, Birmingham, Alabama 205-942-0086, do hereby certify that this survey is a field-run survey performed by or under the direct supervision of a licensed Professional Land Surveyor currently licensed in


the State of Alabama and in accordance with current Standards of Practice for Land Surveying in the State of Alabama for a Land or Boundary Survey meeting

Commercial requirements under such standards; that the premises shown hereon is a true and correct plat of the property described hereon; that all buildings


or other improvements, if any, thereon are located with respect to property boundaries as shown; that there are no electric or telephone wires or structures or

supports therefor on or over said premises, except as shown; that all rights-of-way, easements or joint drives over or across said premises visible on the surface

are shown; that the premises surveyed do not encroach on the adjoining property and that the adjoining property does not encroach on the premises surveyed, nor do any improvements or structures on either such property encroach on the other, except as shown. Flood Insurance Rate Map & amp; Panel number 01073C0394G Dated 09/29/2006 Flood Zone X WITNESS my hand this the 14TH day of FEBRUARY 2025. Aboman Scott Freder, Thomas Scott Dreher, P.L.S. Alabama Lic. No. 50407.

173 Oxmoor Road Homewood, AL 35209 (205) 942-0086 DATE OF FIELDWORK: 1/15/2025 SURVEYED BY: BT DRAWN BY: BT

PROFESSIONAL

ALL OF LOT 2-A ACCORDING TO AVONDALE RESURVEY OF BLOCK 13, AS RECORDED IN MAP BOOK: 243, PAGE: 89, IN THE OFFICE OF THE JUDGE OF PROBATE IN JEFFERSON COUNTY, ALABAMA, BEING MORE PARTICULARLY DESCRIBED

BEGINNING AT A NORTHWEST CORNER OF LOT 2-A OF SAID AVONDALE RESURVEY OF BLOCK 13, SAID POINT BEING A MAG NAIL WITH WASHER ON THE SOUTHEAST RIGHT OF WAY OF 3RD AVENUE SOUTH; THENCE CONTINUE ALONG SAID RIGHT OF WAY, RUN N 59°53'55" E FOR A DISTANCE OF 190.03 FEET TO A 3/4" CRIMP PIPE; THENCE CONTINUE ALONG SAID RIGHT OF WAY, RUN N 59°45'56" E FOR A DISTANCE OF 50.02 FEET TO A 3/4" PIPE, SAID POINT BEING AT THE INTERSECTION OF THE SOUTHEAST RIGHT OF WAY OF 3RD AVENUE NORTH WITH THE SOUTHWEST RIGHT OF WAY OF 42ND STREET SOUTH; THENCE CONTINUE ALONG SAID 42ND STREET SOUTH RIGHT OF WAY, RUN S 30°01'01" E FOR A DISTANCE OF 139.59 FEET TO A 3/4" CRIMP PIPE, SAID POINT BEING AT THE INTERSECTION OF THE SOUTHWEST RIGHT OF WAY OF 42ND STREET SOUTH WITH THE NORTHWEST RIGHT OF WAY AN ALLEY; THENCE CONTINUE ALONG SAID ALLEY RIGHT OF WAY, RUN S 59°28'05" W FOR A DISTANCE OF 49.64 FEET TO A 5/8" CAPPED REBAR STAMPED "SOUTHERN CROSS CA 1050"; THENCE CONTINUE ALONG SAID ALLEY RIGHT OF WAY, RUN S 59°55'31" W FOR A DISTANCE OF 189.92 FEET TO A 5/8" CAPPED REBAR; THENCE LEAVING SAID ALLEY RIGHT OF WAY, RUN N 30°12'51" W FOR A DISTANCE OF 139.76 FEET TO THE POINT OF BEGINNING. SAID LOT 2-A BEING, 0.77

Homewood, AL 35209

(205) 942-0086

LEGAL DESCRIPTION:

(AS SURVEYED)

ALL OF LOT 2-A ACCORDING TO AVONDALE RESURVEY OF BLOCK 13, AS RECORDED IN MAP BOOK: 243, PAGE: 89, IN THE OFFICE OF THE JUDGE OF PROBATE IN JEFFERSON COUNTY, ALABAMA, BEING MORE PARTICULARLY DESCRIBED AS FOLLOWS:

BEGINNING AT A NORTHWEST CORNER OF LOT 2-A OF SAID AVONDALE RESURVEY OF BLOCK 13. SAID POINT BEING A MAG NAIL WITH WASHER ON THE SOUTHEAST RIGHT OF WAY OF 3RD AVENUE SOUTH: THENCE CONTINUE ALONG SAID RIGHT OF WAY, RUN N 59°53'55" E FOR A DISTANCE OF 190.03 FEET TO A 3/4" CRIMP PIPE; THENCE CONTINUE ALONG SAID RIGHT OF WAY, RUN N 59°45'56" E FOR A DISTANCE OF 50.02 FEET TO A 3/4" PIPE, SAID POINT BEING AT THE INTERSECTION OF THE SOUTHEAST RIGHT OF WAY OF 3RD AVENUE NORTH WITH THE SOUTHWEST RIGHT OF WAY OF 42ND STREET SOUTH; THENCE CONTINUE ALONG SAID 42ND STREET SOUTH RIGHT OF WAY, RUN S 30°01'01" E FOR A DISTANCE OF 139.59 FEET TO A 3/4" CRIMP PIPE, SAID POINT BEING AT THE INTERSECTION OF THE SOUTHWEST RIGHT OF WAY OF 42ND STREET SOUTH WITH THE NORTHWEST RIGHT OF WAY AN ALLEY: THENCE CONTINUE ALONG SAID ALLEY RIGHT OF WAY, RUN S 59°28'05" W FOR A DISTANCE OF 49.64 FEET TO A 5/8" CAPPED REBAR STAMPED "SOUTHERN CROSS CA 1050"; THENCE CONTINUE ALONG SAID ALLEY RIGHT OF WAY, RUN S 59°55'31" W FOR A DISTANCE OF 189.92 FEET TO A 5/8" CAPPED REBAR; THENCE LEAVING SAID ALLEY RIGHT OF WAY, RUN N 30°12'51" W FOR A DISTANCE OF 139.76 FEET TO THE POINT OF BEGINNING. SAID LOT 2-A BEING, 0.77 ACRES, MORE OR LESS.

PHASE II ENVIRONMENTAL SITE ASSESSMENT REPORT

THE KELSEY AVONDALE PROPERTY 4121 THIRD AVENUE SOUTH BIRMINGHAM, ALABAMA

PPM PROJECT NO. 40191402

JANUARY 24, 2025 (REV01)

PHASE II ENVIRONMENTAL SITE ASSESSMENT REPORT

ΑT

AVONDALE PROPERTY 4121 THIRD AVENUE SOUTH BIRMINGHAM, ALABAMA

PREPARED FOR:

THE KELSEY **1 SANSOME STREET, SUITE 3500** SAN FRANCISCO, CALIFORNIA 94104

PPM PROJECT NO. 40191402

JANUARY 24, 2025 (REV01)

PREPARED BY:

REVIEWED BY:

WALTER B. HENLEY, JR., P.G.

SENIOR GEOLOGIST

MATTHEW J. EBBERT, P.G. **SENIOR GEOLOGIST**

PPM CONSULTANTS, INC. **5555 BANKHEAD HIGHWAY BIRMINGHAM, ALABAMA 35210** (205) 836-5650

TABLE OF CONTENTS

		<u> </u>	AGE							
1.0	INTRODUCTION									
2.0	SCOPE OF WORK									
3.0	INVES	STIGATIVE METHODOLOGY	2							
	3.1	Soil Borings	2							
	3.2	Soil Sampling and Field Screening	3							
	3.3	Temporary Well Installation	3							
	3.4	Soil Vapor Sampling Point Installation	4							
	3.5	Laboratory Analyses	∠							
4.0	FINDI	NGS	4							
5.0	RECC	DMMENDATIONS	б							
FIGUE	RE									
Figure	1	Site Map with Sampling Locations								
TABL	ES									
Table Table Table	2	Summary of Constituents Detected at Site – Soil Summary of Constituents Detected at Site – Groundwater Summary of Constituents Detected at Site – Soil Vapor								

APPENDICES

Appendix A Geologic Boring Logs
Appendix B Laboratory Analytical Reports
Appendix C VISL Data

1.0 INTRODUCTION

PPM Consultants, Inc. (PPM) has completed a Limited Phase II Environmental Site Assessment (ESA) for The Kelsey of the Avondale Property located at 4121 Third Avenue South in Birmingham, Alabama. The purpose of the assessment was to evaluate if shallow soil, soil vapor, and groundwater have been impacted by regulated constituents of concern (COC) in relation to recognized environmental conditions (REC) that were identified in the previously conducted Phase I ESA for the subject property. These RECs consist of the following:

- Munchies Chevron, Adjoining to the West. This property is currently in use as a retail petroleum station. The facility utilizes two 10,000-gallon gasoline underground storage tanks (USTs). As far as can be determined, the facility is in compliance with all UST regulations and is covered by the Alabama Underground and Aboveground Tank Trust Fund. However, because there are USTs in use on this property and because the property adjoins the subject property, there is a material threat of release that could affect the subject property. Therefore, the current use of this site as a retail petroleum station is considered a REC.
- Rowe's Automotive, 127 feet southwest. Rowe's Automotive was in operation as a filling station from at least 1940 to at least 1956 and an automotive repair shop from at least 1967 to at least 2011 under various names and ownership. It is located approximately 127 feet southwest of the subject property. There are no records for this facility in the Alabama Department of Environmental Management's (ADEM) eFile database. Google Street View Images show that the repair shop was converted into a restaurant sometime around 2015 and currently operates as a restaurant and bar. Because of the site's location cross gradient to the subject property and the lack of information about possible USTs or petroleum usage, and because the site operated as a filling station and auto repair shop for many years before current environmental regulations were established, the historical uses of this property are considered a REC.

This report describes field methodology, presents analytical results, and provides conclusions from the limited Phase II ESA.

2.0 SCOPE OF WORK

The following scope of work was performed for the Limited Phase II ESA:

- Advancement of three soil borings (SB-1, SB-2, and SB-3) to refusal at approximate depths of 13.1, 14.6, and 4.5 feet below ground surface (BGS), respectively, using direct-push technology (DPT).
- Collection and laboratory analysis of subsurface soil samples from SB-1 through SB-3. The soil samples were analyzed for volatile organic compounds (VOCs) per Environmental Protection Agency (EPA) Method 8260.
- Installation of temporary monitoring wells (TMW-1 and TMW-2) in soil borings SB 1 and SB-2, respectively. Groundwater was not encountered before probe refusal in boring SB-3.
- Collection and laboratory analysis of groundwater samples from the temporary monitoring wells. The groundwater samples were analyzed for VOCs per EPA Method 8260.
- Installation of three soil vapor sampling points SV-1, SV-2, and SV-3 approximately 5 feet from the soil borings with the same numerical designations. Each soil vapor point was installed at a depth of approximately 3 feet BGS.
- Collection and laboratory analysis of soil vapor samples from the vapor sampling points. The vapor samples were analyzed for VOCs per EPA Method TO-15.
- Preparation of a Limited Phase II ESA Report that provides a description of the field activities and methodologies employed; a summary of analytical data; and conclusions.

3.0 INVESTIGATIVE METHODOLOGY

3.1 SOIL BORINGS

On May 3, 2024, PPM advanced soil borings SB-1 through SB 3 at the site. Boring SB-1 was advanced near the northwest corner; boring SB-2 was advanced near the southwest corner; and boring SB-3 was advanced in the center of the property. All borings were sampled continuously for description. Boring SB-1, SB-2, and SB-3 were advanced with DPT to probe refusal at depths of 13.1, 14.6, and 4.5 feet BGS, respectively. Locations of the borings are depicted on **Figure 1**, **Site Map with Sampling Locations**, **Figure**.

3.2 SOIL SAMPLING AND FIELD SCREENING

Soil borings SB-1, SB-2, and SB-3 were each sampled at 5- to 6-foot intervals to probe refusal. Soil samples were described in general accordance with the Unified Soil Classification System (USCS). Portions of each sample interval were field screened using headspace techniques. Another portion of each soil sample was collected in a sample jar and retained for possible laboratory analyses. Two soil samples were selected for analysis from each of soil borings SB-1 and SB-2. One soil sample was collected from soil boring SB-3 because of its shallow depth to refusal. In general, the soil samples were selected for analysis based on the samples collected nearest the ground surface and above the suspected zone of saturation. Samples saturated with groundwater were not observed while collecting the soil samples. Soil cuttings generated during advancement of soil borings were spread on-site.

Headspace analyses consisted of half-filling glass mason jars with soil, covering with aluminum foil and allowing the sample to warm for approximately 15 minutes. A headspace reading was then obtained by inserting the probe tip of a hydrocarbon analyzer through the aluminum foil. After each reading, the instrument was allowed to return to background concentrations in the ambient air.

Disposable nitrile gloves were worn during sample handling and changed between each sample acquisition in an effort to reduce the potential for cross-contamination and as part of the personal protective equipment (PPE) for the project. The soil sampler devices and other sampling equipment were decontaminated between each use.

3.3 TEMPORARY WELL INSTALLATION

Temporary monitoring wells TMW-1 and TMW-2 were installed on May 3, 2024, in boring SB-1 and SB-2, respectively. A temporary monitoring well was not installed in boring SB-3 because of its shallow depth to refusal. The temporary monitoring wells were constructed of 1-inch diameter polyvinyl chloride (PVC) screen and riser pipe with a sand pack emplaced around the screens. Water level measurements were taken on the day the wells were installed; however, only 0.1 to 0.2 feet of water were observed in the wells. PPM secured the wells with caps and returned to the site on May 6, 2024. On that day, the depth to water was measured at 10.9 and 7.7 feet BGS, respectively, in TMW-1 and TMW-2. Groundwater samples were then collected from each temporary well using a disposable polyethylene bailer. After groundwater sampling was completed, the temporary

monitoring wells were removed, and the soil borings were filled with bentonite pellets and finished to match the surrounding surface.

3.4 SOIL VAPOR SAMPLING POINT INSTALLATION

On May 3, 2024, soil vapor implants SV-1, SV-2, and SV-3 were installed approximately 5 feet from the soil borings with the same numerical designations. Each implant was installed at a depth of approximately 3 feet BGS with silicone tubing extending to the ground surface. At least 6 inches of clean, well-sorted sand were placed in the annular space around the implant. Approximately 12 inches of bentonite were placed above the sand pack and hydrated to effect a seal. The sampling point was secured before leaving the site on May 3, 2024. PPM returned to the site on May 6, 2024, to sample the vapor points.

Vapor sampling consisted of pressure testing the fittings to 10 inches of mercury. A leak test was performed with 21.5 percent helium in a shroud placed over the point. The pressure test and leak test were successful at all three points. A Summa canister was attached to the sampling port to collect each vapor sample. The vapor sampling points were left in place pending the results of analysis of the samples.

3.5 LABORATORY ANALYSES

Soil and groundwater samples were analyzed by Sutherland Environmental Company, Inc. of Birmingham, Alabama. The soil and groundwater samples were analyzed for VOCs per EPA Method 8260.

Soil vapor samples were analyzed by H&P Mobile Geochemistry Inc. of Carlsbad, California. Each sample was analyzed for VOCs per EPA Method TO-15.

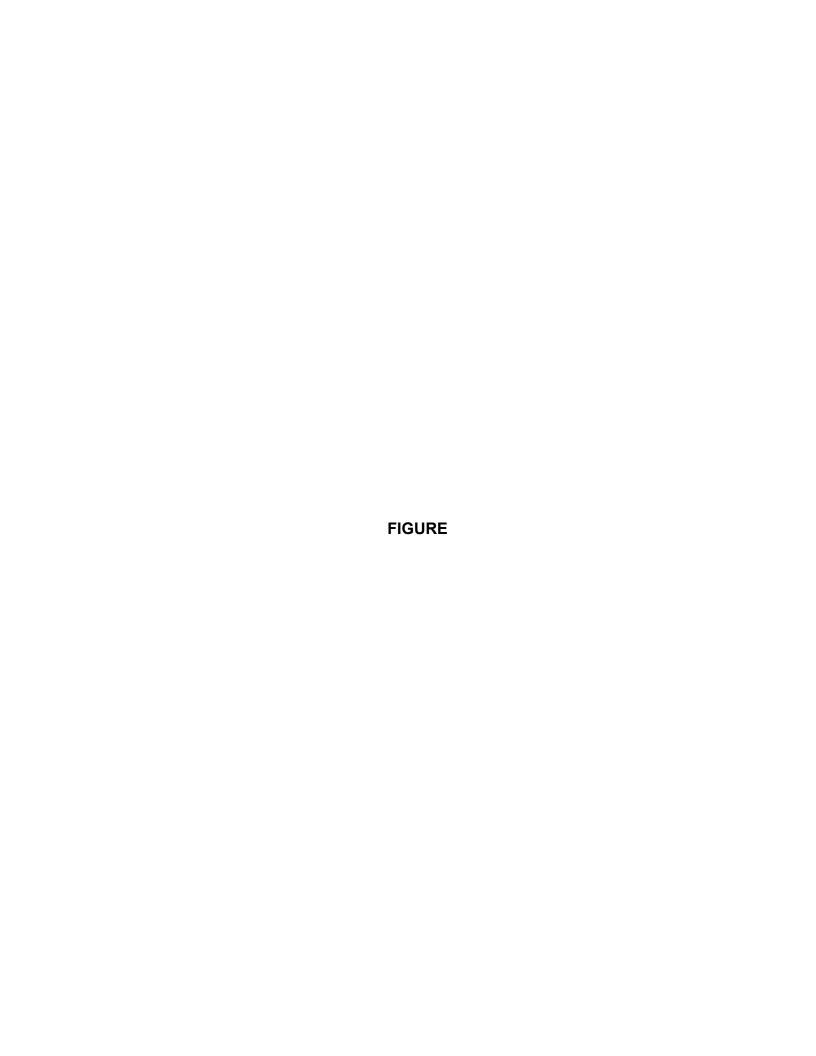
4.0 FINDINGS

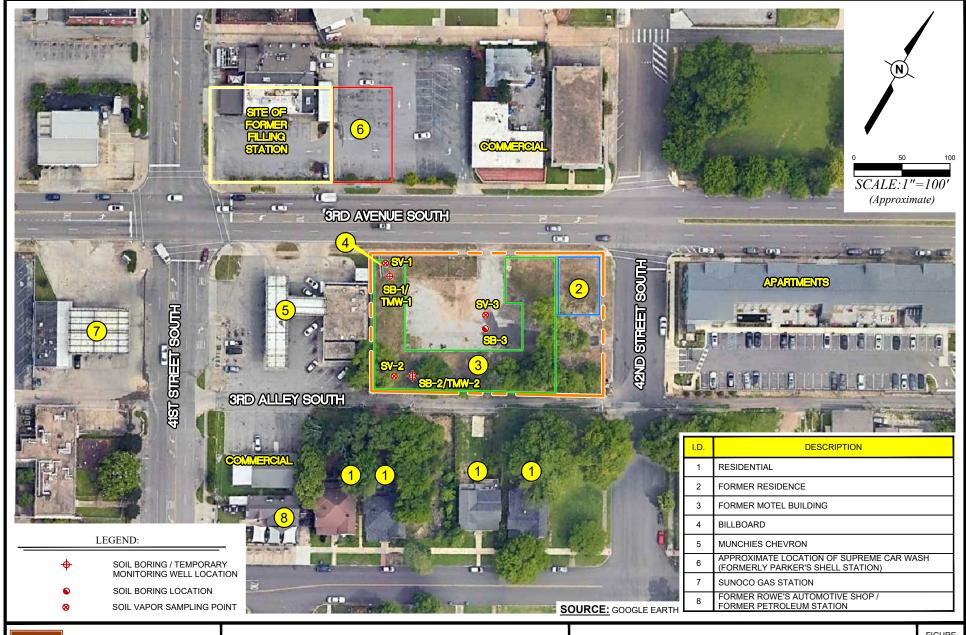
The soil at SB-1 was classified as sandy clay, gravelly clay, and clay from below the topsoil to probe refusal at 13.1 feet BGS. The soil at SB-2 was classified as sandy clay, gravelly clay, and clay from below the topsoil to probe refusal at 14.6 feet BGS. The soil at SB-3 was classified as sandy clay and gravelly clay from below the topsoil to probe refusal at 4.5 feet BGS. There were no signs of staining or odors throughout any of the borings. Soil samples were collected from the 1- to 3-foot depth and 6- to 8-foot depths at borings

SB-1 and SB-2. A soil sample was collected from the 1- to 3-foot depth at boring SB-3. Soil Boring Logs are included in **Appendix A, Geologic Boring Logs**.

Initial saturation was not observed during sample collection in any of the borings. Static water levels measured on May 6, 2024, in the temporary monitoring wells ranged from 10.9 feet BGS in TMW-1 and 7.7 feet BGS in TMW-2.

Only one analyte, bromomethane, was detected in the soil and groundwater samples. Bromomethane was the key ingredient in a soil fumigant once used to treat for pests (nematodes) and in a pesticide used to control rats. The concentrations did not exceed the Regional Screening Levels (RSLs) established by EPA for residential soil (May 2024). The detected bromomethane concentration at TMW-1 of 0.006 milligrams per liter (mg/L) did exceed the residential-use RSL of 0.00075 mg/L; however, the RSL is a risk-based level for tap water since a drinking water Maximum Contaminant Level (MCL) for the compound has not been established. Risk-based RSLs based on tap water are typically much lower than MCLs. Also, the City of Birmingham has an ordinance (Birmingham City Code, Chapter 3, Health and Sanitation, Article A, Section 6-3-3) that prohibits the installation of a domestic water supply well within 100 feet of an approved public water supply main or pipe. Analytical results are listed in **Table 1, Summary of Detected Constituents at Site – Soil** and **Table 2, Summary of Detected Constituents at Site – Groundwater** in **Tables**.


Fourteen analytes were detected in the soil vapor samples including 2-butanone [also known as methyl ethyl ketone (MEK)], carbon disulfide, chloromethane, dichlorodifluoromethane, ethylbenzene, 4-ethyltoluene, 2-hexanone, styrene, tetrachloroethene, toluene, 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, m,p-xylenes, and o-xylenes. Bromomethane was not detected in soil vapor samples. Vapor Intrusion Screening Levels (VISLs), particularly target levels for near-source soil, were determined using the EPA VISL Calculator published on their website for each analyte detected in soil vapor. The target concentrations were calculated using residential exposure assumptions at both a carcinogenic risk (CR) of 1E-05 and 1E-06 and a hazard quotient (HQ) of both 1 and 0.1. As a first step, the actual soil vapor concentrations were compared to target concentrations calculated at the lesser risk level (CR=1E-06 and HQ=0.1). Only the actual vapor concentration for 2-hexanone exceeded the target risk at that level. The commercial production of 2-hexanone was discontinued in the United States in 1979; however, it may still be indirectly produced through wood pulping operations and some oil and gas extraction operations. Some evidence exists that it may be produced from decomposition of wood waste or of biosolids in sewage.



To complete the soil vapor evaluation at this site, a cumulative risk to residents for all of the compounds that were detected in vapor was determined using the VISL Calculator. For residential use, the highest cumulative risk at any one sample point was a HQ of 0.327 at SV-2 and a CR of 2.28E-07 at SV-3. For risk evaluations, ADEM uses a cumulative risk of 1E-05 and an HQ of 1 and the cumulative risk calculated at this site fell below that level. The detected analytical results are tabulated in **Table 3**, **Summary of Detected Constituents at Site – Soil Vapor**. All the analytical results are included in **Appendix B**, **Laboratory Analytical Reports**. VISL calculation sheets are included in **Appendix C**, **VISL Data**.

5.0 RECOMMENDATIONS

PPM concludes that the areas of the subject property that were assessed have not been significantly impacted by the RECs identified during the Phase I ESA. Analytical testing of soil and vapor samples and the results of the VISL Calculator for cumulative risks associated with vapor indicate that those media at the site are suitable for residential use. However, one compound detected in groundwater, bromomethane, did exceed an RSL based on the residential use of tap water. As outlined in their environmental policy, the Alabama Housing Finance Authority (AHFA) allows an exception for the use of an institutional control prohibiting the use of groundwater for potable or irrigation purposes in the instance where water is supplied by a utility. The site is located in an urban area that is served by a municipal water supply, and ADEM has a process for allowing placement of an environmental covenant on such low-risk sites to formally restrict groundwater use. Therefore, PPM recommends the development of such an environmental control on this site. Once the control is instituted, no further action is necessary

PPM		NSULTANTS, INC. www.ppmco.com
DRAWN BY:		DRAWN DATE:
JC	Р	05/21/24
PROJECT NUM	MBER:	PHASE:
40191	1402	ESAII

THE KELSEY

AVONDALE PROPERTY

4121 3RD AVENUE SOUTH
BIRMINGHAM, ALABAMA

SITE MAP WITH SAMPLING LOCATIONS

FIGURE NUMBER

1

TABLE 1 SUMMARY OF CONSTITUENTS DETECTED AT SITE - SOIL THE KELSEY - AVONDALE PROPERTY BIRMINGHAM, ALABAMA

SAMPLE I.D.	SAMPLE DEPTH (ft BGS)	HEADSPACE RESULT (ppmv)	DATE	BROMOMETHANE (mg/kg)	2-BUTANONE (MEK) (mg/kg)	CARBON DISULFIDE (mg/kg)	CHLOROMETHANE (mg/kg)	DICHLORODIFLUORO- METHANE (mg/kg)	ETHYLBENZENE (ug/m3)	4-ETHYLTOLUENE (ug/m3)	2-HEXANONE (MBK) (mg/kg)	STYRENE (mg/kg)	TETRA- CHLOROETHENE (ug/m3)	TOLUENE (mg/kg)	1,2,4-TRIMETHYL- BENZENE (mg/kg)	1,3,5-TRIMETHYL- BENZENE (mg/kg)	m,p-XYLENE (mg/kg)	o-XYLENE (mg/kg)
SB-1 (1-3)	1-3	15	05/03/24	0.027	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	NA	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.015	< 0.015
SB-1 (6-8)	6-8	25	05/03/24	0.038	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	NA	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.015	< 0.015
SB-2 (1-3)	1-3	45	05/03/24	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	NA	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.015	< 0.015
SB-2 (6-8)	6-8	30	05/03/24	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	NA	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.015	< 0.015
SB-3 (1-3)	1-3	0	05/03/24	0.046	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	NA	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.015	< 0.015
RSLs - Residential Soil			0.68	2,700	77	11	8.7	5.8	NA	20	600	8.1	490	30	27	55	64	

Notes: ft BGS - feet below ground surface

mg/kg - milligrams per kilogram

ppmv - parts per million by volume using RKI Eagle combustible gas indicator

NA - Not analyzed

RSLs - EPA Regional Screening Levels, May 2024

Bold indicates detected concentration

Source:

PPM Project No. 40191402

TABLE 2
SUMMARY OF CONSTITUENTS DETECTED AT SITE - GROUNDWATER
THE KELSEY - AVONDALE PROPERTY
BIRMINGHAM, ALABAMA

SAMPLE I.D.	DATE	BROMOMETHANE (mg/L)	2-BUTANONE (MEK) (mg/L)	CARBON DISULFIDE (mg/L)	CHLOROMETHANE (mg/L)	DICHLORODIFLUORO- METHANE (mg/L)	ETHYLBENZENE (mg/L)	4-ETHYLTOLUENE (mg/L)	2-HEXANONE (MBK) (mg/L)	STYRENE (mg/L)	TETRA- CHLOROETHENE (ug/m3)	TOLUENE (mg/L)	1,2,4-TRIMETHYL- BENZENE (mg/L)	1,3,5-TRIMETHYL- BENZENE (mg/L)	m,p-XYLENE (mg/L)	o-XYLENE (mg/L)
TMW-1	05/03/24	0.006	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	NA	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
TMW-2	05/03/24	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	NA	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
RSLs - Water [I Contaminant L if available, den asterisk (*)]	evel (MCL),	0.00075	0.56	0.081	0.019	0.020	0.70*	NA	0.0038	0.10*	0.005*	1.0*	0.0056	0.0060	10*	10*

Notes: mg/L - milligrams per liter

RSLs - EPA Regional Screening Levels, May 2024

NA - Not analyzed

Bold indicates detected concentration

Concentration or detection limit above RSL

Source: PPM Project No. 40191402

TABLE 3
SUMMARY OF CONSTITUENTS DETECTED AT SITE - SOIL VAPOR
THE KELSEY - AVONDALE PROPERTY
BIRMINGHAM, ALABAMA

SAMPLE I.D.	SAMPLE DEPTH (ft BGS)	ДАТЕ	BROMOMETHANE (ug/m3)	2-BUTANONE (MEK) (ug/m3)	CARBON DISULFIDE (ug/m3)	CHLOROMETHANE (ug/m3)	DICHLORODIFLUORO- METHANE (ug/m3)	ETHYLBENZENE (ug/m3)	4-ETHYLTOLUENE (ug/m3)	2-HEXANONE (MBK) (ug/m3)	STYRENE (ug/m3)	TETRA- CHLOROETHENE (ug/m3)	TOLUENE (ug/m3)	1,2,4-TRIMETHYL- BENZENE (ug/m3)	1,3,5-TRIMETHYL- BENZENE (ug/m3)	m,p-XYLENE (ug/m3)	o-XYLENE (ug/m3)	Cumulative Vapor Intrusion Hazard HQ	Cumulative Vapor Intrusion Hazard CR
SV-1	3	05/03/24	<16	2,300	<6.3	2.7	<5.0	<4.4	< 5.0	290	5.6	<6.9	12	14	< 5.0	18	9.4	0.312	1.37E-07
SV-2	3	05/03/24	<16	1,700	<6.3	<2.1	<5.0	<4.4	< 5.0	310	4.6	8.2	8.9	13	< 5.0	15	8.8	0.327	1.40E-07
SV-3	3	05/03/24	<16	940	53	<2.1	27	7.3	13	92	5.6	12	16	37	15	31	21	0.137	2.28E-07
VISLs - Residential Near-Source or Sub-Slab Soil (HQ = 0.1; CR = 10-6)		348	3,480	2,430	10,400	3,480	37.4	NA	104	10,400	141	17,400	695	695	348	348	0.1	1.00E-06	
VISLs - Residential Near-Source or Sub-Slab Soil (HQ = 1; CR = 10-5)		3,480	34,800	24,300	104,000	34,800	374	NA	1,040	104,000	1,410	174,000	6,950	6,950	3,480	3,480	1	1.00E-05	

PPM Project No. 40191402

Source:

Notes: ft BGS - feet below ground surface

ug/m3 - micrograms per cubic meter

NA - Not applicable

VISLs - Vapor Intrusion Screening Levels by EPA Calculator, May 2024

HQ = Hazard Quotient CR = Carcinogenic Risk

Bold indicates detected concentration

Highlighted values exceed VISL based on HQ = 0.1 or CR = 10-6

LOG OF BORING: SB-1 / TMW-1

Client / Site Information:

Client: Site: Avondale Property Location: Birmingham, AL

Agency Interest No.: 40191402 PPM Project No.: Project Type: Phase II ESA

Boring Information:

Date / Time: 05-03-24 / 09:20-09:50

Logged By:

Drilling Company / Driller: Associated Topo Drilling Method: DPT 13.1 ft BGS Total Boring Depth:

Initial Saturation (ft)/Date: NA

Static GW level (ft)/Date: 10.9 ft BGS / 05-06-24

Surface Elevation (ft): NA

Well Information:

Well Type: Temporary Well Purpose: Sampling Well Construction Date: 05-03-24 Total Well Depth: 13.0 ft 3.0 ft - 13.0 ft Screened Interval: Screen Slot Size: 0.01-in.

Development Method: NA Gallons Purged: NA

						Surface Elevation (ft): Sampling Interval:	NA Continuous			Gaill	0115 1	rurgea.	NA .
·- ·	Surf. Elev.	Water Level	nscs	GRAPHIC	Water Levels ▼ Static GW √ Initial Satur			Sample	Blow Count	Headspace Concentration (ppmv)	Percent Recovery	Depth in Feet	Well Schematic: TMW-1
5-			CL		to wet, dark brown subangular, some subangular, some GRAVELLY CLAY homogeneous, mr fine, subangular, of CLAY, moderate	τ΄, low to moderate plasticity, fir oist, tannish brown, no odor, gr	m, ravel is	2	N/A	50* 30*	100%	5—	1" I.D. PVC Riser 1" I.D. Slotted PVC Screen
15-	_				(Boring refusal @	13.1 ft BGS)						15—	

- *Sample submitted for laboratory analysis

- Soil descriptions generally based on visual inspection/professional judgment as described in ASTM D2488-09a: Standard Practice for Description and Identification of Soils (Visual-Manual Procedure). Laboratory testing not conducted, and the data should not be used for engineering purposes.

05-22-2024 O:_Overhead_Boring Log Drafts\40191402\SB-1.bor

LOG OF BORING: SB-2 / TMW-2

Client / Site Information:

Client: Site: Avondale Property Location: Birmingham, AL

Agency Interest No.: 40191402 PPM Project No.: Project Type: Phase II ESA

Boring Information:

Date / Time: 05-03-24 / 09:55-10:20

Logged By:

Drilling Company / Driller: Associated Topo Drilling Method: DPT

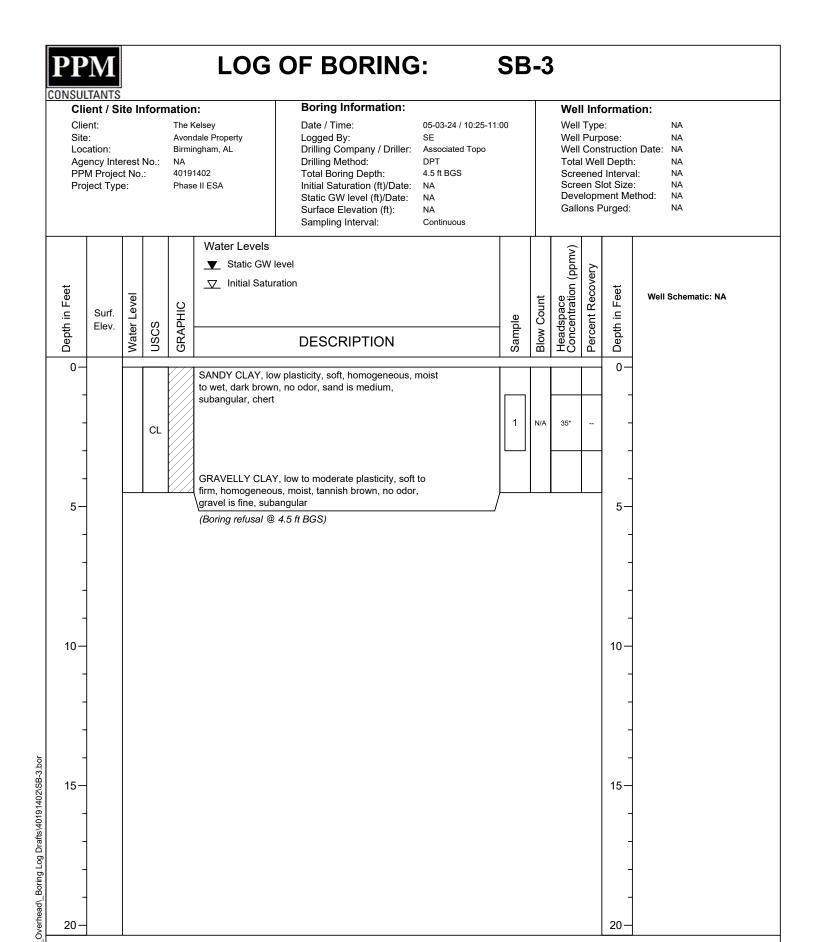
Total Boring Depth: 14.6 ft BGS Initial Saturation (ft)/Date: NA

Static GW level (ft)/Date: 7.7 ft BGS / 05-06-24

Surface Elevation (ft): NA

Well Information:

Well Type: Temporary Well Purpose: Sampling Well Construction Date: 05-03-24 Total Well Depth: 14.5 ft Screened Interval: 4.5 ft - 14.5 ft Screen Slot Size: 0.01-in.


Development Method: NA Gallons Purged: NA

					Surface Elevation (ft): Sampling Interval:	NA Continuous			Oali	JI 13 1	ruigeu.	INA
Depth in Feet Surf.	Water Level	nscs	GRAPHIC	Water Levels ▼ Static GW I ▼ Initial Satur			Sample	Blow Count	Headspace Concentration (ppmv)	Percent Recovery	Depth in Feet	Well Schematic: TMW-2
0- - - 5- - 10- - - - - - - - - - - - - - - - -		CL		to wet, dark brown subangular, chert GRAVELLY CLAN firm, homogeneou is fine, subangular CLAY, moderate	/, low to moderate plasticity, so is, wet, tannish brown, no odor r, chert plasticity, firm, homogeneous, r own, no odor, chert	oft to , gravel	2	N/A	45* 35*	100%	10-	— 20/40 Well Rounded Silica Sand — 1" I.D. Slotted PVC Screen

- *Sample submitted for laboratory analysis

- Soil descriptions generally based on visual inspection/professional judgment as described in ASTM D2488-09a: Standard Practice for Description and Identification of Soils (Visual-Manual Procedure). Laboratory testing not conducted, and the data should not be used for engineering purposes.

05-22-2024 O:_Overhead_Boring Log Drafts\40191402\SB-2.bor

NOTES

Ö

05-22-2024

- *Sample submitted for laboratory analysis

 Soil descriptions generally based on visual inspection/professional judgment as described in ASTM D2488-09a: Standard Practice for Description and Identification of Soils (Visual-Manual Procedure). Laboratory testing not conducted, and the data should not be used for engineering purposes.

Environmental Company, Inc.

2515 5th Avenue South Birmingham, AL 35233 205-581-9500

Client: PPM Consultants Report Date: May 20, 2024
Attention: Mr. Walt Henley Reference # 51376
Address: 5555 Bankhead Hwy. P.O. # 40191402
Birmingham, AL 35210 Project ID: The Kelsey

Sample Matrix: soil/TerraCore Analytical

Date Received: 5/7/24 Analyst: Hageman/Heard Date Collected: 5/3/24 Date of Analysis: 5/8-17/24

Date Collected: 5/3/24 Date of Analysis: 5/8-17/24
Sample Collector: S. Evans Method: EPA Method 5035A/8260B

VOLA	TILE OF	RGANIC	COMPO	DUNDS		
	FIELD ID	Practical				
VOLATILE	SB-1 (1-3)	SB-1 (6-8)	SB-2 (1-3)	SB-2 (6-8)	SB-3 (1-3)	Quantitation
ORGANIC	LAB ID	Limit				
COMPOUNDS, PPM	255357	255358	255359	255360	255361	РРМ
Benzene	BDL	BDL	BDL	BDL	BDL	0.005
Bromobenzene	BDL	BDL	BDL	BDL	BDL	0.005
Bromochloromethane	BDL	BDL	BDL	BDL	BDL	0.005
Bromodichloromethane	BDL	BDL	BDL	BDL	BDL	0.005
Bromoform	BDL	BDL	BDL	BDL	BDL	0.005
Bromomethane	0.027	0.038	BDL	BDL	0.046	0.005
n-Butylbenzene	BDL	BDL	BDL	BDL	BDL	0.005
sec-Butylbenzene	BDL	BDL	BDL	BDL	BDL	0.005
tert-Butybenzene	BDL	BDL	BDL	BDL	BDL	0.005
Carbon Tetrachloride	BDL	BDL	BDL	BDL	BDL	0.005
Chlorobenzene	BDL	BDL	BDL	BDL	BDL	0.005
Chloroethane	BDL	BDL	BDL	BDL	BDL	0.005
Chloroform	BDL	BDL	BDL	BDL	BDL	0.005
Chloromethane	BDL	BDL	BDL	BDL	BDL	0.005
2-Chlorotoluene	BDL	BDL	BDL	BDL	BDL	0.005
4-Chlorotoluene	BDL	BDL	BDL	BDL	BDL	0.005
Dibromochloromethane	BDL	BDL	BDL	BDL	BDL	0.005
1,2-Dibromo-3-Chloropropane	BDL	BDL	BDL	BDL	BDL	0.005
1,2-Dibromoethane	BDL	BDL	BDL	BDL	BDL	0.005
Dibromomethane	BDL	BDL	BDL	BDL	BDL	0.005
1,2-Dichlorobenzene	BDL	BDL	BDL	BDL	BDL	0.005
1,3-Dichlorobenzene	BDL	BDL	BDL	BDL	BDL	0.005
1,4-Dichlorobenzene	BDL	BDL	BDL	BDL	BDL	0.005
Dichlorodifluoromethane	BDL	BDL	BDL	BDL	BDL	0.005
1,1-Dichloroethane	BDL	BDL	BDL	BDL	BDL	0.005
1,2-Dichloroethane	BDL	BDL	BDL	BDL	BDL	0.005

^{**}Compound List Continued next page**

Environmental Company, Inc.

2515 5th Avenue South Birmingham, AL 35233 205-581-9500

The Kelsey

Hageman/Heard

Client: **PPM Consultants** Report Date: May 20, 2024 Attention: Mr. Walt Henley Reference # 51376 Address: 5555 Bankhead Hwy. P.O. # 40191402 Birmingham, AL 35210

Sample Matrix: soil/TerraCore Analytical Date Received: 5/7/24 Analyst:

Date Collected: 5/3/24 Date of Analysis: 5/8-17/24

Sample Collector: S. Evans Method: EPA Method 5035A/8260B

Project ID:

VOLA	TILE OF	RGANIC	COMPO	OUNDS		
		FIELD ID			FIELD ID	Practical
VOLATILE				SB-2 (6-8)		Quantitation
ORGANIC	LAB ID	LAB ID	LAB ID	LAB ID	LAB ID	Limit
COMPOUNDS, PPM	255357	255358	255359	255360	255361	PPM
1,1-Dichloroethene	BDL	BDL	BDL	BDL	BDL	0.005
cis-1,2-Dichloroethene	BDL	BDL	BDL	BDL	BDL	0.005
trans-1,2-Dichloroethene	BDL	BDL	BDL	BDL	BDL	0.005
1,2-Dichloropropane	BDL	BDL	BDL	BDL	BDL	0.005
1,3- Dichloropropane	BDL	BDL	BDL	BDL	BDL	0.005
2,2-Dichloropropane	BDL	BDL	BDL	BDL	BDL	0.005
1,1-Dichloropropene	BDL	BDL	BDL	BDL	BDL	0.005
cis-1-3,Dichloropropene	BDL	BDL	BDL	BDL	BDL	0.005
trans-1,3-Dichloropropene	BDL	BDL	BDL	BDL	BDL	0.005
Ethylbenzene	BDL	BDL	BDL	BDL	BDL	0.005
Hexachlorobutadiene	BDL	BDL	BDL	BDL	BDL	0.005
Isopropylbenzene	BDL	BDL	BDL	BDL	BDL	0.005
4-Isopropyltoluene	BDL	BDL	BDL	BDL	BDL	0.005
Methylene Chloride	BDL	BDL	BDL	BDL	BDL	0.025
Naphthalene	BDL	BDL	BDL	BDL	BDL	0.025
n-Propylbenzene	BDL	BDL	BDL	BDL	BDL	0.005
Styrene	BDL	BDL	BDL	BDL	BDL	0.005
1,1,1,2-Tetrachloroethane	BDL	BDL	BDL	BDL	BDL	0.005
1,1,2,2-Tetrachloroethane	BDL	BDL	BDL	BDL	BDL	0.005
Tetrachloroethene	BDL	BDL	BDL	BDL	BDL	0.005
Toluene	BDL	BDL	BDL	BDL	BDL	0.005
1,2,3-Trichlorobenzene	BDL	BDL	BDL	BDL	BDL	0.005
1,2,4-Trichlorobenzene	BDL	BDL	BDL	BDL	BDL	0.005
1,1,1-Trichloroethane	BDL	BDL	BDL	BDL	BDL	0.005
1,1,2-Trichloroethane	BDL	BDL	BDL	BDL	BDL	0.005
Trichloroethene	BDL	BDL	BDL	BDL	BDL	0.005
Trichlorofluoromethane	BDL	BDL	BDL	BDL	BDL	0.005

^{**}Compound List Continued next page**

Environmental Company, Inc.

2515 5th Avenue South Birmingham, AL 35233 205-581-9500

Client: PPM Consultants Report Date: May 20, 2024
Attention: Mr. Walt Henley Reference # 51376
Address: 5555 Bankhead Hwy. P.O. # 40191402
Birmingham, AL 35210 Project ID: The Kelsey

Sample Matrix:soil/TerraCoreAnalyticalDate Received:5/7/24Analyst:Hageman/HeardDate Collected:5/3/24Date of Analysis:5/8-17/24Sample Collector:S. EvansMethod:EPA Method 5035A/8260B

VOLA	TILE OF	RGANIC	COMPO	OUNDS		
	FIELD ID	Practical				
VOLATILE	SB-1 (1-3)	SB-1 (6-8)	SB-2 (1-3)	SB-2 (6-8)	SB-3 (1-3)	Quantitation
ORGANIC	LAB ID	Limit				
COMPOUNDS, PPM	255357	255358	255359	255360	255361	PPM
1,2,3-Trichloropropane	BDL	BDL	BDL	BDL	BDL	0.005
1,2,4-Trimethylbenzene	BDL	BDL	BDL	BDL	BDL	0.005
1,3,5-Trimethylbenzene	BDL	BDL	BDL	BDL	BDL	0.005
Vinyl Chloride	BDL	BDL	BDL	BDL	BDL	0.005
Xylenes, o,m,p	BDL	BDL	BDL	BDL	BDL	0.015
MTBE	BDL	BDL	BDL	BDL	BDL	0.005
2-Butanone (MEK)	BDL	BDL	BDL	BDL	BDL	0.005
Carbon Disulfide	BDL	BDL	BDL	BDL	BDL	0.005
2-Hexanone	BDL	BDL	BDL	BDL	BDL	0.005

All results expressed as ppm of analyte, dry weight basis Detection Limit is Practical Quantitation Limit BDL = Below Detection Limit All results expressed as PPM (mg/Kg)

ADEM # 41470

EPA Laboratory ID AL01084

/ QAQC

Respectfully submitted,

Kevin Doriety Analytical Chemist

Environmental Company, Inc.

2515 5th Avenue South Birmingham, AL 35233 205-581-9500

Client: PPM Consultants Report Date: May 20, 2024
Attention: Mr. Walt Henley Reference # 51376
Address: 5555 Bankhead Hwy. P.O. # 40191402
Birmingham, AL 35210 Project ID: The Kelsey

Sample Matrix:waterAnalyticalDate Received:5/7/24Analyst:Hageman/HeardDate Collected:5/6/24Date Analysis:5/8-17/24Sample Collector:S. EvansMethod:EPA Method 8260B

VOLATII	VOLATILE ORGANIC COMPOUNDS						
	FIELD ID	FIELD ID					
VOLATILE	TMW-1	TMW-2				Detection	
ORGANIC	LAB ID	LAB ID				Limit	
COMPOUNDS, mg/L	255362	255363		1		mg/L	
Benzene	BDL	BDL				0.005	
Bromobenzene	BDL	BDL	***************************************			0.005	
Bromochloromethane	BDL	BDL				0.005	
Bromodichloromethane	BDL	BDL				0.005	
Bromoform	BDL	BDL				0.005	
Bromomethane	0.006	BDL				0.005	
n-Butylbenzene	BDL	BDL	***************************************		1	0.005	
sec-Butylbenzene	BDL	BDL				0.005	
tert-Butybenzene	BDL	BDL				0.005	
Carbon Tetrachloride	BDL	BDL				0.005	
Chlorobenzene	BDL	BDL				0.005	
Chloroethane	BDL	BDL				0.005	
Chloroform	BDL	BDL				0.005	
Chloromethane	BDL	BDL				0.005	
2-Chlorotoluene	BDI.	BDL				0.005	
4-Chlorotoluene	BDL	BDL				0.005	
Dibromochloromethane	BDL	BDL				0.005	
1,2-Dibromo-3-Chloropropane	BDL	BDL				0.010	
1,2-Dibromoethane	BDL	BDL				0.005	
Dibromomethane	BDL	BDL				0.010	
1,2-Dichlorobenzene	BDL	BDL				0.005	
1,3-Dichlorobenzene	BDL	BDL				0.005	
1,4-Dichlorobenzene	BDL	BDL			·	0.005	
Dichlorodifluoromethane	BDL	BDL				0.005	
1-1,Dichloroethane	BDL	BDL				0.005	

Compound List Continued next page

BDL = Below Detection Limit, Method Detection Limit is Method Detection Limit All results expressed as PPM (mg/L)

Environmental Company, Inc.

2515 5th Avenue South Birmingham, AL 35233 205-581-9500

Client: PPM Consultants Report Date: May 20, 2024
Attention: Mr. Walt Henley Reference # 51376
Address: 5555 Bankhead Hwy. P.O. # 40191402
Birmingham, AL 35210 Project ID: The Kelsey

Sample Matrix:waterAnalyticalDate Received:5/7/24Analyst:Hageman/HeardDate Collected:5/6/24Date Analysis:5/8-17/24Sample Collector:S. EvansMethod:EPA Method 8260B

VOLATI	LE OR	GANI	CCON	IPOUNDS	1
		FIELD ID			
VOLATILE	TMW-1	TMW-2		1	Detection
ORGANIC	LAB ID	LAB ID			Limit
COMPOUNDS, mg/L	255362	255363			mg/L
1,2-Dichloroethane	BDL	BDL			0.005
1,1-Dichloroethene	BDL	BDL			0.005
cis-1,2-Dichloroethene	BDL	BDL			0.005
trans-1,2-Dichloroethene	BDL	BDL			0.005
1,2-Dichloropropane	BDL	BDL			0.005
1,3- Dichloropropane	BDL	BDL			0.005
2,2-Dichloropropane	BDL	BDL			0.005
1,1-Dichloropropene	BDL	BDL			0.005
cis-1-3,Dichloropropene	BDL	BDL			0.005
trans-1,3-Dichloropropene	BDL	BDL			0.005
Ethylbenzene	BDL	BDL			0.005
Hexachlorobutadiene	BDL	BDL			0.010
Isopropylbenzene	BDL	BDL			0.005
4-Isopropyltoluene	BDL	BDL			0.005
Methylene Chloride	BDL	BDL			0.005
Naphthalene	BDL	BDL			0.010
n-Propylbenzene	BDL	BDL			0.005
Styrene	BDL	BDL			0.005
1,1,1,2-Tetrachloroethane	BDL	BDL			0.005
1,1,2,2-Tetrachloroethane	BDL	BDL			0.005
Tetrachloroethene	BDL	BDL			0.005
Toluene	BDL	BDL			0.005
1,2,3-Trichlorobenzene	BDL	BDL			0.005
1,2,4-Trichlorobenzene	BDL	BDL			0.005
1,1,1-Trichloroethane	BDL	BDL			0.005
1,1,2-Trichloroethane	BDL	BDL			0.005

Compound List Continued next page

BDL = Below Detection Limit, Method Detection Limit is Method Detection Limit All results expressed as PPM (mg/L)

Environmental Company, Inc.

2515 5th Avenue South Birmingham, AL 35233 205-581-9500

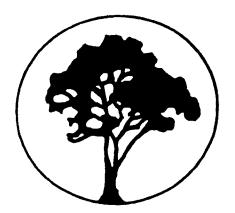
Client:	PPM Consultants	Report Date:	May 20, 2024	
Attention:	Mr. Walt Henley	Reference #	51376	
Address:	5555 Bankhead Hwy.	P.O. #	40191402	
	Birmingham, AL 35210	Project ID:	The Kelsey	

Sample Matrix:	water	Analytical	
Date Received:	5/7/24	Analyst:	Hageman/Heard
Date Collected:	5/6/24	Date Analysis:	5/8-17/24
Sample Collector:	S. Evans	Method:	EPA Method 8260B

VOLATI	VOLATILE ORGANIC COMPOUNDS								
	FIELD ID	FIELD ID							
VOLATILE	TMW-1	TMW-2			Detection				
ORGANIC	LAB ID	LABID			Limit				
COMPOUNDS, mg/L	255362	255363			mg/L				
Trichloroethene	BDL	BDL			0.005				
Trichlorofluoromethane	BDL	BDL			0.005				
1,2,3-Trichloropropane	BDL	BDL			0.005				
1,2,4-Trimethylbenzene	BDL	BDL			0.005				
1,3,5-Trimethylbenzene	BDL	BDL			0.005				
Vinyl Chloride	BDL	BDL			0.002				
Xylenes, o,m,p	BDL	BDL			0.005				
MTBE	BDL	BDL			0.005				
2-Butanone (MEK)	BDL	BDL			0.005				
Carbon Disulfide	BDL	BDL			0.005				
2-Hexanone	BDL	BDL			0.005				

BDL = Below Detection Limit, Method Detection Limit is Method Detection Limit All results expressed as PPM (mg/L)

/QAQC


ADEM # 41470 EPA Laboratory ID AL01084

Respectfully submitted,

Kevin Doriety Analytical Chemist

Environmental Company, Inc.

2515 5th Avenue South Birmingham, AL 35233 205-581-9500

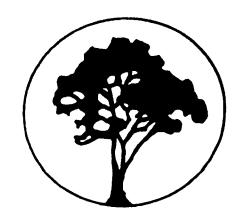
Client:	PPM Consultants	Report Date:	May 13, 2024	<u> </u>
Attention:	Mr. Walt Henley	Reference #	51376	
Address:	5555 Bankhead Hwy.	P.O. #	40191402	
	Birmingham, AL 35210	Project ID:	The Kelsey	

Sample Matrix:	soil	Analytical	
Date Received:	5/7/24	Analyst:	CRR
Date Collected:	5/3/24	Date of Analysis:	5/9/24
Sample Collector:	S. Evans	Method:	ASTM D2216

		Mois	ture Co	ntent		
	FIELD ID					
	SB-1 (1-3)	SB-1 (6-8)	SB-2 (1-3)	SB-2 (6-8)	SB-3 (1-3)	
Moisture Content	LAB ID	Detection				
by % ratio	255357	255358	255359	255360	255361	 Limit, %
Moisture Content	21.6%	18.3%	22.7%	19.6%	20.3%	0.1%

BDL = Below Detection Limit
Results expressed as a % ratio of (mass of moisture) / (mass of solid)

///A / QAQC

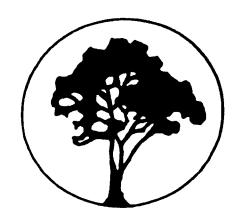

EPA Laboratory ID AL01084

Respectfully submitted,

Kevin Doriety Analytical Chemist

Environmental Company, Inc.

2515 5th Avenue South Birmingham, AL 35233 205-581-9500

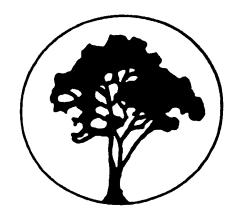

QC Matrix:	water		Analytical	· · · · · · · · · · · · · · · · · · ·			
Method:	EPA Metho	od 8260B	Analyst:	-	Hageman/ H	-leard	
			· · · · · · · · · · · · · · · · · · ·				
	VOLA	TILE OF	RGANIC	COMPO	DUNDS		
		Analysis	Analysis			ŀ	
		Date	Date				
		5/8/24	5/8/24	: :			
VOLATILE		LABID	LABID	LABID			Detection
ORGANIC		Laboratory		Standard	%	Target	Limit
COMPOUNDS, mg/L		Blank	Calibration	Calibration	Recovery	Range (%)	mg/L
Benzene		BDL	0.00977	0.01000	98%	80-120	0.005
Bromobenzene		BDL	0.00997	0.01000	100%	80-120	0.005
Bromochloromethane		BDL	0.00931	0.01000	93%	80-120	0.005
Bromodichloromethane	····	BDL	0.01048	0.01000	105%	80-120	0.005
Bromoform	 -	BDL	0.01215	0.01000	122%	80-120	0.005
Bromomethane		BDL	0.00981	0.01000	98%	80-120	0.005
n-Butylbenzene		BDL	0.00947	0.01000	95%	80-120	0.005
sec-Butylbenzene	- · · · · · · · · · · · · · · · · · · ·	BDL	0.00797	0.01000	80%	80-120	0.005
tert-Butybenzene	·	BDL	0.00894	0.01000	89%	80-120	0.005
Carbon Tetrachloride		BDL	0.00989	0.01000	99%	80-120	0.005
Chlorobenzene	-	BDL	0.00953	0.01000	95%	80-120	0.005
Chloroethane		BDL	0.01031	0.01000	103%	80-120	0.005
Chloroform		BDL	0.00935	0.01000	94%	80-120	0.005
Chloromethane		BDL	0.01036	0.01000	104%	80-120	0.005
2-Chlorotoluene		BDL	0.00919	0.01000	92%	80-120	0.005
4-Chlorotoluene		BDL	0.00914	0.01000	91%	80-120	0.005
Dibromochloromethane		BDL	0.00843	0.01000	84%	80-120	0.005
1,2-Dibromo-3-Chloropr	opane	BDL	0.01039	0.01000	104%	80-120	0.010
1,2-Dibromoethane	-	BDL	0.01053	0.01000	105%	80-120	0.005
Dibromomethane		BDL	0.01073	0.01000	107%	80-120	0.010
1,2-Dichlorobenzene	*****	BDL	0.00970	0.01000	97%	80-120	0.005
1,3-Dichlorobenzene		BDL	0.00898	0.01000	90%	80-120	0.005
1,4-Dichlorobenzene		BDL	0.00918	0.01000	92%	80-120	0.005
Dichlorodifluoromethane	:	BDL	0.01054	0.01000	105%	80-120	0.005
1,1-Dichloroethane		BDL	0.00948	0.01000	95%	80-120	0.005
1,2-Dichloroethane		BDL	0.00958	0.01000	96%	80-120	0.005
1,1-Dichloroethene		BDL	0.00893	0.01000	89%	80-120	0.005
cis-1,2-Dichloroethene		BDL	0.00933	0.01000	93%	80-120	0.005
trans-1,2-Dichloroethene		BDL	0.00957	0.01000	96%	80-120	0.005

Compound List Continued next page

BDL = Below Detection Limit All results expressed as PPM (mg/L)

Environmental Company, Inc.

2515 5th Avenue South Birmingham, AL 35233 205-581-9500



QC Matrix:	water		Analytical		·		
Method:	EPA Metho	d 8260B	Analyst:		Hageman/ H	leard	
							*
	VOLAT	TILE OR	RGANIC	COMPO	DUNDS		
		Analysis	Analysis		4		
		Date	Date			-	
		5/8/24	5/8/24				
VOLATILE		LAB ID	LABID	LABID			Detection
ORGANIC		Laboratory	Continued	Standard	%	Target	Limit
COMPOUNDS, mg		Blank	Calibration	Calibration	Recovery	Range (%)	mg/L
1,2-Dichloropropan		BDL	0.00952	0.01000	95%	80-120	0.005
1,3-Dichloropropan		BDL	0.01074	0.01000	107%	80-120	0.005
2,2-Dichloropropan		BDL	0.00995	0.01000	100%	80-120	0.005
1,1-Dichloropropend		BDL	0.01000	0.01000	100%	80-120	0.005
cis-1,3-Dichloropro		BDL	0.01188	0.01000	119%	80-120	0.005
trans-1,3-Dichlorop	ropene	BDL	0.01173	0.01000	117%	80-120	0.005
Ethylbenzene		BDL	0.01056	0.01000	106%	80-120	0.005
Hexachlorobutadien	e	BDL	0.00921	0.01000	92%	80-120	0.005
Isopropylbenzene		BDL	0.00883	0.01000	88%	80-120	0.005
4-Isopropyltoluene		BDL	0.00807	0.01000	81%	80-120	0.005
Methylene Chloride		BDL	0.01034	0.01000	103%	80-130	0.005
MTBE		BDL	0.01034	0.01000	103%	80-120	0.005
Naphthalene		BDL	0.00880	0.01000	88%	70-120	0.005
n-Propylbenzene		BDL	0.00840	0.01000	84%	80-120	0.005
Styrene		BDL	0.00923	0.01000	92%	80-120	0.005
1,1,1,2-Tetrachloroe		BDL	0.01168	0.01000	117%	80-120	0.005
1,1,2,2-Tetrachloroe	thane	BDL	0.01128	0.01000	113%	80-120	0.005
Tetrachloroethene		BDL	0.01003	0.01000	100%	80-120	0.005
Toluene		BDL	0.00950	0.01000	95%	80-120	0.005
1,2,3-Trichlorobenze	ene	BDL	0.00772	0.01000	77%	80-120	0.005
1,2,4-Trichlorobenze	ene	BDL	0.00882	0.01000	88%	80-120	0.005
1,1,1-Trichloroethan		BDL	0.01104	0.01000	110%	80-120	0.005
1,1,2-Trichloroethan	e	BDL	0.01003	0.01000	100%	80-120	0.005
Trichloroethene		BDL	0.01006	0.01000	101%	80-120	0.005
Trichlorofluorometh		BDL	0.01054	0.01000	105%	80-120	0.005
1,2,3-Trichloropropa		BDL	0.01036	0.01000	104%	80-120	0.005
1,2,4-Trimethylbenz		BDL	0.00875	0.01000	88%	80-120	0.005
1,3,5-Trimethylbenz	ene	BDL	0.00853	0.01000	85%	80-120	0.005
Vinyl Chloride		BDL	0.01033	0.01000	103%	80-120	0.002
Xylenes, o,m,p		BDL	0.03057	0.03000	102%	80-120	0.005

Continued Calibration = Laboratory Control Sample (LCS) BDL = Below Detection Limit All results expressed as PPM (mg/L)

Environmental Company, Inc.

2515 5th Avenue South Birmingham, AL 35233 205-581-9500

Syst	em Moni	toring C	ompoun	ds- Labo	ratory	Blanl		
	LABID							
Surrogate	Laboratory	Conc.	%	Target				
Compound, mg/L	Blank	Units	Recovery	Range (%)				
Dibromofluoromethane	0.00492	0.00500	98.4%	86-118				†
Toluene D8	0.00454	0.00500	90.8%	88-110				<u> </u>
4-Bromofluorobenzene	0.00529	0.00500	105.8%	86-115			***	<u> </u>
	<u> </u>		103.070	00-115		<u></u> ,		<u> </u>
System	ı Monitor				ied Ca	librat	ion	
Systen					ied Ca	librat	ion	
	Monitor				ied Ca	librat	ion	
System Surrogate					led Ca	librat	ion	
	LABID	ing Con	npounds	- Continu	ed Ca	librat	ion	
Surrogate Compound, mg/L	LAB ID Continued	ring Con	npounds %	- Continu	ed Ca	librat	ion	
Surrogate	LAB ID Continued Calibration	Conc.	npounds % Recovery	- Continu Target Range (%)	ed Ca	librat	ion	

Result is outside of recommended target range
Continued Calibration = Laboratory Control Sample (LCS)
BDL = Below Detection Limit
All results expressed as PPM (mg/L)

MM /QAQC

ADEM # 41470 EPA Laboratory ID AL01084

Sutherland Environmental Read and Review Checklist

1. Is the client and on report?	d the sample collector(s) accurately n	oted NO Y	NO YES
2. Do all dates ma	atch the COC on the report?	YES YES	NO YES
3. Is the purchase noted on repor	order ID (PO) and project ID accura		NO YES
4. Are all method:	s and method references correct on re	eport? NO Y	NO YES
5. Do the Field ID COC?	O(s) and the Lab ID(s) correspond to a	the NO YS	NO YES
6. Is the report for	rmatted correctly?	YES YES	NO YES
	ving information on report correspond nation from the analytical instrumenta		
	Sample Matrix	NO Y	NO YES
	Analyst	NO YES	NO YES
	Analysis Date/Time	NO XES	NO YES
	Analyte concentration	NO XED	NO YES
	Units	NO XES	NO YES
	Dilution Factors/Conversions	NO XX	NO YES
	Detection/Reporting/Quant. Limit	ts NO LES	NO YES
	QC Reviewed:	TES	YES
	Initial*:	M)H	165
	* MJH = Michael Heard, KD	D = Kevin Doriety, MSH = Matt Hagem	an, KH = Kelly Hester
PDF /	W. Henley		
Notes:	1		
	Ir	100 ivoice 51376	
		Sutherland Environment	al Co., Inc.

Sutherland Environmental Company Inc.

Sample Custodian (signed):

Sample Check-in Form

Date Received: 5/7/24 Invoice # 5/376
Method of Delivery: PICK UP Client: PPM
1. Did any containers arrive broken?
* If so, please state field ID with analysis of broken sample(s)
2. Were cooler(s) sealed upon arrival?
3. Were the samples received at the proper temperature (4°C +/- 2°C)?
4. Did a chain of custody accompany the samples?
* Was it properly filled out?
5. Were correct containers used for the analysis requested?
6. Were all containers properly preserved? NO NA
7. Were all water samples received at the proper pH?
8. If VOA vials were present, was there any head space?
* If so, please state field ID of deficient sample(s):
9. Were all containers properly labeled and match chain of custody?
10. Did containers arrive within holding time of analysis?
* If not, please state field ID and analysis of sample(s) out of holding time:
11. Was client informed of any/all deficiencies in sample check-in? YES NO A
12. Were any samples rejected?
* If so, please state field ID of rejected sample(s):

Sutherland Environmental Read and Review Checklist

Is the client and the sample on report?	e collector(s) accurately noted	NO XS	NO YES
2. Do all dates match the CO	C on the report?	NO XES	NO YES
3. Is the purchase order ID (F noted on report?	PO) and project ID accurately	NO XES	NO YES
4. Are all methods and metho	od references correct on report?	NO XES	NO Y
5. Do the Field ID(s) and the COC?	Lab ID(s) correspond to the	NO YES	NO YES
6. Is the report formatted corr	rectly?	NO DES	NO YES
	ation on report correspond to th the analytical instrumentation:	e	
Sample	Matrix	NO YAS	NO YES
Analyst		NO XES	NO YES
Analysi	s Date/Time	NO YES	NO YES
Analyte	concentration	NO YES	NO YES
Units		NO DES	NO YES
Dilution	Factors/Conversions	NO YES	NO YES
Detection	on/Reporting/Quant. Limits	NO XES)	NO YES
QC Rev	riewed:	JES] yes
Initial		MUX	
	* MJH = Michael Heard, KD = Ke	vin Doriety, MSH = Matt Hag	geman, KH = Kelly Hester
PDF/ W. Hell	Mey		
ADDED M	EK & Carb. DISVIFIDE Invoice	5137	10
	DISVIPING	Sutherland Environm	nental Co., Inc.

Company: PPM Consultants Address: S555 Bankhead Hwy: Birmingham, AL 35210 Phonest: 205-836-5650 Cell Remailes): MXIH-Healey @pmco.con ANALYSIS REQUESTED / METHOD WLS VLS (prino) Phonest: 205-836-5650 Cell E-mailes): MXIH-Healey @pmco.con ANALYSIS REQUESTED / METHOD ANALYSI	W Date Time	Date Time 10:65 5-3-24	Jahan Sur 12	Relinquished by Sampler: Date Time Received by:	Preservative: (a)HCL (b)HNO ₃ , (c)H ₂ SO ₄ , (d)NaOH, (e) Na ₂ S ₂ O ₃ , (f) H ₃ PO ₄ , (g)Zn Acetate			1111/2 3 74 1050	STORY OF BUILDING	166267 S6-3(1-3) 34 1035	18-010-85 V	SB-21-3V	36	Collected Collected	DATE	DATE DELIVERED:		Fam	CHENT	h.net	PHONE: (205)581-9500	Birmingham Al 35233	Environmental Company, Inc.
mpany: PPM Consultants ddress: \$555 Bankhead Hwy. Birmingham, AL 35210 hone#: 205-836-5650 Cell: nail(s): Walt- Healey @ppmco.con [print] ANALYSIS REQUESTED / METHOD Loginal Analysis Requested / Method Refrigerated upon receipt: 65 no	d in Lab by: Date	En ly (-) Date 5. 7.24 18	Africa Stor B	Container:	Preservative:			Susception X		Où	<>	<< x				M STON		PROJECT The Kelsey	Ĺ.	Client P.O. # 40191402			ANALYSIS REQUEST
	Refrigerated upon receipt: (65)	e Remarks:	Standard:											200	2, 1/2	U.S.	ANALYSIS REQUESTED / METHOD	SAMPLER(S): Stephanie Evens	walt. Henley	205-836-5650			Walt !

21 May 2024

Walt Henley
PPM Consultants
5555 Bankhead Hwy.
Birmingham, AL 35210

H&P Project: PPM050924-12

Client Project: The Kelsey / 40191402

Dear Walt Henley:

Enclosed is the analytical report for the above referenced project. The data herein applies to samples as received by H&P Mobile Geochemistry, Inc. on 09-May-24 which were analyzed in accordance with the attached Chain of Custody record(s).

The results for all sample analyses and required QA/QC analyses are presented in the following sections and summarized in the documents:

- Sample Summary
- · Case Narrative (if applicable)
- Sample Results
- Quality Control Summary
- Notes and Definitions / Appendix
- · Chain of Custody
- · Sampling Logs (if applicable)

Unless otherwise noted, I certify that all analyses were performed and reviewed in compliance with our Quality Systems Manual and Standard Operating Procedures. This report shall not be reproduced, except in full, without the written approval of H&P Mobile Geochemistry, Inc.

We at H&P Mobile Geochemistry, Inc. sincerely appreciate the opportunity to provide analytical services to you on this project. If you have any questions or concerns regarding this analytical report, please contact me at your convenience at 760-804-9678.

Sincerely,

Lisa Eminhizer Laboratory Director

H&P Mobile Geochemistry, Inc. is certified under the National Environmental Laboratory Accreditation Conference (NELAC) for the fields of proficiency and analytes listed on those certificates. H&P is approved as an Environmental Testing Laboratory in accordance with the DoD-ELAP Program and ISO/IEC 17025:2005 programs for the fields of proficiency and analytes included in the certification process and to the extent offered by the accreditation agency. Unless otherwise noted, accreditation certificate numbers, expiration of certificates, and scope of accreditation can be found at: www.handpmg.com/about/certifications. Fields of services and analytes contained in this report that are not listed on the certificates should be considered uncertified or unavailable for certification.

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

PPM Consultants Project: PPM050924-12

5555 Bankhead Hwy.Project Number:The Kelsey / 40191402Reported:Birmingham, AL 35210Project Manager:Walt Henley21-May-24 14:37

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
SV-1	E405035-01	Vapor	06-May-24	09-May-24
SV-2	E405035-02	Vapor	06-May-24	09-May-24
SV-3	E405035-03	Vapor	06-May-24	09-May-24

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

PPM Consultants Project: PPM050924-12
5555 Bankhead Hwy. Project Number: The Kelsey / 40191402 Reported:
Birmingham, AL 35210 Project Manager: Walt Henley 21-May-24 14:37

DETECTIONS SUMMARY

ample ID: SV-1	Laboratory ID:	E405035-01			
		Reporting			
Analyte	Result		Units	Method	Notes
Chloromethane	2.7		ug/m3	EPA TO-15	
2-Butanone (MEK)	2300		ug/m3	EPA TO-15	Е
Toluene	12	3.8	ug/m3	EPA TO-15	
2-Hexanone (MBK)	290	8.3	ug/m3	EPA TO-15	
m,p-Xylene	18	8.8	ug/m3	EPA TO-15	QL-1H
Styrene	5.6	4.3	ug/m3	EPA TO-15	
o-Xylene	9.4	4.4	ug/m3	EPA TO-15	
1,2,4-Trimethylbenzene	14	5.0	ug/m3	EPA TO-15	
ample ID: SV-2	Laboratory ID:	E405035-02			
		Reporting			
Analyte	Result	t Limit	Units	Method	Notes
2-Butanone (MEK)	1700	30	ug/m3	EPA TO-15	Е
Toluene	8.9	3.8	ug/m3	EPA TO-15	
2-Hexanone (MBK)	310	8.3	ug/m3	EPA TO-15	
Tetrachloroethene	8.2	6.9	ug/m3	EPA TO-15	
m,p-Xylene	15	8.8	ug/m3	EPA TO-15	QL-1H
Styrene	4.6	4.3	ug/m3	EPA TO-15	
o-Xylene	8.8	4.4	ug/m3	EPA TO-15	
1,2,4-Trimethylbenzene	13	5.0	ug/m3	EPA TO-15	
ample ID: SV-3	Laboratory ID:	E405035-03			
		Reporting			
Analyte	Result		Units	Method	Notes
Dichlorodifluoromethane (F12)	27	5.0	ug/m3	EPA TO-15	
Carbon disulfide	53	6.3	ug/m3	EPA TO-15	
2-Butanone (MEK)	940	30	ug/m3	EPA TO-15	
Toluene	16	3.8	ug/m3	EPA TO-15	
2-Hexanone (MBK)	92	8.3	ug/m3	EPA TO-15	
Tetrachloroethene	12	6.9	ug/m3	EPA TO-15	
Ethylbenzene	7.3	4.4	ug/m3	EPA TO-15	
m,p-Xylene	31	8.8	ug/m3	EPA TO-15	QL-1H
Styrene	5.6	4.3	ug/m3	EPA TO-15	
o-Xylene	21	4.4	ug/m3	EPA TO-15	
4-Ethyltoluene	13	5.0	ug/m3	EPA TO-15	
1,3,5-Trimethylbenzene	15	5.0	ug/m3	EPA TO-15	
1,0,0 1111110111,1201120110					

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

PPM Consultants Project: PPM050924-12

5555 Bankhead Hwy.Project Number: The Kelsey / 40191402Reported:Birmingham, AL 35210Project Manager: Walt Henley21-May-24 14:37

Soil Vapor/Air Analysis by ASTM D1945M

Analyte		Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
SV-1 (E405035-01) Vapor	Sampled: 06-May-24	Received: 09-	May-24							
Helium (LCC)		ND	0.10	%	1	EE41319	10-May-24	10-May-24	ASTM D1945M	
SV-2 (E405035-02) Vapor	Sampled: 06-May-24 I	Received: 09-	May-24							
Helium (LCC)		ND	0.10	%	1	EE41319	10-May-24	10-May-24	ASTM D1945M	
SV-3 (E405035-03) Vapor	Sampled: 06-May-24 I	Received: 09-	May-24							
Helium (LCC)		ND	0.10	%	1	EE41319	10-May-24	10-May-24	ASTM D1945M	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

PPM Consultants Project: PPM050924-12

5555 Bankhead Hwy.Project Number: The Kelsey / 40191402Reported:Birmingham, AL 35210Project Manager: Walt Henley21-May-24 14:37

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
SV-1 (E405035-01) Vapor Sampled: 06-May	-24 Received: 09)-May-24					<u> </u>		
Dichlorodifluoromethane (F12)	ND	5.0	ug/m3	1	EE41509	15-May-24	15-May-24	EPA TO-15	
Chloromethane	2.7	2.1	"	"	"	"	"	"	
Dichlorotetrafluoroethane (F114)	ND	7.1	"	"	"	"	"	"	
Vinyl chloride	ND	2.6	"	"	"	"	"	"	
Bromomethane	ND	16	"	"	"	"	"	"	
Chloroethane	ND	8.0	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	ND	5.6	"	"	"	"	"	"	
1,1-Dichloroethene	ND	4.0	"	"	"	"	"	"	
1,1,2-Trichlorotrifluoroethane (F113)	ND	7.7	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	ND	3.5	"	"	"	"	"	"	
Carbon disulfide	ND	6.3	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	8.0	"	"	"	"	"	"	
Methyl tertiary-butyl ether (MTBE)	ND	18	"	"	"	"	"	"	
1,1-Dichloroethane	ND	4.1	"	"	"	"	"	"	
2-Butanone (MEK)	2300	30	"	"	"	"	"	"	I
cis-1,2-Dichloroethene	ND	4.0	"	"	"	"	"	"	
Chloroform	ND	4.9	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	5.5	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	4.1	"	"	"	"	"	"	
Benzene	ND	3.2	"	"	"	"	"	"	
Carbon tetrachloride	ND	6.4	"	"	"	"	"	"	
Trichloroethene	ND	5.5	"	"	"	"	"	"	
1,2-Dichloropropane	ND	9.4	"	"	"	"	"	"	
Bromodichloromethane	ND	6.8	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	4.6	"	"	"	"	"	"	
4-Methyl-2-pentanone (MIBK)	ND	8.3	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	4.6	"	"	"	"	"	"	
Toluene	12	3.8	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	5.5	"	"	"	"	"	"	
2-Hexanone (MBK)	290	8.3	"	"	"	"	"	"	
Dibromochloromethane	ND	8.6	"	"	"	"	"	"	
Tetrachloroethene	ND	6.9	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	7.8	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	7.0	"	"	"	"	"	"	
Chlorobenzene	ND	4.7	"	"	"	"	"	"	
Ethylbenzene	ND	4.4	"	"	"	"	"	"	
m,p-Xylene	18	8.8	"	"	"	"	"	"	QL-1H
Styrene	5.6	4.3	"	"	"	"	"	"	•

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

PPM Consultants Project: PPM050924-12

5555 Bankhead Hwy.Project Number: The Kelsey / 40191402Reported:Birmingham, AL 35210Project Manager: Walt Henley21-May-24 14:37

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
SV-1 (E405035-01) Vapor Sampled: 06-Ma	y-24 Received: 09-	May-24							
o-Xylene	9.4	4.4	ug/m3	1	EE41509	15-May-24	15-May-24	EPA TO-15	
Bromoform	ND	10	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	7.0	"	"	"	"	"	"	
4-Ethyltoluene	ND	5.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	14	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	38	"	"	"	"	"	"	
Hexachlorobutadiene	ND	54	"	"	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4		97.0 %	76-	134	"	"	"	"	
Surrogate: Toluene-d8		105 %	78-		"	"	"	"	
Surrogate: 4-Bromofluorobenzene		96.2 %	77-		"	"	"	"	
SV-2 (E405035-02) Vapor Sampled: 06-Ma	y-24 Received: 09-	May-24							
Dichlorodifluoromethane (F12)	ND	5.0	ug/m3	1	EE41509	15-May-24	15-May-24	EPA TO-15	
Chloromethane	ND	2.1	"	"	"	"	"	"	
Dichlorotetrafluoroethane (F114)	ND	7.1	"	"	"	"	"	"	
Dichlorotetrafluoroethane (F114) Vinyl chloride	ND ND	7.1 2.6	"	"	"	"	"	" "	
. ,									
Vinyl chloride	ND	2.6	"		"	"	"		
Vinyl chloride Bromomethane	ND ND	2.6 16	"		"	"	"		
Vinyl chloride Bromomethane Chloroethane	ND ND ND	2.6 16 8.0 5.6	"	"	"	"	" "	" "	
Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11)	ND ND ND ND ND	2.6 16 8.0	" "	"	" "	" " " " " " " " " " " " " " " " " " " "	" " " "	" "	
Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) 1,1-Dichloroethene	ND ND ND ND	2.6 16 8.0 5.6 4.0 7.7	" " "	" " "	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	11 11 11	
Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113)	ND ND ND ND ND ND	2.6 16 8.0 5.6 4.0 7.7 3.5	" " "	" " "	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	11 11 11	
Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane)	ND ND ND ND ND ND	2.6 16 8.0 5.6 4.0 7.7 3.5 6.3	" " "	" " " " " " " " " " " " " " " " " " " "	" " " "	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	11 11 11	
Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane) Carbon disulfide	ND ND ND ND ND ND ND	2.6 16 8.0 5.6 4.0 7.7 3.5 6.3 8.0	" " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	" " " " " " " "	11 11 11 11 11	11 11 11	
Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane) Carbon disulfide trans-1,2-Dichloroethene	ND ND ND ND ND ND ND ND	2.6 16 8.0 5.6 4.0 7.7 3.5 6.3	" " " " " " " " " " " " " " " " " " " "		" " " " " " " "	"" "" "" "" "" "" "" "" "" "" "" "" ""	11 11 11 11 11	11 11 11	
Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane) Carbon disulfide trans-1,2-Dichloroethene Methyl tertiary-butyl ether (MTBE)	ND ND ND ND ND ND ND ND ND	2.6 16 8.0 5.6 4.0 7.7 3.5 6.3 8.0 18 4.1	" " " " " " " " " " " " " " " " " " " "		" " " " " " " " "	"" "" "" "" "" "" "" "" "" "" "" "" ""	11 11 11 11 11 11	11 11 11	1
Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane) Carbon disulfide trans-1,2-Dichloroethene Methyl tertiary-butyl ether (MTBE) 1,1-Dichloroethane	ND ND ND ND ND ND ND ND	2.6 16 8.0 5.6 4.0 7.7 3.5 6.3 8.0 18 4.1			" " " " " " " " " " " "			11 11 11	1
Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane) Carbon disulfide trans-1,2-Dichloroethene Methyl tertiary-butyl ether (MTBE) 1,1-Dichloroethane 2-Butanone (MEK)	ND ND ND ND ND ND ND ND ND	2.6 16 8.0 5.6 4.0 7.7 3.5 6.3 8.0 18 4.1 30 4.0							1
Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane) Carbon disulfide trans-1,2-Dichloroethene Methyl tertiary-butyl ether (MTBE) 1,1-Dichloroethane 2-Butanone (MEK) cis-1,2-Dichloroethene	ND ND ND ND ND ND ND ND ND ND	2.6 16 8.0 5.6 4.0 7.7 3.5 6.3 8.0 18 4.1 30 4.0 4.9							,
Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane) Carbon disulfide trans-1,2-Dichloroethene Methyl tertiary-butyl ether (MTBE) 1,1-Dichloroethane 2-Butanone (MEK) cis-1,2-Dichloroethene Chloroform 1,1,1-Trichloroethane	ND ND ND ND ND ND ND ND ND ND ND	2.6 16 8.0 5.6 4.0 7.7 3.5 6.3 8.0 18 4.1 30 4.0 4.9 5.5							,
Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane) Carbon disulfide trans-1,2-Dichloroethene Methyl tertiary-butyl ether (MTBE) 1,1-Dichloroethane 2-Butanone (MEK) cis-1,2-Dichloroethene Chloroform	ND ND ND ND ND ND ND ND ND ND	2.6 16 8.0 5.6 4.0 7.7 3.5 6.3 8.0 18 4.1 30 4.0 4.9							I

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

PPM Consultants Project: PPM050924-12

5555 Bankhead Hwy.Project Number: The Kelsey / 40191402Reported:Birmingham, AL 35210Project Manager: Walt Henley21-May-24 14:37

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
SV-2 (E405035-02) Vapor Sampled: 06-May	-24 Received: 09-	-May-24							
Trichloroethene	ND	5.5	ug/m3	1	EE41509	15-May-24	15-May-24	EPA TO-15	
1,2-Dichloropropane	ND	9.4	"	"	"	"	"	"	
Bromodichloromethane	ND	6.8	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	4.6	"	"	"	"	"	"	
4-Methyl-2-pentanone (MIBK)	ND	8.3	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	4.6	"	"	"	"	"	"	
Toluene	8.9	3.8	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	5.5	"	"	"	"	"	"	
2-Hexanone (MBK)	310	8.3	"	"	"	"	"	"	
Dibromochloromethane	ND	8.6	"	"	"	"	"	"	
Tetrachloroethene	8.2	6.9	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	7.8	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	7.0	"	"	"	"	"	"	
Chlorobenzene	ND	4.7	"	"	"	"	"	"	
Ethylbenzene	ND	4.4	"	"	"	"	"	"	
m,p-Xylene	15	8.8	"	"	"	"	"	"	QL-1H
Styrene	4.6	4.3	"	"	"	"	"	"	
o-Xylene	8.8	4.4	"	"	"	"	"	"	
Bromoform	ND	10	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	7.0	"	"	"	"	"	"	
4-Ethyltoluene	ND	5.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	13	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	38	"	"	"	"	"	"	
Hexachlorobutadiene	ND	54	"	"	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4		97.4 %	76-	134	"	"	"	"	
Surrogate: Toluene-d8		102 %	78-	125	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		96.0 %	77-		"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

PPM Consultants Project: PPM050924-12

5555 Bankhead Hwy.Project Number: The Kelsey / 40191402Reported:Birmingham, AL 35210Project Manager: Walt Henley21-May-24 14:37

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
SV-3 (E405035-03) Vapor Sampled: 06-May-24	4 Received: 09-	May-24							
Dichlorodifluoromethane (F12)	27	5.0	ug/m3	1	EE41509	15-May-24	15-May-24	EPA TO-15	
Chloromethane	ND	2.1	"	"	"	"	"	"	
Dichlorotetrafluoroethane (F114)	ND	7.1	"	"	"	"	"	"	
Vinyl chloride	ND	2.6	"	"	"	"	"	"	
Bromomethane	ND	16	"	"	"	"	"	"	
Chloroethane	ND	8.0	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	ND	5.6	"	"	"	"	"	"	
1,1-Dichloroethene	ND	4.0	"	"	"	"	"	"	
1,1,2-Trichlorotrifluoroethane (F113)	ND	7.7	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	ND	3.5	"	"	"	"	"	"	
Carbon disulfide	53	6.3	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	8.0	"	"	"	"	"	"	
Methyl tertiary-butyl ether (MTBE)	ND	18	"	"	"	"	"	"	
1,1-Dichloroethane	ND	4.1	"	"	"	"	"	"	
2-Butanone (MEK)	940	30	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	4.0	"	"	"	"	"	"	
Chloroform	ND	4.9	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	5.5	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	4.1	"	"	"	"	"	"	
Benzene	ND	3.2		"	"	"	"	"	
Carbon tetrachloride	ND	6.4	"	"	"	"	"	"	
Trichloroethene	ND	5.5	"	"	"	"	"	"	
1,2-Dichloropropane	ND	9.4	"	"	"	"	"	"	
Bromodichloromethane	ND	6.8	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	4.6	"	"	"	"	"	"	
4-Methyl-2-pentanone (MIBK)	ND	8.3	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	4.6	"	"	"	"	"	"	
Toluene	16	3.8	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	5.5	"	"	"	"	"	"	
2-Hexanone (MBK)	92	8.3	"	"	"	"	"	"	
Dibromochloromethane	ND	8.6	"	"	"	"	"	"	
Tetrachloroethene	12	6.9		"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	7.8	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	7.0		"	"	"	"	"	
Chlorobenzene	ND ND	4.7		"	"	"	"	"	
Ethylbenzene	7.3	4.7		"	"	"	"	"	
m,p-Xylene	7.3 31	4. 4 8.8	,,	,,	,,	"	"	,,	QL-1H
m,p-xytene Styrene	5.6	4.3	,,	,,	,,	"	"	"	ζr-11

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

PPM Consultants

Project: PPM050924-12

5555 Bankhead Hwy.

Project Number: The Kelsey / 40191402 Project Manager: Walt Henley

Birmingham, AL 35210

Reported: 21-May-24 14:37

Volatile Organic Compounds by EPA TO-15

Austra		Result	Reporting	11	Dilution		D I	A l J	Method	Notes
Analyte		Result	Limit	Units	Factor	Batch	Prepared	Analyzed	Method	Notes
SV-3 (E405035-03) Vapor	Sampled: 06-May-24	Received: 09	-May-24							
o-Xylene		21	4.4	ug/m3	1	EE41509	15-May-24	15-May-24	EPA TO-15	
Bromoform		ND	10	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane		ND	7.0	"	"	"	"	"	"	
4-Ethyltoluene		13	5.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene		15	5.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene		37	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene		ND	12	"	"	"	"	"	"	
1,4-Dichlorobenzene		ND	12	"	"	"	"	"	"	
1,2-Dichlorobenzene		ND	12	"	"	"	"	"	"	
1,2,4-Trichlorobenzene		ND	38	"	"	"	"	"	"	
Hexachlorobutadiene		ND	54	"	"	"	"	"	"	
g (120:11 d	14		07.00/	76	124	"	,,	"	"	
Surrogate: 1,2-Dichloroetho	ine-d4		97.8 %	76-		"	"	,,		
Surrogate: Toluene-d8			105 %	78-					"	
Surrogate: 4-Bromofluorobe	enzene		98.7 %	77-	127	"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

PPM Consultants Project: PPM050924-12

5555 Bankhead Hwy.Project Number: The Kelsey / 40191402Reported:Birmingham, AL 35210Project Manager: Walt Henley21-May-24 14:37

Soil Vapor/Air Analysis by ASTM D1945M - Quality Control

H&P Mobile Geochemistry, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch EE41319 - GC

 Blank (EE41319-BLK1)
 Prepared & Analyzed: 10-May-24

 Helium (LCC)
 ND
 0.10
 %

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

PPM Consultants Project: PPM050924-12

5555 Bankhead Hwy.Project Number:The Kelsey / 40191402Reported:Birmingham, AL 35210Project Manager:Walt Henley21-May-24 14:37

Volatile Organic Compounds by EPA TO-15 - Quality Control

Analyte Result Limit Units Level Result %REC Limits RPD Limit Notes			Reporting		Spike	ike Source				RPD	RPD		
	Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes		

Blank (EE41509-BLK1)			
Dichlorodifluoromethane (F12)	ND	5.0	ug/m3
Chloromethane	ND ND	2.1	ug/III3
Dichlorotetrafluoroethane (F114)	ND ND	7.1	"
Vinyl chloride	ND	2.6	"
Bromomethane	ND	16	"
Chloroethane	ND	8.0	"
Trichlorofluoromethane (F11)	ND	5.6	"
1,1-Dichloroethene	ND ND	4.0	"
1,1,2-Trichlorotrifluoroethane (F113)	ND ND	7.7	"
Methylene chloride (Dichloromethane)	ND ND	3.5	"
Carbon disulfide	ND ND	6.3	"
trans-1,2-Dichloroethene	ND ND	8.0	"
Methyl tertiary-butyl ether (MTBE)	ND ND	18	"
1,1-Dichloroethane	ND	4.1	"
2-Butanone (MEK)	ND ND	30	"
cis-1,2-Dichloroethene	ND ND	4.0	"
Chloroform	ND ND	4.9	"
1,1,1-Trichloroethane	ND	5.5	"
1,2-Dichloroethane (EDC)	ND	4.1	"
Benzene	ND	3.2	"
Carbon tetrachloride	ND	6.4	"
Trichloroethene	ND	5.5	"
1,2-Dichloropropane	ND	9.4	"
Bromodichloromethane	ND	6.8	"
cis-1,3-Dichloropropene	ND	4.6	"
4-Methyl-2-pentanone (MIBK)	ND	8.3	"
trans-1,3-Dichloropropene	ND	4.6	"
Toluene	ND	3.8	"
1,1,2-Trichloroethane	ND	5.5	"
2-Hexanone (MBK)	ND	8.3	"
Dibromochloromethane	ND	8.6	"
Tetrachloroethene	ND	6.9	"
1,2-Dibromoethane (EDB)	ND	7.8	"
1,1,1,2-Tetrachloroethane	ND	7.0	"
-,-,-,-	ND	7.0	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

RPD

PPM Consultants Project: PPM050924-12

5555 Bankhead Hwy.Project Number:The Kelsey / 40191402Reported:Birmingham, AL 35210Project Manager:Walt Henley21-May-24 14:37

Reporting

Volatile Organic Compounds by EPA TO-15 - Quality Control H&P Mobile Geochemistry, Inc.

Spike

Source

%REC

		Reporting		Spike	Source		%KEC		KPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EE41509 - TO-15										
Blank (EE41509-BLK1)				Prepared &	t Analyzed:	15-May-24				
Chlorobenzene	ND	4.7	ug/m3							
Ethylbenzene	ND	4.4	"							
m,p-Xylene	ND	8.8	"							
Styrene	ND	4.3	"							
o-Xylene	ND	4.4	"							
Bromoform	ND	10	"							
1,1,2,2-Tetrachloroethane	ND	7.0	"							
4-Ethyltoluene	ND	5.0	"							
1,3,5-Trimethylbenzene	ND	5.0	"							
1,2,4-Trimethylbenzene	ND	5.0	"							
1,3-Dichlorobenzene	ND	12	"							
1,4-Dichlorobenzene	ND	12	"							
1,2-Dichlorobenzene	ND	12	"							
1,2,4-Trichlorobenzene	ND	38	"							
Hexachlorobutadiene	ND	54	"							
Surrogate: 1,2-Dichloroethane-d4	207		"	214		97.1	76-134			
Surrogate: Toluene-d8	223		"	208		107	78-125			
Surrogate: 4-Bromofluorobenzene	386		"	363		106	77-127			
LCS (EE41509-BS1)				Prepared &	t Analyzed:	15-May-24	ļ			
Dichlorodifluoromethane (F12)	110	5.0	ug/m3	101	<u> </u>	108	59-128			
Vinyl chloride	59	2.6	"	52.0		114	64-127			
Chloroethane	60	8.0	"	53.6		113	63-127			
Trichlorofluoromethane (F11)	120	5.6	"	113		108	62-126			
1,1-Dichloroethene	80	4.0	"	80.8		98.9	61-133			
1,1,2-Trichlorotrifluoroethane (F113)	170	7.7	"	155		108	66-126			
Methylene chloride (Dichloromethane)	74	3.5	"	70.8		105	62-115			
trans-1,2-Dichloroethene	82	8.0	"	80.8		102	67-124			
1,1-Dichloroethane	82	4.1	"	82.4		99.0	68-126			
cis-1,2-Dichloroethene	82	4.0	"	80.0		103	70-121			
Chloroform	99	4.9	"	99.2		100	68-123			
1,1,1-Trichloroethane	110	5.5	"	111		101	68-125			
1,2-Dichloroethane (EDC)	85	4.1	"	82.4		103	65-128			

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

PPM Consultants Project: PPM050924-12

5555 Bankhead Hwy.Project Number: The Kelsey / 40191402Reported:Birmingham, AL 35210Project Manager: Walt Henley21-May-24 14:37

Volatile Organic Compounds by EPA TO-15 - Quality Control H&P Mobile Geochemistry, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EE41509 - TO-15										
LCS (EE41509-BS1)				Prepared &	Analyzed:	15-May-24	ļ			
Benzene	66	3.2	ug/m3	64.8		102	69-119			
Carbon tetrachloride	140	6.4	"	128		107	68-132			
Trichloroethene	110	5.5	"	110		99.7	71-123			
Toluene	81	3.8	"	76.8		105	66-119			
1,1,2-Trichloroethane	120	5.5	"	111		110	73-119			
Tetrachloroethene	140	6.9	"	138		103	66-124			
1,1,1,2-Tetrachloroethane	170	7.0	"	140		122	67-129			
Ethylbenzene	95	4.4	"	88.4		108	70-124			
m,p-Xylene	110	8.8	"	88.4		124	61-134			
o-Xylene	87	4.4	"	88.4		98.5	67-125			
1,1,2,2-Tetrachloroethane	150	7.0	"	140		108	65-127			
Surrogate: 1,2-Dichloroethane-d4	214		"	214		100	76-134			
Surrogate: Toluene-d8	213		"	208		102	78-125			
Surrogate: 4-Bromofluorobenzene	380		"	363		105	77-127			
				Drangrad &	z Analyzed:	15 May 2/	Ī			
LCS Dup (EE41509-BSD1)	400				Allalyzeu.			7.00	25	
Dichlorodifluoromethane (F12)	120	5.0	ug/m3	101		118	59-128	7.98	25	
Vinyl chloride	60	2.6		52.0		115	64-127	1.61	25	
Chloroethane	64	8.0		53.6		119	63-127	5.47	25	
Trichlorofluoromethane (F11)	120	5.6	,,	113		108	62-126	0.138	25	
1,1-Dichloroethene	84	4.0	,,	80.8		103	61-133	4.48	25	
1,1,2-Trichlorotrifluoroethane (F113)	160	7.7		155		102	66-126	5.77	25	
Methylene chloride (Dichloromethane)	72	3.5		70.8		102	62-115	2.93	25	
trans-1,2-Dichloroethene	83	8.0	,,	80.8		103	67-124	0.632	25	
1,1-Dichloroethane	84	4.1	,,	82.4		102	68-126	3.32	25	
cis-1,2-Dichloroethene Chloroform	86 97	4.0	,,	80.0 99.2		107 98.2	70-121 68-123	3.88 1.91	25 25	
1,1,1-Trichloroethane		4.9 5.5	,,	99.2 111		98.2	68-125	2.55	25 25	
	110	5.5	,,							
1,2-Dichloroethane (EDC) Benzene	86	4.1	,,	82.4		104 99.1	65-128	1.11 2.69	25 25	
Carbon tetrachloride	64	3.2	,,	64.8 128		99.1 107	69-119	0.233	25 25	
Trichloroethene	140	6.4 5.5	,,				68-132			
	110	5.5	,,	110		100	71-123	0.597	25	
Toluene	82	3.8		76.8		106	66-119	1.17	25	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

PPM Consultants

Project: PPM050924-12

5555 Bankhead Hwy. Birmingham, AL 35210 Project Number: The Kelsey / 40191402 Project Manager: Walt Henley Reported: 21-May-24 14:37

Volatile Organic Compounds by EPA TO-15 - Quality Control H&P Mobile Geochemistry, Inc.

Reporting Spike Source %REC RPD Analyte Result Limit Units Level Result %REC Limits RPD Limit Notes

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EE41509 - TO-15										
LCS Dup (EE41509-BSD1)				Prepared &	& Analyzed:	15-May-24	1			
1,1,2-Trichloroethane	120	5.5	ug/m3	111		105	73-119	5.17	25	
Tetrachloroethene	140	6.9	"	138		101	66-124	1.95	25	
1,1,1,2-Tetrachloroethane	170	7.0	"	140		122	67-129	0.0409	25	
Ethylbenzene	110	4.4	"	88.4		122	70-124	12.9	25	
m,p-Xylene	120	8.8	"	88.4		135	61-134	8.06	25	QL-1H
o-Xylene	96	4.4	"	88.4		108	67-125	9.57	25	
1,1,2,2-Tetrachloroethane	170	7.0	"	140		120	65-127	10.3	25	
Surrogate: 1,2-Dichloroethane-d4	211		"	214		98.8	76-134			
Surrogate: Toluene-d8	199		"	208		95.9	78-125			
Surrogate: 4-Bromofluorobenzene	381		"	363		105	77-127			

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

PPM Consultants Project: PPM050924-12

5555 Bankhead Hwy. Project Number: The Kelsey / 40191402 Reported:
Birmingham, AL 35210 Project Manager: Walt Henley 21-May-24 14:37

Notes and Definitions

QL-1H The LCS and/or LCSD recoveries fell above the established control specifications for this analyte. Any result for this compound

is qualified and should be considered biased high.

QL-1H The LCS and/or LCSD recoveries fell above the established control specifications for this analyte. Any result for this compound

is qualified and should be considered biased high.

E The concentration indicated for this analyte is an estimated value above the calibration range of the instrument. This value is

considered an estimate (CLP E-flag).

LCC Leak Check Compound

ND Analyte NOT DETECTED at or above the reporting limit

MDL Method Detection Limit

%REC Percent Recovery

RPD Relative Percent Difference

Appendix

H&P Mobile Geochemistry, Inc. is approved as an Environmental Testing Laboratory and Mobile Laboratory in accordance with the DoD-ELAP Program and ISO/IEC 17025:2005 programs through PJLA, accreditation number 69070 for EPA Method TO-15 and H&P 8260SV.

H&P is approved by the State of Louisiana Department of Environmental Quality under the National Environmental Laboratory Accreditation Conference (NELAC) certification number 04138

The complete list of stationary and mobile laboratory certifications along with the fields of testing (FOTs) and analyte lists are available at www.handpmg.com/about/certifications.

VAPOR / AIR Chain of Custody 2470 Impala Drive, Carlsbad, CA 92010 & Field Office - Signal Hill, CA W handpmg.com Einfo@handpmg.com P 760.804.9678 F 760.804.9159

DATE: ラバロの中 Page 1 of 1

Sample Receipt / 1 at 11co Only	Date Rec'd: Control #: 2,100214	1000000	100	Sample Intact: X Yes No See Notes Below	Receipt Gauge ID: 60206 Temp:	Outside Lab:	Receipt Notes/Tracking #:	स्विउत्तिष्ठ प्रवृत्त क्रम्	Lab PM Initials:			mg1-O bnuc ⊕H p	T	Nethane by E	N &	8	×				Company Special Times 337	Company: Date: Time:
											tsi	91-0	T X To	82605V 826		1	×				M	
	HO.		(Chr		. (OH	ormation	0	Sans	3034			isiJ II	6	Lab use onl Receipt Vac	1	7	7				NA P	
	CON PION	AL	S) WOO	1	3 ppince	Sampler Information		1	-0-30				-	CONTAINE	M M74	6000	10HB				Received by:	Received by:
	Name/#	7	bort E-Mail(s):		evans	S	Sampler(s):	Signaluze:	Date:				CONTAINER		400 nt Summe 174	400 ml. S.m. 069	400ml, Sumo 048				1415	Time:
Lab Client and Project Information	Project Name / #:	Project Location:	Report E-Mail(s):		Stephanie, evans Oppmico. Com	nd Time	X Standard (7 days for preliminary	report, 10 days for final report)			SE			SAMPLE TYPE Indoor Air (IA), Ambient Air (AA), Subslab (SS), Soil Vapor (SV)	10	15	2				S-6-0-4	Date
nd Projec						Turnaround Time	lard (7 day	t, 10 days f	☐ Rush (specify):_		+ MTBE			TIME 24hr clock	1124	1152	1913					
b Client ar			7	.0			X Stanc	repor	☐ Rush	-	+			DATE mm/dd/yy	DSIONIST	CSIU HEIDOISO	PENDING				Sompany:	Company
La			Bankhead HWY	AL 35210	5680	ents	☐ Level IV			ratory:		hoose one):		FIELD POINT NAME (if applicable)							1	
		Jager, Henley	S BOOK	Solale F	1836-	Reporting Requirements	Level III	Other EDD:	Slobal ID:	ctions to Labor		* Preferred VOC units (please choose one):		NAME							23	
	Lab Client/Sopsultant.	Lab Client Project Manager,	Lab Client Address: Ban	Lab crient city, state,	Phone Number 205 836	Repor	X Standard Report Level III	Excel EDD Other EDD:	CA Geotracker Global ID:	Additional Instructions to Laboratory:		* Preferred VOC unit		SAMPLE NAME	54.1	SV-2	51-3				Sprioved/Relinquened by	Holl of Charles and Charles an

Appendix 541, Rev 1/9/2019, Effective 1/21/2019

Авргокаї constitutes as authorization to proceed with analysis and acceptance of conditions on back

Approved/Relinquished by:

Variable	Resident Air Default Value	Site-Specific Value
AF _{ru} (Attenuation Factor Groundwater) unitless	0.001	0.001
AF (Attenuation Factor Sub-Slab) unitless	0.03	0.03
ED _{me} (exposure duration) years	26	26
ED _{0.2} (mutagenic exposure duration first phase) years	2	2
ED _{2.6} (mutagenic exposure duration second phase) years	4	4
ED _{6.16} (mutagenic exposure duration third phase) years	10	10
ED _{16,36} (mutagenic exposure duration fourth phase) years	10	10
EF _{ree} (exposure frequency) days/year	350	350
EF _{n.2} (mutagenic exposure frequency first phase) days/year	350	350
EF _{2.6} (mutagenic exposure frequency second phase) days/year	350	350
EF _{6.16} (mutagenic exposure frequency third phase) days/year	350	350
EF _{16,36} (mutagenic exposure frequency fourth phase) days/year	350	350
ET _{ree} (exposure time) hours/day	24	24
ET _{n.2} (mutagenic exposure time first phase) hours/day	24	24
ET _{2.6} (mutagenic exposure time second phase) hours/day	24	24
ET _{6.16} (mutagenic exposure time third phase) hours/day	24	24
ET _{16,26} (mutagenic exposure time fourth phase) hours/day	24	24
THQ (target hazard quotient) unitless	0.1	1
LT (lifetime) years	70	70
TR (target risk) unitless	1.0E-06	1.0E-05

Chemical	CAS Number	Does the chemical meet the definition for volatility? (HLC>1E-5 or VP>1)	Does the chemical have inhalation toxicity data? (IUR and/or RfC)	Is Chemical Sufficiently Volatile and Toxic to Pose Inhalation Risk Via Vapor Intrusion from Soil Source? (C _{vp} > C _{ia} ,Target?)	Is Chemical Sufficiently Volatile and Toxic to Pose Inhalation Risk Via Vapor Intrusion from Groundwater Source? (C _{hc} > C _{i,a} ,Target?)	Target Indoor Air Concentration (TCR=1E-05 or THQ=1) MIN(C _{ia.c} ,C _{ia.n.c}) (μg/m³)	Toxicity Basis	Target Sub-Slab and Near-source Soil Gas Concentration (TCR=1E-05 or THQ=1) C _{sg} ,Target (μg/m³)	Target Groundwater Concentration (TCR=1E-05 or THQ=1) C _{gw} ,Target (µg/L)
Carbon Disulfide	75-15-0	Yes	Yes	Yes	Yes	7.30E+02	NC	2.43E+04	1.24E+03
Chloromethane	74-87-3	Yes	Yes	Yes	Yes	3.13E+03	NC	1.04E+05	8.68E+03
Dichlorodifluoromethane	75-71-8	Yes	Yes	Yes	Yes	1.04E+03	NC	3.48E+04	7.44E+01
Ethylbenzene	100-41-4	Yes	Yes	Yes	Yes	1.12E+01	CA	3.74E+02	3.49E+01
Hexanone, 2-	591-78-6	Yes	Yes	Yes	Yes	3.13E+01	NC	1.04E+03	8.21E+03
Methyl Ethyl Ketone (2-Butanone)	78-93-3	Yes	Yes	Yes	Yes	1.04E+03	NC	3.48E+04	4.48E+05
Styrene	100-42-5	Yes	Yes	Yes	Yes	3.13E+03	NC	1.04E+05	2.78E+04
Tetrachloroethylene	127-18-4	Yes	Yes	Yes	Yes	4.24E+01	NC	1.41E+03	5.86E+01
Toluene	108-88-3	Yes	Yes	Yes	Yes	5.21E+03	NC	1.74E+05	1.92E+04
Xylene, m-	108-38-3	Yes	Yes	Yes	Yes	1.04E+02	NC	3.48E+03	3.55E+02
Xylene, o-	95-47-6	Yes	Yes	Yes	Yes	1.04E+02	NC	3.48E+03	4.92E+02
Xylene, p-	106-42-3	Yes	Yes	Yes	Yes	1.04E+02	NC	3.48E+03	3.70E+02

Is Target Groundwater Concentration < MCL? (C _{gw} < MCL?)	Pure Phase Vapor Concentration C _{νp} \ (25 °C)\ (μg/m³)	Maximum Groundwater Vapor Concentration C _{hc} \ (μg/m³)	Temperature for Maximum Groundwater Vapor Concentration (°C)	Lower Explosive Limit LEL (% by volume)	LEL Ref	IUR (ug/m³) ⁻¹	IUR Ref	RfC (mg/m³)	RfC Ref	Mutagenic Indicator	Carcinogenic VISL TCR=1E-05 C _{ia,c} (μg/m³)	Noncarcinogenic VISL THQ=1 C _{ia,nc} (μg/m³)
	1.47E+09	1.27E+09	25	1.30	CRC	-		7.00E-01	H /Subchronic	No	-	7.30E+02
	1.17E+10	1.92E+09	25	8.10	CRC	-		3.00E+00	P /Subchronic	No	-	3.13E+03
	3.15E+10	3.93E+09	25	-		-		1.00E+00	P /Subchronic	No	-	1.04E+03
Yes (700)	5.48E+07	5.44E+07	25	0.80	CRC	2.50E-06	С	9.00E+00	P /Subchronic	No	1.12E+01	9.39E+03
	6.25E+07	6.55E+07	25	1.00	CRC	-		3.00E-02	I /Chronic	No	-	3.13E+01
	3.51E+08	5.19E+08	25	1.40	CRC	-		1.00E+00	H /Subchronic	No	-	1.04E+03
No (100)	3.58E+07	3.49E+07	25	0.90	CRC	-		3.00E+00	H /Subchronic	No	-	3.13E+03
No (5)	1.65E+08	1.49E+08	25	-		2.60E-07	1	4.07E-02	A /Subchronic	No	1.08E+02	4.24E+01
No (1000)	1.41E+08	1.43E+08	25	1.10	CRC	-		5.00E+00	P /Subchronic	No	-	5.21E+03
	4.73E+07	4.73E+07	25	1.10	CRC	-		1.00E-01	G /Chronic	No	-	1.04E+02
	3.77E+07	3.77E+07	25	0.90	CRC	-		1.00E-01	G /Chronic	No	-	1.04E+02
	5.05E+07	4.57E+07	25	1.10	CRC	-		1.00E-01	G /Chronic	No	-	1.04E+02

Chemical	CAS Number	$\begin{tabular}{ll} Site \\ Sub-Slab and \\ Exterior Soil \\ Gas \\ Concentration \\ C_{sg} \\ (\mu g/m^3) \end{tabular}$	Site Indoor Air Concentration C _{i.a} \ (µg/m³)	VI Carcinogenic Risk CDI (μg/m³)	VI Carcinogenic Risk CR
Carbon Disulfide	75-15-0	6.3	1.89E-01	6.73E-02	-
Chloromethane	74-87-3	2.7	8.10E-02	2.88E-02	-
Dichlorodifluoromethane	75-71-8	5	1.50E-01	5.34E-02	-
Ethylbenzene	100-41-4	4.4	1.32E-01	4.70E-02	1.18E-07
Hexanone, 2-	591-78-6	290	8.70E+00	3.10E+00	-
Methyl Ethyl Ketone (2-Butanone)	78-93-3	2300	6.90E+01	2.46E+01	-
Styrene	100-42-5	5.6	1.68E-01	5.98E-02	-
Tetrachloroethylene	127-18-4	6.9	2.07E-01	7.37E-02	1.92E-08
Toluene	108-88-3	12	3.60E-01	1.28E-01	-
Xylene, m-	108-38-3	18	5.40E-01	1.92E-01	-
Xylene, o-	95-47-6	9.4	2.82E-01	1.00E-01	-
Xylene, p-	106-42-3	18	5.40E-01	1.92E-01	-
*Sum		-	-	-	1.37E-07

VI Hazard CDI (mg/m³)	VI Hazard HQ	IUR (ug/m³)·¹	IUR Ref		RfC Ref	Temperature (°C)\ for Groundwater Vapor Concentration	Mutagen?
1.81E-04	2.59E-04	-		7.00E-01	H /Subchronic	25	No
7.77E-05	8.63E-04	-		9.00E-02	P /Subchronic	25	No
1.44E-04	1.44E-03	-		1.00E-01	P /Subchronic	25	No
1.27E-04	1.27E-04	2.50E-06	С	1.00E+00	P /Subchronic	25	No
8.34E-03	2.78E-01	-		3.00E-02	I/Chronic	25	No
6.62E-02	1.32E-02	-		5.00E+00	H /Subchronic	25	No
1.61E-04	1.61E-04	-		1.00E+00	H /Subchronic	25	No
1.98E-04	4.96E-03	2.60E-07	1	4.00E-02	A /Subchronic	25	No
3.45E-04	6.90E-05	-		5.00E+00	P /Subchronic	25	No
5.18E-04	5.18E-03	-		1.00E-01	G /Chronic	25	No
2.70E-04	2.70E-03	-		1.00E-01	G /Chronic	25	No
5.18E-04	5.18E-03	-		1.00E-01	G /Chronic	25	No
-	3.12E-01	-		-		-	

Chemical	CAS Number	Does the chemical meet the definition for volatility? (HLC>1E-5 or VP>1)	Does the chemical have inhalation toxicity data? (IUR and/or RfC)	MW	MW Ref	Vapor Pressure VP (mm Hg)	VP Ref	S (mg/L)	S Ref	MCL (ug/L)
Carbon Disulfide	75-15-0	Yes	Yes	76.14	PHYSPROP	3.59E+02	PHYSPROP	2.16E+03	PHYSPROP	-
Chloromethane	74-87-3	Yes	Yes	50.49	PHYSPROP	4.30E+03	PHYSPROP	5.32E+03	PHYSPROP	-
Dichlorodifluoromethane	75-71-8	Yes	Yes	120.91	PHYSPROP	4.85E+03	PHYSPROP	2.80E+02	PHYSPROP	-
Ethylbenzene	100-41-4	Yes	Yes	106.17	PHYSPROP	9.60E+00	PHYSPROP	1.69E+02	PHYSPROP	700
Hexanone, 2-	591-78-6	Yes	Yes	100.16	PHYSPROP	1.16E+01	PHYSPROP	1.72E+04	PHYSPROP	-
Methyl Ethyl Ketone (2-Butanone)	78-93-3	Yes	Yes	72.11	PHYSPROP	9.06E+01	PHYSPROP	2.23E+05	PHYSPROP	-
Styrene	100-42-5	Yes	Yes	104.15	PHYSPROP	6.40E+00	PHYSPROP	3.10E+02	PHYSPROP	100
Tetrachloroethylene	127-18-4	Yes	Yes	165.83	PHYSPROP	1.85E+01	PHYSPROP	2.06E+02	PHYSPROP	5
Toluene	108-88-3	Yes	Yes	92.14	PHYSPROP	2.84E+01	PHYSPROP	5.26E+02	PHYSPROP	1000
Xylene, m-	108-38-3	Yes	Yes	106.17	PHYSPROP	8.29E+00	PHYSPROP	1.61E+02	PHYSPROP	-
Xylene, o-	95-47-6	Yes	Yes	106.17	PHYSPROP	6.61E+00	PHYSPROP	1.78E+02	PHYSPROP	-
Xylene, p-	106-42-3	Yes	Yes	106.17	PHYSPROP	8.84E+00	PHYSPROP	1.62E+02	PHYSPROP	-

HLC (atm-m³/mole)	Henry's Law Constant (unitless)	H` and HLC Ref	Henry's Law Constant Used in Calcs (unitless)	Normal Boiling Point BP (K)	BP Ref	Critical Temperature T _c \ (K)	T _c \ Ref	Enthalpy of vaporization at the normal boiling point $\Delta H_{v,b} \setminus (cal/mol)$	$\Delta H_{v,b} $ Ref	Lower Explosive Limit LEL (% by volume)	LEL Ref
1.44E-02	5.89E-01	PHYSPROP	5.89E-01	319.15	PHYSPROP	5.52E+02	CRC	6391.01	CRC	1.30	CRC
8.82E-03	3.61E-01	PHYSPROP	3.61E-01	249.15	PHYSPROP	4.16E+02	CRC	5114.72	CRC	8.10	CRC
3.43E-01	1.40E+01	PHYSPROP	1.40E+01	243.35	PHYSPROP	3.85E+02	CRC	4804.02	CRC	-	
7.88E-03	3.22E-01	PHYSPROP	3.22E-01	409.25	PHYSPROP	6.17E+02	CRC	8501.43	CRC	0.80	CRC
9.32E-05	3.81E-03	EPI	3.81E-03	400.75	PHYSPROP	5.87E+02	CRC	8687.86	CRC	1.00	CRC
5.69E-05	2.33E-03	PHYSPROP	2.33E-03	352.65	PHYSPROP	5.37E+02	CRC	7480.88	CRC	1.40	CRC
2.75E-03	1.12E-01	PHYSPROP	1.12E-01	418.15	PHYSPROP	6.35E+02	CRC	9249.52	CRC	0.90	CRC
1.77E-02	7.24E-01	PHYSPROP	7.24E-01	394.45	PHYSPROP	6.20E+02	YAWS	8288.72	CRC	-	
6.64E-03	2.71E-01	PHYSPROP	2.71E-01	383.75	PHYSPROP	5.92E+02	CRC	7930.21	CRC	1.10	CRC
7.18E-03	2.94E-01	PHYSPROP	2.94E-01	412.25	PHYSPROP	6.17E+02	CRC	8522.94	CRC	1.10	CRC
5.18E-03	2.12E-01	PHYSPROP	2.12E-01	417.65	PHYSPROP	6.30E+02	CRC	8661.57	CRC	0.90	CRC
6.90E-03	2.82E-01	PHYSPROP	2.82E-01	411.38	PHYSPROP	6.16E+02	CRC	8525.33	CRC	1.10	CRC

Variable	Resident Air Default Value	Site-Specific Value
AF _{au} (Attenuation Factor Groundwater) unitless	0.001	0.001
AF (Attenuation Factor Sub-Slab) unitless	0.03	0.03
ED _{rec} (exposure duration) years	26	26
ED _{0.2} (mutagenic exposure duration first phase) years	2	2
ED _{2.6} (mutagenic exposure duration second phase) years	4	4
ED _{6.16} (mutagenic exposure duration third phase) years	10	10
ED _{16,36} (mutagenic exposure duration fourth phase) years	10	10
EF _{ree} (exposure frequency) days/year	350	350
EF _{n.2} (mutagenic exposure frequency first phase) days/year	350	350
EF _{2.6} (mutagenic exposure frequency second phase) days/year	350	350
EF _{6.16} (mutagenic exposure frequency third phase) days/year	350	350
EF _{16,36} (mutagenic exposure frequency fourth phase) days/year	350	350
ET _{res} (exposure time) hours/day	24	24
ET _{n.2} (mutagenic exposure time first phase) hours/day	24	24
ET _{2.6} (mutagenic exposure time second phase) hours/day	24	24
ET _{s.16} (mutagenic exposure time third phase) hours/day	24	24
ET _{16,36} (mutagenic exposure time fourth phase) hours/day	24	24
THQ (target hazard quotient) unitless	0.1	1
LT (lifetime) years	70	70
TR (target risk) unitless	1.0E-06	1.0E-05

Chemical	CAS Number	Does the chemical meet the definition for volatility? (HLC>1E-5 or VP>1)	Does the chemical have inhalation toxicity data? (IUR and/or RfC)	Is Chemical Sufficiently Volatile and Toxic to Pose Inhalation Risk Via Vapor Intrusion from Soil Source? (C _{vp} > C _{ia} ,Target?)	Is Chemical Sufficiently Volatile and Toxic to Pose Inhalation Risk Via Vapor Intrusion from Groundwater Source? (C _{hc} > C _{i,a} ,Target?)	Target Indoor Air Concentration (TCR=1E-05 or THQ=1) MIN(C _{ia.c} ,C _{ia.n.c}) (μg/m³)	Toxicity Basis	Target Sub-Slab and Near-source Soil Gas Concentration (TCR=1E-05 or THQ=1) C _{sg} ,Target (μg/m³)	Target Groundwater Concentration (TCR=1E-05 or THQ=1) C _{gw} ,Target (µg/L)
Carbon Disulfide	75-15-0	Yes	Yes	Yes	Yes	7.30E+02	NC	2.43E+04	1.24E+03
Chloromethane	74-87-3	Yes	Yes	Yes	Yes	3.13E+03	NC	1.04E+05	8.68E+03
Dichlorodifluoromethane	75-71-8	Yes	Yes	Yes	Yes	1.04E+03	NC	3.48E+04	7.44E+01
Ethylbenzene	100-41-4	Yes	Yes	Yes	Yes	1.12E+01	CA	3.74E+02	3.49E+01
Hexanone, 2-	591-78-6	Yes	Yes	Yes	Yes	3.13E+01	NC	1.04E+03	8.21E+03
Methyl Ethyl Ketone (2-Butanone)	78-93-3	Yes	Yes	Yes	Yes	1.04E+03	NC	3.48E+04	4.48E+05
Styrene	100-42-5	Yes	Yes	Yes	Yes	3.13E+03	NC	1.04E+05	2.78E+04
Tetrachloroethylene	127-18-4	Yes	Yes	Yes	Yes	4.24E+01	NC	1.41E+03	5.86E+01
Toluene	108-88-3	Yes	Yes	Yes	Yes	5.21E+03	NC	1.74E+05	1.92E+04
Xylene, m-	108-38-3	Yes	Yes	Yes	Yes	1.04E+02	NC	3.48E+03	3.55E+02
Xylene, o-	95-47-6	Yes	Yes	Yes	Yes	1.04E+02	NC	3.48E+03	4.92E+02
Xylene, p-	106-42-3	Yes	Yes	Yes	Yes	1.04E+02	NC	3.48E+03	3.70E+02

Is Target Groundwater Concentration < MCL? (C _{gw} < MCL?)	Pure Phase Vapor Concentration C _{νp} \ (25 °C)\ (μg/m³)	Maximum Groundwater Vapor Concentration C _{hc} \ (μg/m³)	Temperature for Maximum Groundwater Vapor Concentration (°C)	Lower Explosive Limit LEL (% by volume)	LEL Ref	IUR (ug/m³) ⁻¹	IUR Ref	RfC (mg/m³)	RfC Ref	Mutagenic Indicator	Carcinogenic VISL TCR=1E-05 C _{ia,c} (μg/m³)	Noncarcinogenic VISL THQ=1 C _{ia,nc} (μg/m³)
	1.47E+09	1.27E+09	25	1.30	CRC	-		7.00E-01	H /Subchronic	No	_	7.30E+02
	1.17E+10	1.92E+09	25	8.10	CRC	-		3.00E+00	P /Subchronic	No	-	3.13E+03
	3.15E+10	3.93E+09	25	-		-		1.00E+00	P /Subchronic	No	-	1.04E+03
Yes (700)	5.48E+07	5.44E+07	25	0.80	CRC	2.50E-06	С	9.00E+00	P /Subchronic	No	1.12E+01	9.39E+03
	6.25E+07	6.55E+07	25	1.00	CRC	-		3.00E-02	I /Chronic	No	-	3.13E+01
	3.51E+08	5.19E+08	25	1.40	CRC	-		1.00E+00	H /Subchronic	No	-	1.04E+03
No (100)	3.58E+07	3.49E+07	25	0.90	CRC	-		3.00E+00	H /Subchronic	No	-	3.13E+03
No (5)	1.65E+08	1.49E+08	25	-		2.60E-07	1	4.07E-02	A /Subchronic	No	1.08E+02	4.24E+01
No (1000)	1.41E+08	1.43E+08	25	1.10	CRC	-		5.00E+00	P /Subchronic	No	-	5.21E+03
	4.73E+07	4.73E+07	25	1.10	CRC	-		1.00E-01	G /Chronic	No	-	1.04E+02
	3.77E+07	3.77E+07	25	0.90	CRC	-		1.00E-01	G /Chronic	No	-	1.04E+02
	5.05E+07	4.57E+07	25	1.10	CRC	-		1.00E-01	G /Chronic	No	-	1.04E+02

Chemical	CAS Number	$\begin{tabular}{ll} Site \\ Sub-Slab and \\ Exterior Soil \\ Gas \\ Concentration \\ C_{sg} \\ (\mu g/m^3) \end{tabular}$	Site Indoor Air Concentration C _{i.a} \ (µg/m³)	VI Carcinogenic Risk CDI (μg/m³)	VI Carcinogenic Risk CR
Carbon Disulfide	75-15-0	6.3	1.89E-01	6.73E-02	-
Chloromethane	74-87-3	2.1	6.30E-02	2.24E-02	-
Dichlorodifluoromethane	75-71-8	5	1.50E-01	5.34E-02	-
Ethylbenzene	100-41-4	4.4	1.32E-01	4.70E-02	1.18E-07
Hexanone, 2-	591-78-6	310	9.30E+00	3.31E+00	-
Methyl Ethyl Ketone (2-Butanone)	78-93-3	1700	5.10E+01	1.82E+01	-
Styrene	100-42-5	4.6	1.38E-01	4.92E-02	-
Tetrachloroethylene	127-18-4	8.2	2.46E-01	8.76E-02	2.28E-08
Toluene	108-88-3	8.9	2.67E-01	9.51E-02	-
Xylene, m-	108-38-3	15	4.50E-01	1.60E-01	-
Xylene, o-	95-47-6	8.8	2.64E-01	9.40E-02	-
Xylene, p-	106-42-3	15	4.50E-01	1.60E-01	-
*Sum		-	-	-	1.40E-07

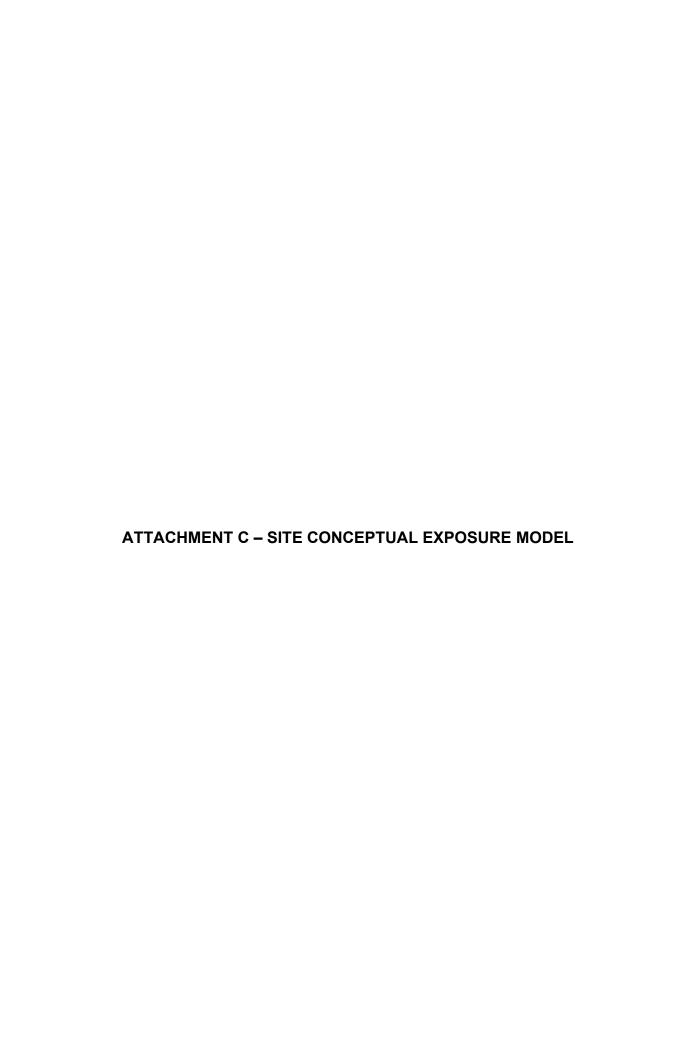
VI Hazard CDI (mg/m³)	VI Hazard HQ	IUR (ug/m³)·¹	IUR Ref		RfC Ref	Temperature (°C)\ for Groundwater Vapor Concentration	Mutagen?
1.81E-04	2.59E-04	-		7.00E-01	H /Subchronic	25	No
6.04E-05	6.71E-04	-		9.00E-02	P /Subchronic	25	No
1.44E-04	1.44E-03	-		1.00E-01	P /Subchronic	25	No
1.27E-04	1.27E-04	2.50E-06	С	1.00E+00	P /Subchronic	25	No
8.92E-03	2.97E-01	-		3.00E-02	I/Chronic	25	No
4.89E-02	9.78E-03	-		5.00E+00	H /Subchronic	25	No
1.32E-04	1.32E-04	-		1.00E+00	H /Subchronic	25	No
2.36E-04	5.90E-03	2.60E-07	ı	4.00E-02	A /Subchronic	25	No
2.56E-04	5.12E-05	-		5.00E+00	P /Subchronic	25	No
4.32E-04	4.32E-03	-		1.00E-01	G /Chronic	25	No
2.53E-04	2.53E-03	-		1.00E-01	G /Chronic	25	No
4.32E-04	4.32E-03	-		1.00E-01	G /Chronic	25	No
-	3.27E-01	-		-		-	

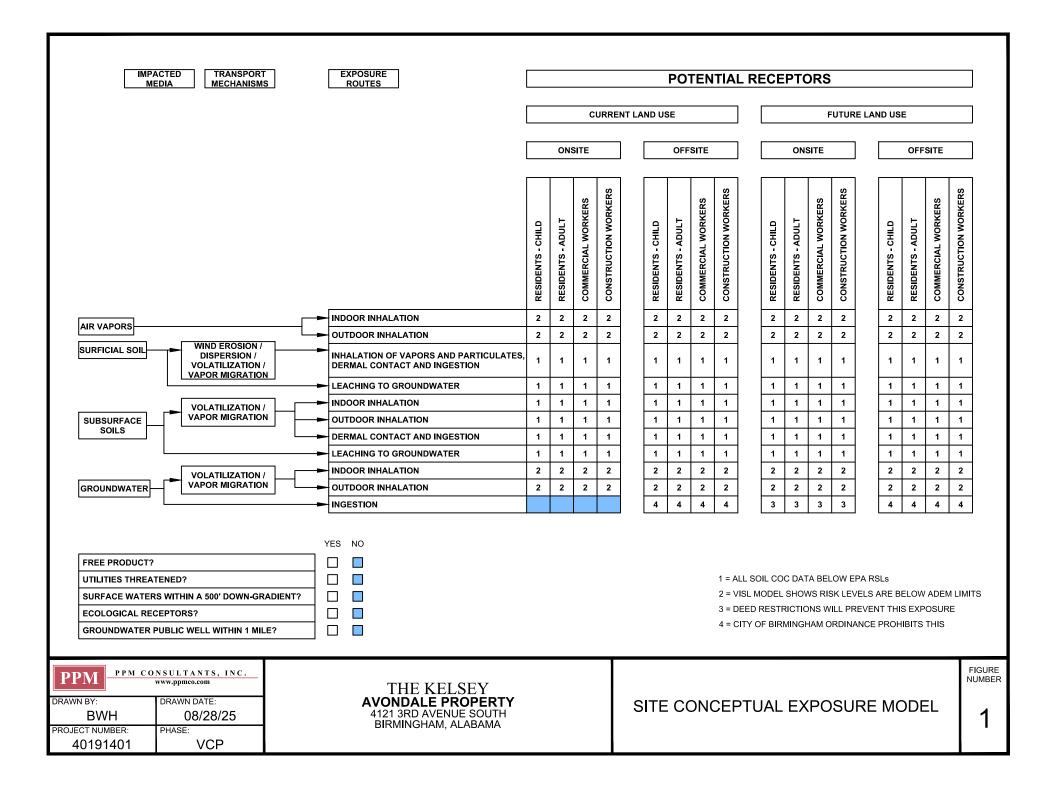
Chemical	CAS Number	Does the chemical meet the definition for volatility? (HLC>1E-5 or VP>1)	Does the chemical have inhalation toxicity data? (IUR and/or RfC)	MW	MW Ref	Vapor Pressure VP (mm Hg)	VP Ref	S (mg/L)	S Ref	MCL (ug/L)
Carbon Disulfide	75-15-0	Yes	Yes	76.14	PHYSPROP	3.59E+02	PHYSPROP	2.16E+03	PHYSPROP	-
Chloromethane	74-87-3	Yes	Yes	50.49	PHYSPROP	4.30E+03	PHYSPROP	5.32E+03	PHYSPROP	-
Dichlorodifluoromethane	75-71-8	Yes	Yes	120.91	PHYSPROP	4.85E+03	PHYSPROP	2.80E+02	PHYSPROP	-
Ethylbenzene	100-41-4	Yes	Yes	106.17	PHYSPROP	9.60E+00	PHYSPROP	1.69E+02	PHYSPROP	700
Hexanone, 2-	591-78-6	Yes	Yes	100.16	PHYSPROP	1.16E+01	PHYSPROP	1.72E+04	PHYSPROP	-
Methyl Ethyl Ketone (2-Butanone)	78-93-3	Yes	Yes	72.11	PHYSPROP	9.06E+01	PHYSPROP	2.23E+05	PHYSPROP	-
Styrene	100-42-5	Yes	Yes	104.15	PHYSPROP	6.40E+00	PHYSPROP	3.10E+02	PHYSPROP	100
Tetrachloroethylene	127-18-4	Yes	Yes	165.83	PHYSPROP	1.85E+01	PHYSPROP	2.06E+02	PHYSPROP	5
Toluene	108-88-3	Yes	Yes	92.14	PHYSPROP	2.84E+01	PHYSPROP	5.26E+02	PHYSPROP	1000
Xylene, m-	108-38-3	Yes	Yes	106.17	PHYSPROP	8.29E+00	PHYSPROP	1.61E+02	PHYSPROP	-
Xylene, o-	95-47-6	Yes	Yes	106.17	PHYSPROP	6.61E+00	PHYSPROP	1.78E+02	PHYSPROP	-
Xylene, p-	106-42-3	Yes	Yes	106.17	PHYSPROP	8.84E+00	PHYSPROP	1.62E+02	PHYSPROP	-

HLC (atm-m³/mole)	Henry's Law Constant (unitless)	H` and HLC Ref	Henry's Law Constant Used in Calcs (unitless)	Normal Boiling Point BP (K)	BP Ref	Critical Temperature T _c \ (K)	T _c \ Ref	Enthalpy of vaporization at the normal boiling point $\Delta H_{v,b} \setminus (cal/mol)$	$\Delta H_{v,b} L$ Ref	Lower Explosive Limit LEL (% by volume)	LEL Ref
1.44E-02	5.89E-01	PHYSPROP	5.89E-01	319.15	PHYSPROP	5.52E+02	CRC	6391.01	CRC	1.30	CRC
8.82E-03	3.61E-01	PHYSPROP	3.61E-01	249.15	PHYSPROP	4.16E+02	CRC	5114.72	CRC	8.10	CRC
3.43E-01	1.40E+01	PHYSPROP	1.40E+01	243.35	PHYSPROP	3.85E+02	CRC	4804.02	CRC	-	
7.88E-03	3.22E-01	PHYSPROP	3.22E-01	409.25	PHYSPROP	6.17E+02	CRC	8501.43	CRC	0.80	CRC
9.32E-05	3.81E-03	EPI	3.81E-03	400.75	PHYSPROP	5.87E+02	CRC	8687.86	CRC	1.00	CRC
5.69E-05	2.33E-03	PHYSPROP	2.33E-03	352.65	PHYSPROP	5.37E+02	CRC	7480.88	CRC	1.40	CRC
2.75E-03	1.12E-01	PHYSPROP	1.12E-01	418.15	PHYSPROP	6.35E+02	CRC	9249.52	CRC	0.90	CRC
1.77E-02	7.24E-01	PHYSPROP	7.24E-01	394.45	PHYSPROP	6.20E+02	YAWS	8288.72	CRC	-	
6.64E-03	2.71E-01	PHYSPROP	2.71E-01	383.75	PHYSPROP	5.92E+02	CRC	7930.21	CRC	1.10	CRC
7.18E-03	2.94E-01	PHYSPROP	2.94E-01	412.25	PHYSPROP	6.17E+02	CRC	8522.94	CRC	1.10	CRC
5.18E-03	2.12E-01	PHYSPROP	2.12E-01	417.65	PHYSPROP	6.30E+02	CRC	8661.57	CRC	0.90	CRC
6.90E-03	2.82E-01	PHYSPROP	2.82E-01	411.38	PHYSPROP	6.16E+02	CRC	8525.33	CRC	1.10	CRC

Variable	Resident Air Default Value	Site-Specific Value
AF _{ru} (Attenuation Factor Groundwater) unitless	0.001	0.001
AF (Attenuation Factor Sub-Slab) unitless	0.03	0.03
ED _{me} (exposure duration) years	26	26
ED _{0.2} (mutagenic exposure duration first phase) years	2	2
ED _{2.6} (mutagenic exposure duration second phase) years	4	4
ED _{6.16} (mutagenic exposure duration third phase) years	10	10
ED _{16,36} (mutagenic exposure duration fourth phase) years	10	10
EF _{ree} (exposure frequency) days/year	350	350
EF _{n.2} (mutagenic exposure frequency first phase) days/year	350	350
EF _{2.6} (mutagenic exposure frequency second phase) days/year	350	350
EF _{6.16} (mutagenic exposure frequency third phase) days/year	350	350
EF _{16,36} (mutagenic exposure frequency fourth phase) days/year	350	350
ET _{ree} (exposure time) hours/day	24	24
ET _{n.2} (mutagenic exposure time first phase) hours/day	24	24
ET _{2.6} (mutagenic exposure time second phase) hours/day	24	24
ET _{6.16} (mutagenic exposure time third phase) hours/day	24	24
ET _{16,26} (mutagenic exposure time fourth phase) hours/day	24	24
THQ (target hazard quotient) unitless	0.1	1
LT (lifetime) years	70	70
TR (target risk) unitless	1.0E-06	1.0E-05

Chemical	CAS Number	Does the chemical meet the definition for volatility? (HLC>1E-5 or VP>1)	Does the chemical have inhalation toxicity data? (IUR and/or RfC)	Is Chemical Sufficiently Volatile and Toxic to Pose Inhalation Risk Via Vapor Intrusion from Soil Source? (C _{vp} > C _{ia} ,Target?)	Is Chemical Sufficiently Volatile and Toxic to Pose Inhalation Risk Via Vapor Intrusion from Groundwater Source? (C _{hc} > C _{i,a} ,Target?)	Target Indoor Air Concentration (TCR=1E-05 or THQ=1) MIN(C _{ia.c} ,C _{ia.n.c}) (μg/m³)	Toxicity Basis	Target Sub-Slab and Near-source Soil Gas Concentration (TCR=1E-05 or THQ=1) C _{sg} ,Target (μg/m³)	Target Groundwater Concentration (TCR=1E-05 or THQ=1) C _{gw} ,Target (µg/L)
Carbon Disulfide	75-15-0	Yes	Yes	Yes	Yes	7.30E+02	NC	2.43E+04	1.24E+03
Chloromethane	74-87-3	Yes	Yes	Yes	Yes	3.13E+03	NC	1.04E+05	8.68E+03
Dichlorodifluoromethane	75-71-8	Yes	Yes	Yes	Yes	1.04E+03	NC	3.48E+04	7.44E+01
Ethylbenzene	100-41-4	Yes	Yes	Yes	Yes	1.12E+01	CA	3.74E+02	3.49E+01
Hexanone, 2-	591-78-6	Yes	Yes	Yes	Yes	3.13E+01	NC	1.04E+03	8.21E+03
Methyl Ethyl Ketone (2-Butanone)	78-93-3	Yes	Yes	Yes	Yes	1.04E+03	NC	3.48E+04	4.48E+05
Styrene	100-42-5	Yes	Yes	Yes	Yes	3.13E+03	NC	1.04E+05	2.78E+04
Tetrachloroethylene	127-18-4	Yes	Yes	Yes	Yes	4.24E+01	NC	1.41E+03	5.86E+01
Toluene	108-88-3	Yes	Yes	Yes	Yes	5.21E+03	NC	1.74E+05	1.92E+04
Xylene, m-	108-38-3	Yes	Yes	Yes	Yes	1.04E+02	NC	3.48E+03	3.55E+02
Xylene, o-	95-47-6	Yes	Yes	Yes	Yes	1.04E+02	NC	3.48E+03	4.92E+02
Xylene, p-	106-42-3	Yes	Yes	Yes	Yes	1.04E+02	NC	3.48E+03	3.70E+02


Is Target Groundwater Concentration < MCL? (C _{gw} < MCL?)	Pure Phase Vapor Concentration C _{νp} \ (25 °C)\ (μg/m³)	Maximum Groundwater Vapor Concentration C _{hc} \ (μg/m³)	Temperature for Maximum Groundwater Vapor Concentration (°C)	Lower Explosive Limit LEL (% by volume)	LEL Ref	IUR (ug/m³) ⁻¹	IUR Ref		RfC Ref	Mutagenic Indicator	Carcinogenic VISL TCR=1E-05 C _{ia,c} (μg/m³)	Noncarcinogenic VISL THQ=1 C _{ia,nc} (µg/m³)
	1.47E+09	1.27E+09	25	1.30	CRC	-		7.00E-01	H /Subchronic	No	-	7.30E+02
	1.17E+10	1.92E+09	25	8.10	CRC	-		3.00E+00	P /Subchronic	No	-	3.13E+03
	3.15E+10	3.93E+09	25	-		-		1.00E+00	P /Subchronic	No	-	1.04E+03
Yes (700)	5.48E+07	5.44E+07	25	0.80	CRC	2.50E-06	С	9.00E+00	P /Subchronic	No	1.12E+01	9.39E+03
	6.25E+07	6.55E+07	25	1.00	CRC	-		3.00E-02	I /Chronic	No	-	3.13E+01
	3.51E+08	5.19E+08	25	1.40	CRC	-		1.00E+00	H /Subchronic	No	-	1.04E+03
No (100)	3.58E+07	3.49E+07	25	0.90	CRC	-		3.00E+00	H /Subchronic	No	-	3.13E+03
No (5)	1.65E+08	1.49E+08	25	-		2.60E-07	1	4.07E-02	A /Subchronic	No	1.08E+02	4.24E+01
No (1000)	1.41E+08	1.43E+08	25	1.10	CRC	-		5.00E+00	P /Subchronic	No	-	5.21E+03
	4.73E+07	4.73E+07	25	1.10	CRC	-		1.00E-01	G /Chronic	No	-	1.04E+02
	3.77E+07	3.77E+07	25	0.90	CRC	-		1.00E-01	G /Chronic	No	-	1.04E+02
	5.05E+07	4.57E+07	25	1.10	CRC	-		1.00E-01	G /Chronic	No	-	1.04E+02


Chemical	CAS Number	$\begin{tabular}{ll} Site \\ Sub-Slab and \\ Exterior Soil \\ Gas \\ Concentration \\ C_{sg} \\ (\mu g/m^3) \end{tabular}$	Site Indoor Air Concentration C _{i.a} \ (µg/m³)	VI Carcinogenic Risk CDI (μg/m³)	VI Carcinogenic Risk CR
Carbon Disulfide	75-15-0	53	1.59E+00	5.66E-01	-
Chloromethane	74-87-3	2.1	6.30E-02	2.24E-02	-
Dichlorodifluoromethane	75-71-8	27	8.10E-01	2.88E-01	-
Ethylbenzene	100-41-4	7.3	2.19E-01	7.80E-02	1.95E-07
Hexanone, 2-	591-78-6	92	2.76E+00	9.83E-01	-
Methyl Ethyl Ketone (2-Butanone)	78-93-3	940	2.82E+01	1.00E+01	-
Styrene	100-42-5	5.6	1.68E-01	5.98E-02	-
Tetrachloroethylene	127-18-4	12	3.60E-01	1.28E-01	3.33E-08
Toluene	108-88-3	16	4.80E-01	1.71E-01	-
Xylene, m-	108-38-3	31	9.30E-01	3.31E-01	-
Xylene, o-	95-47-6	21	6.30E-01	2.24E-01	-
Xylene, p-	106-42-3	31	9.30E-01	3.31E-01	-
*Sum		-	-	-	2.28E-07

VI Hazard CDI (mg/m³)	VI Hazard HQ	IUR (ug/m³)·¹	IUR Ref		RfC Ref	Temperature (°C)\ for Groundwater Vapor Concentration	Mutagen?
1.52E-03	2.18E-03	-		7.00E-01	H /Subchronic	25	No
6.04E-05	6.71E-04	-		9.00E-02	P /Subchronic	25	No
7.77E-04	7.77E-03	-		1.00E-01	P /Subchronic	25	No
2.10E-04	2.10E-04	2.50E-06	С	1.00E+00	P /Subchronic	25	No
2.65E-03	8.82E-02	-		3.00E-02	I/Chronic	25	No
2.70E-02	5.41E-03	-		5.00E+00	H /Subchronic	25	No
1.61E-04	1.61E-04	-		1.00E+00	H /Subchronic	25	No
3.45E-04	8.63E-03	2.60E-07	1	4.00E-02	A /Subchronic	25	No
4.60E-04	9.21E-05	-		5.00E+00	P /Subchronic	25	No
8.92E-04	8.92E-03	-		1.00E-01	G /Chronic	25	No
6.04E-04	6.04E-03	-		1.00E-01	G /Chronic	25	No
8.92E-04	8.92E-03	-		1.00E-01	G /Chronic	25	No
-	1.37E-01	-		-		-	

Chemical	CAS Number	Does the chemical meet the definition for volatility? (HLC>1E-5 or VP>1)	Does the chemical have inhalation toxicity data? (IUR and/or RfC)	MW	MW Ref	Vapor Pressure VP (mm Hg)	VP Ref	S (mg/L)	S Ref	MCL (ug/L)
Carbon Disulfide	75-15-0	Yes	Yes	76.14	PHYSPROP	3.59E+02	PHYSPROP	2.16E+03	PHYSPROP	-
Chloromethane	74-87-3	Yes	Yes	50.49	PHYSPROP	4.30E+03	PHYSPROP	5.32E+03	PHYSPROP	-
Dichlorodifluoromethane	75-71-8	Yes	Yes	120.91	PHYSPROP	4.85E+03	PHYSPROP	2.80E+02	PHYSPROP	-
Ethylbenzene	100-41-4	Yes	Yes	106.17	PHYSPROP	9.60E+00	PHYSPROP	1.69E+02	PHYSPROP	700
Hexanone, 2-	591-78-6	Yes	Yes	100.16	PHYSPROP	1.16E+01	PHYSPROP	1.72E+04	PHYSPROP	-
Methyl Ethyl Ketone (2-Butanone)	78-93-3	Yes	Yes	72.11	PHYSPROP	9.06E+01	PHYSPROP	2.23E+05	PHYSPROP	-
Styrene	100-42-5	Yes	Yes	104.15	PHYSPROP	6.40E+00	PHYSPROP	3.10E+02	PHYSPROP	100
Tetrachloroethylene	127-18-4	Yes	Yes	165.83	PHYSPROP	1.85E+01	PHYSPROP	2.06E+02	PHYSPROP	5
Toluene	108-88-3	Yes	Yes	92.14	PHYSPROP	2.84E+01	PHYSPROP	5.26E+02	PHYSPROP	1000
Xylene, m-	108-38-3	Yes	Yes	106.17	PHYSPROP	8.29E+00	PHYSPROP	1.61E+02	PHYSPROP	-
Xylene, o-	95-47-6	Yes	Yes	106.17	PHYSPROP	6.61E+00	PHYSPROP	1.78E+02	PHYSPROP	-
Xylene, p-	106-42-3	Yes	Yes	106.17	PHYSPROP	8.84E+00	PHYSPROP	1.62E+02	PHYSPROP	-

HLC (atm-m³/mole)	Henry's Law Constant (unitless)	H` and HLC Ref	Henry's Law Constant Used in Calcs (unitless)	Normal Boiling Point BP (K)	BP Ref	Critical Temperature T _c \ (K)	T _c \ Ref	Enthalpy of vaporization at the normal boiling point $\Delta H_{v,b} \setminus (cal/mol)$	$\Delta H_{v,b} L$ Ref	Lower Explosive Limit LEL (% by volume)	LEL Ref
1.44E-02	5.89E-01	PHYSPROP	5.89E-01	319.15	PHYSPROP	5.52E+02	CRC	6391.01	CRC	1.30	CRC
8.82E-03	3.61E-01	PHYSPROP	3.61E-01	249.15	PHYSPROP	4.16E+02	CRC	5114.72	CRC	8.10	CRC
3.43E-01	1.40E+01	PHYSPROP	1.40E+01	243.35	PHYSPROP	3.85E+02	CRC	4804.02	CRC	-	
7.88E-03	3.22E-01	PHYSPROP	3.22E-01	409.25	PHYSPROP	6.17E+02	CRC	8501.43	CRC	0.80	CRC
9.32E-05	3.81E-03	EPI	3.81E-03	400.75	PHYSPROP	5.87E+02	CRC	8687.86	CRC	1.00	CRC
5.69E-05	2.33E-03	PHYSPROP	2.33E-03	352.65	PHYSPROP	5.37E+02	CRC	7480.88	CRC	1.40	CRC
2.75E-03	1.12E-01	PHYSPROP	1.12E-01	418.15	PHYSPROP	6.35E+02	CRC	9249.52	CRC	0.90	CRC
1.77E-02	7.24E-01	PHYSPROP	7.24E-01	394.45	PHYSPROP	6.20E+02	YAWS	8288.72	CRC	-	
6.64E-03	2.71E-01	PHYSPROP	2.71E-01	383.75	PHYSPROP	5.92E+02	CRC	7930.21	CRC	1.10	CRC
7.18E-03	2.94E-01	PHYSPROP	2.94E-01	412.25	PHYSPROP	6.17E+02	CRC	8522.94	CRC	1.10	CRC
5.18E-03	2.12E-01	PHYSPROP	2.12E-01	417.65	PHYSPROP	6.30E+02	CRC	8661.57	CRC	0.90	CRC
6.90E-03	2.82E-01	PHYSPROP	2.82E-01	411.38	PHYSPROP	6.16E+02	CRC	8525.33	CRC	1.10	CRC

ENVIRONMENTAL COVENANT

The Kelsey (hereinafter "Grantor") grants an Environmental Covenant (hereinafter "Covenant") this ____ day of _____, 2025, to the following entities pursuant to The Alabama Uniform Environmental Covenants Act, <u>Ala. Code</u> §§ 35-19-1 to 35-19-14, as amended, (the Act) and the regulations promulgated thereunder:

- 1. the Alabama Department of Environmental Management and
- 2. the identified holders or other applicable parties: The Kelsey (Grantor) and The Kelsey Avondale, LP (future project owner).

WHEREAS, the Grantor was the owner of certain real property located in the City of Birmingham, Alabama, identified as the Avondale Property situated at 4121 Third Avenue South, in Jefferson County, Alabama, (hereinafter "the Property"). The property which was conveyed to Grantor by deed dated February 13, 2025, and recorded in the Office of the Judge of Probate for Jefferson County, Alabama, in Deed Book 243 at Page 89;

WHEREAS, the Property is more particularly described as the following:

BEGINNING AT A NORTHWEST CORNER OF LOT 2-A OF SAID AVONDALE RESURVEY OF BLOCK 13. SAID POINT BEING A MAG NAIL WITH WASHER ON THE SOUTHEAST RIGHT OF WAY OF 3RD AVENUE SOUTH; THENCE CONTINUE ALONG SAID RIGHT OF WAY, RUN N 59°53'55" E FOR A DISTANCE OF 190.03 FEET TO A 3/4" CRIMP PIPE; THENCE CONTINUE ALONG SAID RIGHT OF WAY, RUN N 59°45'56" E FOR A DISTANCE OF 50.02 FEET TO A 3/4" PIPE, SAID POINT BEING AT THE INTERSECTION OF THE SOUTHEAST RIGHT OF WAY OF 3RD AVENUE NORTH WITH THE SOUTHWEST RIGHT OF WAY OF 42ND STREET SOUTH; THENCE CONTINUE ALONG SAID 42ND STREET SOUTH RIGHT OF WAY, RUN S 30°01'01" E FOR A DISTANCE OF 139.59 FEET TO A 3/4" CRIMP PIPE, SAID POINT BEING AT THE INTERSECTION OF THE SOUTHWEST RIGHT OF WAY OF 42ND STREET SOUTH WITH THE NORTHWEST RIGHT OF WAY AN ALLEY: THENCE CONTINUE ALONG SAID ALLEY RIGHT OF WAY, RUN S 59°28'05" W FOR A DISTANCE OF 49.64 FEET TO A 5/8" CAPPED REBAR STAMPED "SOUTHERN CROSS CA 1050": THENCE CONTINUE ALONG SAID ALLEY RIGHT OF WAY, RUN S 59°55'31" W FOR A DISTANCE OF 189.92 FEET TO A 5/8" CAPPED REBAR: THENCE LEAVING SAID ALLEY RIGHT OF WAY, RUN N 30°12'51" W FOR A DISTANCE OF 139.76 FEET TO THE POINT OF BEGINNING. SAID LOT 2-A BEING. 0.77 ACRES, MORE OR LESS.

WHEREAS, this instrument is an Environmental Covenant developed and executed pursuant to the Act and the regulations promulgated thereunder;

WHEREAS, bromomethane has been detected in groundwater, on the Property;

WHEREAS, the selected "remedial action" for the Property, which has now been implemented, providing in part, for the following actions:

Placement of a restriction on the entire Property to prevent the installation of a water production well for the use of groundwater for potable or irrigation purposes.

WHEREAS, pursuant to the Voluntary Cleanup Plan approved by ADEMs Voluntary Cleanup Program, on DATE (the Remedial Action Plan was approved), the Grantor and assignees agreed to perform operation and maintenance activities at the Property to restrict the use of groundwater due to the presence of bromomethane;

WHEREAS, the Voluntary Cleanup Plan requires institutional controls to be implemented to address the effects of bromomethane in groundwater by restricting the use of the Property and the activities on the Property;

WHEREAS, hazardous wastes, hazardous constituents, hazardous substances, pollutants, or other contaminants remain on the Property, specifically contamination has occurred in groundwater and the following contaminant(s) remain at the site: bromomethane;

WHEREAS, the purpose of this Covenant is to ensure protection of human health and the environment by placing restrictions on the Property to reduce the risk to human health to below the target risk levels for those hazardous wastes, hazardous constituents, hazardous substances, pollutants, or contaminants that remain on the Property;

WHEREAS, further information about the groundwater restriction on the property may be obtained by contacting Chief, Land Division, Alabama Department of Environmental Management ("ADEM"), or his or her designated representative, at 1400 Coliseum Boulevard, Montgomery, Alabama, 36110; and

WHEREAS, the Administrative Record concerning the Property is located at:

The Kelsey 1 Sansome Street, Suite 3500 San Francisco, CA 94104

and

Alabama Department of Environmental Management 1400 Coliseum Boulevard Montgomery, Alabama 36110

NOW, THEREFORE, Grantor hereby grants this Environmental Covenant to ADEM and the identified Holders, and declares that the Property shall hereinafter be

bound by, held, sold, used, improved, occupied, leased, hypothecated, encumbered, and/or conveyed subject to the following requirements set forth in paragraphs 1 through 3 below:

1. **DEFINITIONS**

Owner. "Owner" means the GRANTOR, its successors and assigns in interest.

2. **USE RESTRICTIONS**

Any deviation from the following use restrictions requires prior written approval from ADEM through modification of this covenant:

The use of groundwater for potable or irrigation purposes is prohibited.

3. **GENERAL PROVISIONS**

- A. Restrictions to Run with the Land. This Environmental Covenant runs with the land pursuant to Ala. Code § 35-19-5, as amended; is perpetual, unless modified or terminated pursuant to the terms of this Covenant pursuant to Ala. Code § 35-19-9, as amended; is imposed upon the entire Property unless expressly stated as applicable only to a specific portion thereof; inures to the benefit of and passes with each and every portion of the Property; and binds the Owner, the Holders, all persons using the land, all persons, their heirs, successors and assigns having any right, title or interest in the Property, or any part thereof who have subordinated those interests to this Environmental Covenant, and all persons, their heirs, successors and assigns who obtain any right, title or interest in the Property, or any part thereof after the recordation of this Environmental Covenant.
- B. Notices Required. In accordance with Ala. Code § 35-19-4(b), as amended, the Owner shall send written notification, pursuant to Section J, below, following transfer of a specified interest in, or concerning proposed changes in use of, applications for building permits for, or proposals for any site work affecting the contamination on, the Property. Said notification shall be sent within fifteen (15) days of each event listed in this Section.
- C. Registry/Recordation of Environmental Covenant; Amendment; or Termination. Pursuant to Ala. Code §3 5-19-12(b), as amended, this Environmental Covenant and any amendment or termination thereof, shall be contained in ADEM's registry for environmental covenants. After an environmental covenant, amendment, or termination is filed in the registry, a notice of the covenant, amendment, or termination may be recorded in the land records in lieu of recording the entire covenant in compliance with § 35-19-12(b), as amended. Grantor shall be responsible for filing the

- Environmental Covenant within thirty (30) days of the final required signature upon this Environmental Covenant.
- D. <u>Right of Access</u>. The Owner hereby grants ADEM; ADEM's agents, contractors and employees; the Owner's agents, contractors and employees; and any Holders the right of access to the Property for implementation or enforcement of this Environmental Covenant.
- F. <u>ADEM Reservations</u>. Notwithstanding any other provision of this Environmental Covenant, ADEM retains all of its access authorities and rights, as well as all of its rights to require additional land/water use restrictions, including enforcement authorities related thereto.
- G. <u>Representations and Warranties</u>. Grantor hereby represents and warrants to the other signatories hereto:
 - That the Grantor has the power and authority to enter into this Environmental Covenant, to grant the rights and interests herein provided and to carry out all obligations hereunder;
 - ii) That the Grantor is the sole owner of the Property and holds fee simple title which is free, clear and unencumbered;
 - iii) That the Grantor has identified no other parties that hold any interest in the Property.
 - iv) That the Grantor has identified all other parties that hold any interest (e.g., encumbrance) in the Property and notified such parties of the Grantor's intention to enter into this Environmental Covenant;
 - v) That this Environmental Covenant will not materially violate, contravene, or constitute a material default under, any other agreement, document, or instrument to which Grantor is a party, by which Grantor may be bound or affected;
 - vi) That this Environmental Covenant will not materially violate or contravene any zoning law or other law regulating use of the Property;
 - vii) That this Environmental Covenant does not authorize a use of the Property which is otherwise prohibited by a recorded instrument that has priority over the Environmental Covenant.
- H. <u>Compliance Enforcement</u>. In accordance with <u>Ala. Code</u> § 35-19-11(b), as amended, the terms of the Environmental Covenant may be enforced by the parties to this Environmental Covenant; any person to whom this Covenant

expressly grants power to enforce; any person whose interest in the real property or whose collateral or liability may be affected by the alleged violation of the Covenant; or a municipality or other unit of local government in which the real property subject to the Covenant is located, in accordance with applicable law. The parties hereto expressly agree that ADEM has the power to enforce this Environmental Covenant. Failure to timely enforce compliance with this Environmental Covenant or the use or activity limitations contained herein by any person shall not bar subsequent enforcement by such person and shall not be deemed a waiver of the person's right to take action to enforce any non-compliance. Nothing in this Environmental Covenant shall restrict ADEM, or the Grantor, from exercising any authority under applicable law.

- I. <u>Modifications/Termination</u>. Any modifications or terminations to this Environmental Covenant must be made in accordance with <u>Ala. Code</u> §§ 35-19-9 and 35-19-10, as amended.
- J. <u>Notices</u>. Any document or communication required to be sent pursuant to the terms of this Environmental Covenant shall be sent to the following persons:

<u>ADEM</u>

Chief, Land Division Alabama Department of Environmental Management 1400 Coliseum Boulevard Montgomery, AL 36110

<u>Grantor</u>

Micaela Connery CEO The Kelsey 1 Sansome Street, Suite 3500 San Francisco, California 94104

Holder(s) or Other Applicable Party(ies)

Kathy Laborde Manager The Kelsey Avondale, LP 1626A Oretha Castle Haley Boulevard New Orleans, Louisiana 70113

- K. No Property Interest Created in ADEM. This Environmental Covenant does not in any way create any interest by ADEM in the Property that is subject to the Environmental Covenant. Furthermore, the act of approving this Environmental Covenant does not in any way create any interest by ADEM in the Property in accordance with Ala. Code § 35-19-3(b), as amended.
- L. <u>Severability</u>. If any provision of this Environmental Covenant is found to be unenforceable in any respect, the validity, legality, and enforceability of the remaining provisions shall not in any way be affected or impaired.
- M. <u>Governing Law</u>. This Environmental Covenant shall be governed by and interpreted in accordance with the laws of the State of Alabama.
- N. Recordation. In accordance with Ala. Code § 35-19-8(a), as amended, Grantor shall record this Environmental Covenant and any amendment or termination of the Environmental Covenant in every county in which any portion of the real property subject to this Environmental Covenant is located. Grantor agrees to record this Environmental Covenant within fifteen (15) days after the date of the final required signature upon this Environmental Covenant.
- O. <u>Effective Date</u>. The effective date of this Environmental Covenant shall be the date upon which the fully executed Environmental Covenant has been recorded, in accordance with Ala. Code § 35-19-8(a), as amended.
- P. <u>Distribution of Environmental Covenant</u>. Within fifteen (15) days of filing this Environmental Covenant, the Grantor shall distribute a recorded and date stamped copy of the recorded Environmental Covenant in accordance with <u>Ala. Code</u> § 35-19-7(a), as amended. However, the validity of this Environmental Covenant will not be affected by the failure to provide a copy of the Covenant as provided herein.
- Q. <u>ADEM References</u>. All references to ADEM shall include successor agencies, departments, divisions, or other successor entities.
- R. <u>Grantor References</u>. All references to the Grantor shall include successor agencies, departments, divisions, or other successor entities.
- S. <u>Other Applicable Party(ies)</u>. All references to Other Applicable Party(ies) shall include successor agencies, departments, divisions, or other successor entities.

, ,	nental Covenant to be executed pursuant to venants Act, on this day of,
IN TESTIMONY WHEREOF , the pand year first above written.	arties have hereunto set their hands this the day
This Environmental Covenant is hereby a	approved by The Kelsey this day of
By: <u>Micaela Connery, CEO</u> Name & Title Grantor	
STATE OF CALIFORNIA COUNTY OF SAN FRANCISCO)))
Commonwealth, hereby certify that Micae is signed to the foregoing conveyance an on this day that, being informed of the co	in and for said County in said State or ela Connery, whose name as CEO of The Kelsey d who is known to me, acknowledged before me ntents of the conveyance, (s)he, as such officer e voluntarily for and as the act of said California
Given under my hand this the day o	of, 2025
	Notary Public:
	My Commission Expires:

OTHER APPLICABLE PARTY(IES)

This Environmental Covenant is hereby approduced and the second s	oved by The Kelsey Avondale, LP this
By: <u>Kathy Laborde, Manager</u> Name & Title	
Holder	
STATE OF LOUISIANA)	
PARRISH OF ORLEANS)	
I,, a	aborde, whose name as Manager of The foregoing conveyance and who is known to hat, being informed of the contents of the full authority executed the same voluntarily
Given under my hand this the day of	, 2025.
Nota	ary Public:
My (Commission Expires:

ALABAMA DEPARTMENT OF ENVIRONMENTAL MANAGEMENT

This Environmental Covenant is hereby approved by the of, 2025.	State of Alabama this day
Ву:	
Stephen A. Cobb Chief, Land Division Alabama Department of Environmental Management	
State of Alabama}	
Montgomery, County}	
I, the undersigned Notary Public in and for said Cothat Stephen A. Cobb, whose name as Chief, Land Divis Environmental Management is signed to the foregoing coto me, acknowledged before me on this day that, being it conveyance, he approved the same voluntarily on the dafull authority to do so.	ion, Alabama Department of onveyance, and who is known nformed of the contents of the
Given under my hand and official seal this d	ay of, 2025.
Notary P	ublic
My Commission	Expires:

STATE OF ALABAMA

COUNTY OF JEFFERSON

Ι,		, Clerk of the Jefferson
County Court, do ce	ertify that the fore	egoing Environmental Covenant <i>[and, if applicable,</i>
attached Subordina	tion Agreement]	was lodged in my office for record, and that I have
recorded it, this	day of	, 2025 in the Deed Recordation Book
### on Page		
<u> </u>		
Count	y Clerk	

This instrument prepared by:

The Kelsey 1 Sansome Street, Suite 3500 San Francisco, CA 94104

ENVIRONMENTAL COVENANT

The Kelsey (hereinafter "Grantor") grants an Environmental Covenant (hereinafter "Covenant") this ____ day of _____, 2025, to the following entities pursuant to The Alabama Uniform Environmental Covenants Act, <u>Ala. Code</u> §§ 35-19-1 to 35-19-14, as amended, (the Act) and the regulations promulgated thereunder:

- 1. the Alabama Department of Environmental Management and
- 2. the identified holders or other applicable parties: The Kelsey (Grantor) and The Kelsey Avondale, LP (future project owner).

WHEREAS, the Grantor was the owner of certain real property located in the City of Birmingham, Alabama, identified as the Avondale Property situated at 4121 Third Avenue South, in Jefferson County, Alabama, (hereinafter "the Property"). The property which was conveyed to Grantor by deed dated February 13, 2025, and recorded in the Office of the Judge of Probate for Jefferson County, Alabama, in Deed Book 243 at Page 89;

WHEREAS, the Property is more particularly described as the following:

BEGINNING AT A NORTHWEST CORNER OF LOT 2-A OF SAID AVONDALE RESURVEY OF BLOCK 13. SAID POINT BEING A MAG NAIL WITH WASHER ON THE SOUTHEAST RIGHT OF WAY OF 3RD AVENUE SOUTH; THENCE CONTINUE ALONG SAID RIGHT OF WAY, RUN N 59°53'55" E FOR A DISTANCE OF 190.03 FEET TO A 3/4" CRIMP PIPE; THENCE CONTINUE ALONG SAID RIGHT OF WAY, RUN N 59°45'56" E FOR A DISTANCE OF 50.02 FEET TO A 3/4" PIPE, SAID POINT BEING AT THE INTERSECTION OF THE SOUTHEAST RIGHT OF WAY OF 3RD AVENUE NORTH WITH THE SOUTHWEST RIGHT OF WAY OF 42ND STREET SOUTH: THENCE CONTINUE ALONG SAID 42ND STREET SOUTH RIGHT OF WAY. RUN S 30°01'01" E FOR A DISTANCE OF 139.59 FEET TO A 3/4" CRIMP PIPE, SAID POINT BEING AT THE INTERSECTION OF THE SOUTHWEST RIGHT OF WAY OF 42ND STREET SOUTH WITH THE NORTHWEST RIGHT OF WAY AN ALLEY: THENCE CONTINUE ALONG SAID ALLEY RIGHT OF WAY, RUN S 59°28'05" W FOR A DISTANCE OF 49.64 FEET TO A 5/8" CAPPED REBAR STAMPED "SOUTHERN CROSS CA 1050"; THENCE CONTINUE ALONG SAID ALLEY RIGHT OF WAY, RUN S 59°55'31" W FOR A DISTANCE OF 189.92 FEET TO A 5/8" CAPPED REBAR: THENCE LEAVING SAID ALLEY RIGHT OF WAY, RUN N 30°12'51" W FOR A DISTANCE OF 139.76 FEET TO THE POINT OF BEGINNING. SAID LOT 2-A BEING. 0.77 ACRES, MORE OR LESS.

WHEREAS, this instrument is an Environmental Covenant developed and executed pursuant to the Act and the regulations promulgated thereunder;

WHEREAS, bromomethane has been detected in groundwater, on the Property:

WHEREAS, the selected "remedial action" for the Property, which has now been implemented, providing in part, for the following actions:

Placement of a restriction on the entire Property to prevent the installation of a water production well for the use of groundwater for potable or irrigation purposes.

WHEREAS, pursuant to the Voluntary Cleanup Plan approved by ADEMs Voluntary Cleanup Program, on DATE (the Remedial Action Plan was approved), the Grantor and assignees agreed to perform operation and maintenance activities at the Property to restrict the use of groundwater due to the presence of bromomethane;

WHEREAS, the Voluntary Cleanup Plan requires institutional controls to be implemented to address the effects of bromomethane in groundwater by restricting the use of the Property and the activities on the Property;

WHEREAS, hazardous wastes, hazardous constituents, hazardous substances, pollutants, or other contaminants remain on the Property, specifically contamination has occurred in groundwater and the following contaminant(s) remain at the site: bromomethane;

WHEREAS, the purpose of this Covenant is to ensure protection of human health and the environment by placing restrictions on the Property to reduce the risk to human health to below the target risk levels for those hazardous wastes, hazardous constituents, hazardous substances, pollutants, or contaminants that remain on the Property;

WHEREAS, further information about the groundwater restriction on the property may be obtained by contacting Chief, Land Division, Alabama Department of Environmental Management ("ADEM"), or his or her designated representative, at 1400 Coliseum Boulevard, Montgomery, Alabama, 36110; and

WHEREAS, the Administrative Record concerning the Property is located at:

The Kelsey 1 Sansome Street, Suite 3500 San Francisco, CA 94104

and

Alabama Department of Environmental Management 1400 Coliseum Boulevard Montgomery, Alabama 36110

NOW, THEREFORE, Grantor hereby grants this Environmental Covenant to ADEM and the identified Holders, and declares that the Property shall hereinafter be

bound by, held, sold, used, improved, occupied, leased, hypothecated, encumbered, and/or conveyed subject to the following requirements set forth in paragraphs 1 through 3 below:

1. **DEFINITIONS**

Owner. "Owner" means the GRANTOR, its successors and assigns in interest.

2. **USE RESTRICTIONS**

Any deviation from the following use restrictions requires prior written approval from ADEM through modification of this covenant:

The use of groundwater for potable or irrigation purposes is prohibited.

3. **GENERAL PROVISIONS**

- A. Restrictions to Run with the Land. This Environmental Covenant runs with the land pursuant to Ala. Code § 35-19-5, as amended; is perpetual, unless modified or terminated pursuant to the terms of this Covenant pursuant to Ala. Code § 35-19-9, as amended; is imposed upon the entire Property unless expressly stated as applicable only to a specific portion thereof; inures to the benefit of and passes with each and every portion of the Property; and binds the Owner, the Holders, all persons using the land, all persons, their heirs, successors and assigns having any right, title or interest in the Property, or any part thereof who have subordinated those interests to this Environmental Covenant, and all persons, their heirs, successors and assigns who obtain any right, title or interest in the Property, or any part thereof after the recordation of this Environmental Covenant.
- B. Notices Required. In accordance with Ala. Code § 35-19-4(b), as amended, the Owner shall send written notification, pursuant to Section J, below, following transfer of a specified interest in, or concerning proposed changes in use of, applications for building permits for, or proposals for any site work affecting the contamination on, the Property. Said notification shall be sent within fifteen (15) days of each event listed in this Section.
- C. Registry/Recordation of Environmental Covenant; Amendment; or Termination. Pursuant to Ala. Code §3 5-19-12(b), as amended, this Environmental Covenant and any amendment or termination thereof, shall be contained in ADEM's registry for environmental covenants. After an environmental covenant, amendment, or termination is filed in the registry, a notice of the covenant, amendment, or termination may be recorded in the land records in lieu of recording the entire covenant in compliance with § 35-19-12(b), as amended. Grantor shall be responsible for filing the

- Environmental Covenant within thirty (30) days of the final required signature upon this Environmental Covenant.
- D. <u>Right of Access</u>. The Owner hereby grants ADEM; ADEM's agents, contractors and employees; the Owner's agents, contractors and employees; and any Holders the right of access to the Property for implementation or enforcement of this Environmental Covenant.
- F. <u>ADEM Reservations</u>. Notwithstanding any other provision of this Environmental Covenant, ADEM retains all of its access authorities and rights, as well as all of its rights to require additional land/water use restrictions, including enforcement authorities related thereto.
- G. <u>Representations and Warranties</u>. Grantor hereby represents and warrants to the other signatories hereto:
 - That the Grantor has the power and authority to enter into this Environmental Covenant, to grant the rights and interests herein provided and to carry out all obligations hereunder;
 - ii) That the Grantor is the sole owner of the Property and holds fee simple title which is free, clear and unencumbered;
 - iii) That the Grantor has identified no other parties that hold any interest in the Property.
 - iv) That the Grantor has identified all other parties that hold any interest (e.g., encumbrance) in the Property and notified such parties of the Grantor's intention to enter into this Environmental Covenant;
 - v) That this Environmental Covenant will not materially violate, contravene, or constitute a material default under, any other agreement, document, or instrument to which Grantor is a party, by which Grantor may be bound or affected;
 - vi) That this Environmental Covenant will not materially violate or contravene any zoning law or other law regulating use of the Property;
 - vii) That this Environmental Covenant does not authorize a use of the Property which is otherwise prohibited by a recorded instrument that has priority over the Environmental Covenant.
- H. <u>Compliance Enforcement</u>. In accordance with <u>Ala. Code</u> § 35-19-11(b), as amended, the terms of the Environmental Covenant may be enforced by the parties to this Environmental Covenant; any person to whom this Covenant

expressly grants power to enforce; any person whose interest in the real property or whose collateral or liability may be affected by the alleged violation of the Covenant; or a municipality or other unit of local government in which the real property subject to the Covenant is located, in accordance with applicable law. The parties hereto expressly agree that ADEM has the power to enforce this Environmental Covenant. Failure to timely enforce compliance with this Environmental Covenant or the use or activity limitations contained herein by any person shall not bar subsequent enforcement by such person and shall not be deemed a waiver of the person's right to take action to enforce any non-compliance. Nothing in this Environmental Covenant shall restrict ADEM, or the Grantor, from exercising any authority under applicable law.

- I. <u>Modifications/Termination</u>. Any modifications or terminations to this Environmental Covenant must be made in accordance with <u>Ala. Code</u> §§ 35-19-9 and 35-19-10, as amended.
- J. <u>Notices</u>. Any document or communication required to be sent pursuant to the terms of this Environmental Covenant shall be sent to the following persons:

ADEM

Chief, Land Division Alabama Department of Environmental Management 1400 Coliseum Boulevard Montgomery, AL 36110

<u>Grantor</u>

Micaela Connery CEO The Kelsey 1 Sansome Street, Suite 3500 San Francisco, California 94104

Holder(s) or Other Applicable Party(ies)

Kathy Laborde Manager The Kelsey Avondale, LP 1626A Oretha Castle Haley Boulevard New Orleans, Louisiana 70113

- K. No Property Interest Created in ADEM. This Environmental Covenant does not in any way create any interest by ADEM in the Property that is subject to the Environmental Covenant. Furthermore, the act of approving this Environmental Covenant does not in any way create any interest by ADEM in the Property in accordance with Ala. Code § 35-19-3(b), as amended.
- L. <u>Severability</u>. If any provision of this Environmental Covenant is found to be unenforceable in any respect, the validity, legality, and enforceability of the remaining provisions shall not in any way be affected or impaired.
- M. <u>Governing Law</u>. This Environmental Covenant shall be governed by and interpreted in accordance with the laws of the State of Alabama.
- N. Recordation. In accordance with Ala. Code § 35-19-8(a), as amended, Grantor shall record this Environmental Covenant and any amendment or termination of the Environmental Covenant in every county in which any portion of the real property subject to this Environmental Covenant is located. Grantor agrees to record this Environmental Covenant within fifteen (15) days after the date of the final required signature upon this Environmental Covenant.
- O. <u>Effective Date</u>. The effective date of this Environmental Covenant shall be the date upon which the fully executed Environmental Covenant has been recorded, in accordance with Ala. Code § 35-19-8(a), as amended.
- P. <u>Distribution of Environmental Covenant</u>. Within fifteen (15) days of filing this Environmental Covenant, the Grantor shall distribute a recorded and date stamped copy of the recorded Environmental Covenant in accordance with <u>Ala. Code</u> § 35-19-7(a), as amended. However, the validity of this Environmental Covenant will not be affected by the failure to provide a copy of the Covenant as provided herein.
- Q. <u>ADEM References</u>. All references to ADEM shall include successor agencies, departments, divisions, or other successor entities.
- R. <u>Grantor References</u>. All references to the Grantor shall include successor agencies, departments, divisions, or other successor entities.
- S. <u>Other Applicable Party(ies)</u>. All references to Other Applicable Party(ies) shall include successor agencies, departments, divisions, or other successor entities.

Property owner has caused this Environmental Covenant to be executed pursuant to The Alabama Uniform Environmental Covenants Act, on this day of, 2025.
IN TESTIMONY WHEREOF , the parties have hereunto set their hands this the day and year first above written.
This Environmental Covenant is hereby approved by The Kelsey this day of, 2025.
By: <u>Micaela Connery, CEO</u> Name & Title Grantor
STATE OF CALIFORNIA)) COUNTY OF SAN FRANCISCO)
in and for said County in said State or Commonwealth, hereby certify that Micaela Connery, whose name as CEO of The Kelsey is signed to the foregoing conveyance and who is known to me, acknowledged before me can this day that, being informed of the contents of the conveyance, (s)he, as such officer and with full authority executed the same voluntarily for and as the act of said California nonprofit public benefit corporation.
Given under my hand this the day of, 2025
Notary Public:
My Commission Expires:

OTHER APPLICABLE PARTY(IES)

This Environmental Covenant is hereby ap day of, 2025.	proved by The Kelsey Avondale, LP this
By: <u>Kathy Laborde, Manager</u> Name & Title	
Holder	
STATE OF LOUISIANA)	
PARRISH OF ORLEANS)	
Commonwealth, hereby certify that Kathy Kelsey Avondale, LP [Party] is signed to the me, acknowledged before me on this day	in and for said County in said State or Laborde, whose name as Manager of The e foregoing conveyance and who is known to that, being informed of the contents of the h full authority executed the same voluntarily lip.
Given under my hand this the day of	, 2025.
No	otary Public:
M	y Commission Expires:

ALABAMA DEPARTMENT OF ENVIRONMENTAL MANAGEMENT

This Environmental Covenant is hereby approved by the State of Alabama this day of, 2025.
By:
Stephen A. Cobb Chief, Land Division Alabama Department of Environmental Management
State of Alabama}
Montgomery, County}
I, the undersigned Notary Public in and for said County and State, hereby certify that Stephen A. Cobb, whose name as Chief, Land Division, Alabama Department of Environmental Management is signed to the foregoing conveyance, and who is known to me, acknowledged before me on this day that, being informed of the contents of the conveyance, he approved the same voluntarily on the day the same bears date and with full authority to do so.
Given under my hand and official seal this day of, 2025.
Notary Public
My Commission Expires:

STATE OF ALABAMA

COUNTY OF JEFFERSON

l,				, Clerk of the Jeffe	erson
County Court, do	certify that	the foregoing Env	ironmental Co	venant <i>[and, if ap</i>	plicable,
attached Subord	ination Agre	eement] was lodge	d in my office	for record, and tha	at I have
recorded it, this	day of		, 2025 in the	e Deed Recordation	n Book
### on Page	<u>+</u> .				
	_				
Cor	unty Clerk				

This instrument prepared by:

The Kelsey 1 Sansome Street, Suite 3500 San Francisco, CA 94104