ENGINEERING ANALYSIS

PROJECT DESCRIPTION

On February 10, 2025, the Department received a permit application from Nucor Tubular Products, Inc. ("NTP Trinity", fka Independence Tube Trinity) requesting that its permitted activities, currently under Air Permit No. 712-0037-X021, be separated from permits associated with the Nucor Steel Decatur, LLC steel mill (Facility No. 712-0037). The NTP Trinity facility is a steel pipe fabrication facility located at 2000 Cooperage Way, Trinity, AL 35673; although the postal code is associated with Trinity, the site is located in Lawrence County rather than Morgan County.

Past determinations for NTP Trinity, including a letter of nonapplicability sent February 11, 2019 and Air Permit No. 712-0037-X021 issued November 22, 2019, treated the NTP Trinity facility as adjacent to, under common control with, and operating within the same industry type as the Nucor Steel Decatur, LLC steel mill. However, these sites are not adjacent, and the Department had erroneously conflated the NTP Trinity site on 2000 Cooperage Way with the NTP Decatur site on 2000 Independence Avenue, which is contiguous with the steel mill. The NTP Decatur site is reportedly a warehouse with no meaningfully emissive processes. After identification of this permitting error through a past inspection, Nucor and the Department agreed to split NTP Trinity activities into separate permits at a later date but to continue to comply with Air Permit No. 712-0037-X021 in the meantime.

The application requests that NTP Trinity be issued synthetic minor operating permits (SMOPs) for the facility's paint line and emergency generator engine.

PROCESS DESCRIPTION

NTP Trinity produces coated steel tubing products from steel coil. Incoming steel coils are uncoiled, flattened into sheets, and cut into strips or slits; these processes are expected to have negligible emissions. Steel slits are then formed into a tube by a mechanical press are then welded together and sprayed with coolant. For tubing made of galvanized steel, the weld seam is remetalized with zinc wire melted and sprayed onto the seam; fumes from this process (as filterable particulate matter) are controlled by a small dust collector. After, tubes are sized, straightened, coated, and cut to specifications. Tubing will be stenciled, treated with rust preventative sprays, or touched up by hand with spray cans as needed.

NTP Trinity has three coating lines: clear-coat, black-coat (large-diameter tubing), and black-coat (smalldiameter tubing). Coating is applied by spray gun in all coating lines, but the small diameter tube coating line is equipped with conventional filters for the overspray. Coated tubes are then oven-dried using an electric induction heating bank.

The site also has a 1,400 gpm cooling tower, a 324 HP diesel engine to run an emergency generator, and parts washers using volatile solvents.

EMISSIONS

The basis for the following calculations is 8,760 hours per year of operation unless otherwise specified. VOC and HAP values for coating, coolant, and other assorted materials used were detailed in SDS forms in the application.

The coating lines' potential to emit (PTE) was calculated assuming 4.9 gal/hr of clear coat and 15.2 gal/hr (or 133,152 gal/yr) of black coat (7.6 gal/hr in the large-diameter line and 7.6 gal/hr in the small-diameter line). These assumptions are more conservative than the assumptions used in the aforementioned 2019 applications (28,000 gallons per year of black-coat and 39,200 gallons per year of clear-coat); per Nucor's semiannual reporting, NTP Trinity typically uses no clear coat, but on a highly productive month will use more than 4,000

gallons of black-coat. Although the use of black-coat and clear-coat are mutually exclusive in NTP Trinity's current process, the application calculated PTE based on max consumption of both. VOC and HAP emissions are conservatively assumed to equal VOC and HAP usage. PM emissions are estimated based on the solids content of the coating in question and assuming 65% spray transfer efficiency or equivalent 35% overspray, uncontrolled in the large-diameter coating line and controlled by 90% via conventional filters in the small-diameter coating line.

Spray paint, inspection dye, and stenciling emissions were estimated in the same manner as the coating line emissions, assuming 65% efficient spray application at the rate (either in gal/hr or gal/yr) specified in the application for each material. Cleaning & washing solvents, rust preventative, and coolant used are all composed of VOC with remainder water, with no solids content.

NTP Trinity estimated remetalization emissions on a mass balance basis, given 445.3 lb/ft³ zinc density and 1,000,000 ft of zinc wire usage per year while assuming a zinc coating with 70% transfer efficiency (or 30% overspray) along the seams of the welded pipes to be 0.1875 inches in width, 120 µm thick, and along an equivalent length of tubes (1,000,000 ft/yr). The concurrent calculations in this analysis correct for NTP Trinity's miscalculation in applying the 30% overspray factor to estimate emissions; while NTP Trinity calculates the mass of the zinc application and estimates emissions to be 30% of that value, I have divided the mass of the zinc application by the transfer efficiency (70%) to estimate the total mass of zinc used and then estimated emissions to be 30% of that value. These calculations rely on the assumption that the length of zinc wire used is greater than or equal to the length of tube seams being remetalized over the course of a year, and emissions from this process may be better estimated in the future by using the gauge of the zinc wire to estimate the mass of the zinc wire used rather than the mass of the zinc layer applied to the tube seams. However, emissions from this process are estimated to be low via either calculation method even before considering the dust collector controlling the zinc fumes from this process.

NTP Trinity estimated engine emissions using AP-42 Chapter 3.3 for small diesel engines at 100 hr/yr. This analysis substitutes those factors with the engine's Tier 3 emission limits where appropriate (assuming a ratio of 2:1 NO_X to NMHC emissions within the engine's combined 4.0 g/kW-hr NO_X + NMHC limit), uses a 500 hr/yr basis, and assumes a 3:2 ratio of filterable to condensable particles.

PM and MHAP emissions from welding were estimated using factors from AP-42 Ch. 12.19 for high-manganese welding wire, and cooling tower emissions were estimated assuming 1,400 gpm recirculation rate, 0.001% drift, and 1,350 ppm total dissolved solids.

Table 1 - Facility PTE before SMOP limitation										
Pollutant (TPY)	Coating Lines	Spray Application	Coolant, Solvents, Etc.	Welder	Remetalization	Cooling Tower	Engine	Total Emissions		
PM _{Total}	52.67	1.16	-	0.013	0.001	0.04	0.027	53.90		
PM _{filt}	52.67	1.16	-	0.013	0.001	0.04	0.016	53.89		
PM _{10,filt}	52.67	1.16	-	0.013	0.001	0.02	0.016	53.87		
PM _{2.5,filt}	52.67	1.16	-	0.013	0.001	0.02	0.016	53.87		
PM _{con}	-	-	-	-	-	-	0.011	0.01		
SO ₂	-	-	-	-	-	-	0.001	0.00		
NO _x	-	-	-	-	-	-	0.357	0.36		
СО	-	-	-	-	-	-	0.464	0.46		
VOC	80.31	11.39	12.73	-	-	-	0.179	104.60		
Total HAPs	1.39	4.49	0.38	0.008	-	-	0.002	6.27		
CO _{2e}	-	-	-	-	-	-	94.119	94.12		

LIMITS

Per NTP Trinity's application, at maximum usage basis the facility would exceed the major source criteria pollutant threshold of 100 TPY VOC. Because of this, NTP Trinity has proposed a <100 TPY VOC SMOP limit

on the facility as a whole, which the Department will enforce as a 95 TPY limit with compliance shown by semiannual VOC usage reports.

Although the facility's potential emissions would not be expected to exceed either the 10 TPY single-species HAP or 25 TPY total HAP major source thresholds under current assumptions for maximum usage levels and product formulations, NTP Trinity has requested a <10 TPY limit on any one HAP species and a <25 TPY limit on all HAP species. The Department will implement 9.5 TPY single-species HAP limit and 24.5 TPY total HAP species SMOP limits alongside the VOC SMOP limit with compliance shown by the same semiannual report.

These facility-wide limits shown by semiannual calculations submitted to the Department would allow for operational flexibility should product formulations or usage levels vary in the future.

REGULATIONS

STATE REGULATIONS

ADEM Admin. Code r. 335-3-4-.01(1)(a)&(b) "Visible Emissions"

Each emission point will be subject to the requirements of this regulation and must not discharge particulate of an opacity greater than twenty percent (20%), as determined by a six-minute average, except that during one six-minute period in any sixty-minute period, the emission point may emit particulate of an opacity no greater than forty percent (40%). Compliance shall be determined in accordance with Method 9 of 40 CFR Part 60, Appendix A-4.

ADEM Admin. Code r. 335-3-6-.11 "Surface Coating" and 335-3-6-.01 "Applicability"

Rule 335-3-6-.11(11)(e)(1-4) applies to the coating of miscellaneous metal parts. However, because the paint line has potential less than 100 TPY and because it is not located in Mobile, Russel, or Etowah County, the exceptions in **Rule 335-3-6-.01(1)(b) & (5)** both apply, respectively. Therefore, the coating lines at NTP Trinity are not subject to this rule.

ADEM Admin. Code r. 335-3-14-.04, "Prevention of Significant Deterioration (PSD) Permitting"

Although Nucor Decatur is currently considered a major stationary source with respect to PSD, previous analyses from the Department considering NTP Trinity to be a part of the same stationary source as Nucor Decatur were erroneous, mistaking NTP Trinity's location for the NTP Decatur location (adjacent to the Nucor Decatur steel mill). NTP Trinity is not adjacent to Nucor Decatur and must be evaluated as a separate source.

Based on the emissions in Table 1, this facility does not exceed the 250 TPY criteria pollutant threshold required to be considered a major stationary source with respect to PSD.

ADEM Admin. Code r. 335-3-14-.06, "Determinations for Major Sources in Accordance with Clean Air Act Section 112(g)"

Because HAP emissions greater than 10 TPY of any single HAP or 25 TPY of any combination of HAPs are not expected from these sources, a 112(g) case by case MACT review would not be necessary.

ADEM Admin. Code r. 335-3-15, "Synthetic Minor Operating Permits" and ADEM Admin. Code r. 335-3-16, "Major Source Operating Permits"

Emissions from the facility, while operating at maximum expected throughput for coating and solvent usage, could exceed the major source threshold of 100 TPY unless restricted. To avoid applicability to the Title V Major Source Operating Permit program under Chapter 16, NTP Trinity has requested <100 TPY VOC, <10 TPY

HAP, and <25 TPY Total HAPs limits as shown by semiannual VOC/HAP usage reporting. The Department will impose 95 TPY VOC, 9.5 TPY HAP, and 24.5 TPY Total HAPs limits to facilitate practical enforcement with protective buffer from the regulatory thresholds. NTP Trinity does currently report VOC/HAP usage via their current Air Permit No. 712-0037-X021 under the Nucor Decatur facility number, and this requirement will not require modification when transferring to the new SMOP.

Class I Area

NTP Trinity is located within 100 km of the Sipsey Wilderness Area. However, the emissions from the proposed paint line are not expected to have a significant impact on the Class I area.

FEDERAL REGULATIONS

40 CFR 60 Subpart A, "General Provisions"

This subpart will be applicable provided that the facility is subject to one of the applicable subparts found under 40 CFR Part 60.

40 CFR 60 Subpart IIII, "Standards of Performance for Stationary Compression Ignition Internal Combustion Engines"

40 CFR Part 60, Subpart IIII "Standards of Performance for Stationary Compression Ignition Internal Combustion Engines" is applicable to all stationary diesel-fueled engines manufactured after 2007. The engine at NTP Trinity, which had not previously been disclosed in applications from Nucor, is a post-2007 model and is therefore subject to NSPS IIII.

Per §60.4205(b), the diesel engine must meet the NMHC+NO_X, CO, and PM standards specified in Appendix I to Part 1039 for engines of the same size range and model year. The 324 HP engine is subject to Tier 3 standards of no more than 4.0 g/hp-hr NMHC+NOX, 3.5 g/kW-hr CO, and 0.20 g/kW-hr PM.

The engine must be certified to meet the applicable emission limits [§60.4211(c)]. The engine must be installed and configured according to the manufacturer's specifications [§60.4211(a)] and must be operated and maintained according to the manufacturer's instructions [§60.4206]. The engine must be equipped with a non-resettable hour meter [§60.4209(a)]. The engine must use diesel fuel that meets the ULSD requirements of 40 CFR §1090.305 [§60.4207(b)], i.e., 15 ppm S.

To qualify as and to show compliance as an emergency engine with respect to Subpart IIII, the conditions under §60.4211(f) must be met, primarily operating less than 100 hours per calendar year during recommended maintenance and less than 50 hours per year during other non-emergency situations.

Per §60.4214(b), NTP Trinity must keep record of the engine's operating hours, time of each operation, and reason to operate (i.e., whether the engine is in emergency or nonemergency service) through a non-resettable hour meter.

40 CFR 63 Subpart A, "General Provisions"

This subpart will be applicable provided that the facility is subject to one of the applicable subparts found under 40 CFR Part 63.

40 CFR 63 Subpart T, "National Emission Standards for Halogenated Solvent Cleaning"

This regulation is applicable to any batch solvent cleaning machine that uses solvents containing greater than 5% halogenated HAPs including methylene chloride, trichloroethylene, etc. by weight. Although the solvent

used in the parts washers at NTP Trinity contains 6% naphthalene HAP by weight, this is not a halogenated HAP as specified under the rule. Therefore, this rule does not apply.

40 CFR 63 Subpart MMMM, "National Emission Standards for Hazardous Air Pollutant for Surface Coating of Miscellaneous Metal Parts and Products"

This regulation is applicable to any new, reconstructed, or existing source that uses 250 gallons per year, or more, of coatings that contain hazardous air pollutants (HAP) in the surface coating of miscellaneous metal parts or products and that is located at a major source of HAP emissions. Since this facility is not a major source of HAP emissions, this subpart would not apply.

40 CFR 63 Subpart ZZZZ – "National Emissions Standards for Hazardous Air Pollutants for Stationary Reciprocating Internal Combustion Engines"

40 CFR Part 63, Subpart ZZZZ "National Emissions Standards for Hazardous Air Pollutants for Stationary Reciprocating Internal Combustion Engines" is applicable to the engine at NTP Trinity. Per §60.6590(c)(6), NTP Trinity shows compliance with Subpart ZZZZ by meeting the requirements of Part 60 Subpart IIII as specified above.

40 CFR 63 Subpart HHHHHH, "National Emission Standards for Hazardous Air Pollutants: Paint Stripping and Miscellaneous Surface Coating Operations at Area Sources"

This subpart is applicable to certain paint-stripping and coating facilities at area sources of HAPs. Though NTP Trinity is an area source, because the paint line would not include stripping paint with methyl chloride [§63.11170(a)(1)], would not apply any coatings to motor vehicles or other mobile equipment [§63.11170(a)(2)], and would not apply coatings containing this subpart's target HAPs (Cr, Pb, Mn, Ni, & Cd) to any other equipment [§63.11170(a)(3)], this subpart is not applicable.

RECOMMENDATIONS

This analysis indicates that the proposed emission sources would meet the requirements of all federal and state rules and regulations. Based on the expected emissions from the facility, I recommend that Nucor Tubular Products – Trinity be issued Synthetic Minor Operating Permit No. 707-0028-X001 for the coating lines and other VOC emitting processes, including the proposed facility-wide SMOP limits and retaining the VOC/HAP semiannual reporting requirements from Air Permit No. 712-0037-X021, as well as Synthetic Minor Operating Permit No. 707-0028-X002 for the emergency diesel engine on site.

I also recommend that Nucor Steel Decatur LLC be informed that Air Permit No. 712-0037-X021 is rescinded and made void, with the same effective date as the issuance date for SMOP No. 707-0028-X001.

May 14, 2025 Date

R. Jackson Rogers, Jr. Industrial Minerals Section Energy Branch Air Division ADEM

TRINITY TUBULAR PRODUCTS, INC. SEPARATE SITE PERMITTING SMOP NO.: 707-0028-X001 & - X002

Coating/Solvent/Other Mat	erial Propertie	25										
Material Description	Density (Ib/gal)	Solids Content (%)	VOC Content (%)	HAP Content (%)	Xylenes Content (%)	Naphthalene Content (%)	Tolune Content (%)	Notes				
Clear Coat	8.54	30.00%	11.83%	0.46%				Quakercoat 2	Quakercoat 189 Clear			
Black Coat	8.55	30.50%	10.30%	0.10%				Quakercoat :	175 CFR Black			
Black Touch-up Paint	6.46	27.00%	52.30%	13.00%	5.00%			Rustoleum F	lat Black			
Inspection Dye	6.49	3.00%	97.00%	70.54%	0.54%	70.00%		Radnor Pene	trant			
Cleaning Solvent	7.49	0.00%	100.00%					SW R6K2S				
White Stenciler	11.43	40.00%	60.00%					Diagraph GS-	3 White			
Coolant	8.35	0.00%	15.00%					Quakercool S	Super Hydro 7	20 & 710 TP		
Entry Stenciler	6.7	6.00%	94.00%	1.00%			1.00%	Diagraph TSC	D-3200 Black			
Washing Solvent	7.9		100.00%	6.00%		6.00%		Safety Kleen	, WD40			
Spray Paint	5.76	,	88.16%	13.53%			13.41%					
Rust Preventative	8.4	0.00%	65.48%	10.00%				Resco Klear	Frey Koate LO			
Process Parameters												
Process	Material		Application Rate (gal/hr)	Operation (hr/yr)	Operation (gal/yr)	Spray Transfer Efficiency (%)	PM Control	PM Efficiency (%)	VOC/HAP Volatilization	VOC/HAP Control	VOC/HAP Efficiency (%)	
Coating Line (clear)	Clear Coat		4.9	8760	42924	65%			100%			
Coating Line (black) large	Black Coat		7.6	8760	66576	65%			100%			
Coating Line (black) small	Black Coat		7.6	8760	66576	65%	Filters	90%	100%			
Spray Touch Up	Black Touch-	up Paint	0.33	8760	2890.8	65%			100%			
Spray Inspection Dye	Inspection D	ye	0.16	8760	1401.6	65%			100%			
Apply Cleaning Solvent	Cleaning Solv	vent			1050				100%			
Spray White Stencil	White Stenci	ler		6240	260	65%			100%			
Spray Black Stencil	Entry Stencil	er		6240	260	65%			100%			
Spray Paint Other	Spray Paint			8760	150	65%			100%			
Apply Coolant	Coolant			6240	8000				100%			
Apply Rust Preventative	Rust Prevent	ative		6240	600				100%	1		
Parts Washers	Washing Solv	vent		8760	2160				25%			
Emissions									Nanhthalene	Nanhthalene		
Process	PM lb/hr	РМ ТРҮ	VOC lb/hr	VOC TPY	HAP lb/hr	HAP TPY	Xylenes Ib/hr	Xylenes Tpy	lb/hr	TPY	Toluene lb/hr	Toluene TPY
Coating Line (clear)	4.39	19.24	4.95	21.68	0.19	0.84						
Coating Line (black) large	6.94	30.38	6.69	29.32	0.06	0.28						
Coating Line (black) small	0.69	3.04	6.69	29.32	0.06	0.28						
Spray Touch Up	0.20	0.88	1.11	4.88	0.28	1.21	0.11	0.47				
Spray Inspection Dye	0.01	0.05	1.01	4.41	0.73	3.21	0.01	0.02	0.73	3.18		
Apply Cleaning Solvent	0.00	0.00	0.90	3.93	0.00	0.00						
Spray White Stencil	0.05	0.21	0.20	0.89	0.00	0.00				<u> </u>		
Spray Black Stencil	0.00	0.02	0.19	0.82	0.00	0.01					0.00	0.01
Spray Paint Other	0.00	0.00	0.09	0.38	0.01	0.06				<u> </u>	0.01	0.06
Apply Coolant	0.00	0.00	1.14	5.01	. 0.00	0.00						
Apply Rust Preventative	0.00	0.00	0.38	1.65	0.06	0.25				<u> </u>		
Parts Washers	0.00	0.00	0.49	2.13	0.03	0.13			0.03	0.13		
Total	12.29	53.82	23.84	104.42	1.43	6.26	0.11	0.49	0.76	3.31	0.02	0.07

TRINITY TUBULAR PRODUCTS, INC. SEPARATE SITE PERMITTING SMOP NO.: 707-0028-X001 & - X002

$ \begin{split} \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$			DATA	À:			1									
$\begin{split} \begin{split} \text{EACHE PROFE} & = & \textbf{Disc.} & UCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC$				Engine						AF	-42 Emiss	sion Facto	ors			
UPUEL BLOWTENT * 19.800 Park Park 80/r No. CO VOC VOC Park 80/r No. CO VOC VOC Park 80/r No. CO VOC VOC Park SOURCE	ENGINE TY	ΡE	=	Die	Diesel (Ib/MMBt					MBtu)						
UPLE SOUTENT ** 13.00 perm Descet 2020:1 2020:1 3.000:1 1.000:1 2.000:1 2.000:1 3.000:1 1.000:1 2.000:1 2.000:1 3.000:1 1.000:1 2.000:1 3.000:1 1.000:1 2.000:1 3.000:1 1.000:1 2.000:1 3.000:1 1.000:1 2.000:1 3.000:1 1.000:1 2.000:1 3.000:1 1.000:1 2.000:1 3.000:1 1.000:1 2.000:1 3.000:1 1.000:1 2.000:1 0.000	FUEL HEAT	CONTENT	=	19,300	Btu/lb		Туре	PM _{filt}	PM _{con} ²	SO21	NOx	со	VOC	CH ₂ O	Other H	IAPs
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	FUEL S CO	NTENT	=	15.00	ppmm		Diesel	3.10E-1	2.02E-1	[By Mass]	4.41E+0	9.50E-1	3.50E-1	1.18E-3	2.69	E-3
ENCIDE OF HOURS = 500 H 4510 7.715 9.9153 5.80144 2.7102 2.916-2 2.016-2 REVISIPE RATIO = 7.000 PH-Ar 43.80 5.80154 5.80154 2.7000 2.7000 2.906-2 2.005-2 2.906-2 2.005-2 2.906-2 2.005-2 1.900-2 2.900-2 2.906-2 1.900-2 2.900-2 2.900-2 2.900-2 2.900-2 1.900-2 2.900-2 1.900-2 2.900-2 1.900-2 2.900-2 1.900-2 2.900-2 1.900-2 2.900-2 1.900-2 2.900-2 1.900-2 2.900-2 1.900-2 2.900-2 1.900-2 2.900-2 1.900-2 2.900-2 1.900-2 2.900-2 1.900-2 2.900-2 1.900-2 2.900-2 1.900-2 2.900-2 1	MAXIMUM E	NGINE HP	=	324	HP		2SLB	3.84E-2	9.91E-3	5.88E-4	3.17E+0	3.86E-1	1.20E-1	5.52E-2	2.53	E-2
	ENGINE OF	PHOURS	=	500	Hr		4SLB	7.71E-5	9.91E-3	5.88E-4	4.08E+0	3.17E-1	1.18E-1	5.28E-2	2.10	E-2
BRAKE.SPECIFIC PULL CONSUMPTON PLL CONSUMPT	ENGINE RA	ATING	=	2.27	MMBtu/h		4SRB	9.50E-3	9.91E-3	5.88E-4	2.27E+0	3.72E+0	2.96E-2	2.05E-2	1.208	-2
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	BRAKE-SPE	ECIFIC SUMPTION	=	7,000	Btu/ HP-hr				40 Greenh	CFR Part ouse Gas	98 Subpa Emission	<u>rt C</u> Factors			GW	298
BitsSign FACTORS MANUFACTURERS EF (mg/MBlu) Ch 25 LED Uncontrolled Cartoled Mod GA CAL Ch 25 LED Uncontrolled Cartoled MAD GMAPAR Uncontrolled CAL Ch 25 CO 2 2 GMAPAR GMAPAR Uncontrolled CAL Ch CH 25 OC 1 GMAPAR GMAPAR GMAPAR Uncontrolled CMAPAR Uncontrolled CMAPAR Uncontrolled CMAPAR Uncontrolled CMAPAR GMAPAR Assume 2:1 NOX to NMAC Uncontrolled Uncontrolled CMAPAR GMAPAR Assume 2:1 NOX to NMAC Uncontrolled Unco	CALCULAT	TION BASIS	-	Lin	controll	ed				Tables (C-1 & C-2				CO ₂ =	1
	EMISSION	FACTORS	_	M	ANUFACT	URER'S E	F	1		(ka/N	1MBtu)				CH₄=	25
NO, = 2 9HP-hr of Market of Market (C) Disest 0.0006 75.04 0.003 0.001 CO = 2.6 9HP-hr of Market (CH ₂ O 0 0.0006 63.06 0.001 CH ₂ O = 0.9HP-hr of Market (CH ₂ O 0.9HP-hr of Market (CH ₄) 0.0006 61.26 0.003 PM = 0.9HP-hr of Market (CH ₄) 0.15 9HP-hr of Market (CH ₄) 0.15 9HP-hr of Market (CH ₄) 0.15 9HP-hr of Market (CH ₄) 0.000 0.6 PM ₄₀₀ (P) PM = 0.15 324.00 HP 1.1b 500 Hr 170n 0.4 0.4 PM ₆₀₀ (P) PM 0.15 324.00 HP 1.1b 500 Hr 170n 0.4 9HP ₆₀₀ (P) = 0.011 Tons Sop 51.8135 Ib fuel 2.27 MMBtu 800 Hs 170n 64.08 Ib SO2 15 ppmm S = 0.00 Tons Year 200 Lb 500 Hr 170n S.F. = 0.46 Tons Year Oc 2.6 g 324.00 HP 1.1b 500 Hr 170n S.F. = 0.46 Tons	<u>(E</u>	<u>F)</u>		Uncont	trolled	Cont	olled			N₂O		СН₄				20
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	N	Ox	=	2	a/HP-hr		a/HP-hr		Diesel	0.0006	75.04	0.003				
VOC = 1 0.4P-Ar 0.4A-Ar 0.4P-Ar 0.4A-Ar 0.4P-Ar 0.4A-Ar 0.4A-A	с	:0	=	2.6	a/HP-hr		a/HP-hr		NG	0.0001	53.06	0.001				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	VC	C	=	1	g/HP-hr		g/HP-hr		LPG	0.0006	62.72	0.003				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	СН	120	-		a/HP-hr		a/HP-hr		Propane	0.0006	61.46	0.003				
CH. = g/HP/hr assume 2:1 NOX to NMHC Uncontrolled 324 HP Engine Emissions Calculations Uncontrolled PM.m 0.15 g 324.00 HP 1 Lb 500 Hr 1 Ton 0.6 PMm/PT = Uncontrolled PM.m 0.15 g 324.00 HP 1 Lb 500 Hr 1 Ton 0.4 PMm/PT = 0.011 Tons Year PM.m 0.15 g 324.00 HP 1 Lb 500 Hr 1 Ton 0.4 PMm/PT = 0.011 Tons Year Sol 518135 lb fuel 2.27 MMBtu 500 Hr 1 Ton 64.08 lb Sol 5100000 lotal ppm = 0.00 Tons Year Nok 2 g 324.00 HP 1 Lb 500 Hr 1 Ton S.F. = 0.36 Tons Voc 1.00 g 324.00 HP 1 Lb 500 Hr 1 Ton S.F. = 0.46 Tons Voc 1.00 g 324.00 HP 1 Lb 500 Hr 1 Ton S.F. = 0.46 Tons Voc 0.00 G 324.00 HP	P	M	=	0.15	a/HP-hr		a/HP-hr									
Uncontrolled 324 HP Engine Emissions Calculations PML 0.15 g 324.00 HP 1 Lb 500 Hr 1 Ton 0.6 PML/PT = Uncontrolled PML HP-Hr 453.6 g Year 2000 Lb PML/PT = 0.016 Tons Year PML HP-Hr 453.6 g Year 2000 Lb PML/PT = 0.011 Tons Year SO2 51.8135 lb fuel 2.27 MMBtu 500 Hr 1 Ton 64.08 lb SO2 15 ppmm S = 0.00 Tons Year NOX 2 g 324.00 HP 1 Lb 500 Hr 1 Ton S.F. = 0.36 Tons Year NOX 2 g 324.00 HP 1 Lb 500 Hr 1 Ton S.F. = 0.46 Tons Year 1 Lb 500 Hr 1 Ton S.F. = 0.46 Tons Year Year 2000 Lb S.F. = 0.46 Tons Year Year Yoc 1.00 g 324.00 HP 1 Lb 500 Hr	C	H₄	=		a/HP-hr		a/HP-hr	assume	2:1 NOX	to NMHC						
PM.(m) 0.15 g 324.00 HP 1 Lb 500 Hr 1 Ton 0.6 PM(m)PT Uncontrolled 0.016 Tons PM.as HP-Hr 453.6 g Year 2000 Lb Year 0.011 Tons Year PM.as HP-Hr HP-Hr 453.6 g Year 2000 Lb 0.4 PM(m) = 0.011 Tons So 51.8135 lb fuel 2.27 MMBtu 500 Hr 1 Ton 64.08 lb SO2 15 ppmm S = 0.00 Tons Nox 2 g 324.00 HP 1 Lb 500 Hr 1 Ton S.F. = 0.00 Tons Voc HP-Hr 453.6 g Year 2000 Lb S.F. = 0.36 Tons Voc HP-Hr 453.6 g Year 2000 Lb S.F. = 0.36 Tons Voc HP-Hr 453.6 g Year 2000 Lb S.F. = 0.46 Tons Voc HP-Hr 453.6 g Year 2000 Lb S.F. = 0.46 Tons Voc HP-Hr 453.6 g			1	Une	controlled	324 HP E	ngine Emi	ssions Ca	alculations	5						
PM.ys 0.15 g 324.00 HP 1 Lb 500 Hr 1 Ton 0.6 PM _{HH} /PT = 0.016 Tons PM.gs HP-Hr 453.6 g Year 2000 Lb PM_ss = 0.011 Tons PM.gs 0.15 g 324.00 HP 1 Lb 500 Hr 1 Ton 0.4 PM_ss/P = 0.011 Tons PM.gs HP-Hr 453.6 g Year 2000 Lb Soo 15 pmm S = 0.011 Tons Soo 51.8135 lb fuel 2.27 MMBtu 500 Hr 1 Ton 64.08 lb SO2 15 ppmm S = 0.036 Tons Year 2 g 324.00 HP 1 Lb 500 Hr 1 Ton S.F. = 0.36 Tons Year 2 g 324.00 HP 1 Lb 500 Hr 1 Ton S.F. = 0.46 Tons Year 2000 Lb 2.27 MMBtu 500 Hr 1 Ton S.F. = 0.46 Tons Year 2000 Lb 2.27 MMBtu 500 Hr 1 Ton S.F. = 0.46 Tons <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Uncont</td><td>rolled</td><td></td><td></td></t<>													Uncont	rolled		
PMum HP-Hr 453.6 g Year 2000 Lb m = Year PMum HP-Hr 453.6 g Year 2000 Lb 0.4 PMum/P = 0.011 Tons PMum HP-Hr 453.6 g Year 2000 Lb 30.4 PMum/P = 0.011 Tons S02 51.8135 lb fuel 2.27 MMBtu 500 Hr 1 Ton 64.08 lb SO2 15 ppmm S = 0.00 Tons MME HP-Hr 453.6 g Year 2000 Lb 32.06 lb S 1000000 total ppm = 0.06 Tons NOx 2 g 324.00 HP 1 Lb 500 Hr 1 Ton S.F. = 0.36 Tons VOC HP-Hr 453.6 g Year 2000 Lb = 0.46 Tons VOC 10.0 g 324.00 HP 1 Lb 500 Hr 1 Ton S.F. = 0.46 Tons VOC 10.0 g 324.00 HP 1 Lb 500 Hr 1 Ton S.F. = 0.48 Tons VOC 10.0 g 32		0.15	g	324.00	HP	1 Lb	500	Hr	1 Ton	0.6	PM _{filt} /PT		0.016	Tons		
PM.con 0.15 g 324.00 HP 1 Lb 500 Hr 1 Ton 0.4 PM.con/P = 0.011 Tons SQ. 51.8135 lb fuel 2.27 MMBtu 500 Hr 1 Ton 64.08 lb SO2 15 ppmm S = 0.00 Tons NOx 2 g 324.00 HP 1 Lb 500 Hr 1 Ton 64.08 lb SO2 15 ppmm S = 0.00 Tons NOx 2 g 324.00 HP 1 Lb 500 Hr 1 Ton S.F. = 0.36 Tons CO 2.6 g 324.00 HP 1 Lb 500 Hr 1 Ton S.F. = 0.46 Tons Voc HP-Hr 453.6 g Year 2000 Lb = 0.46 Tons Voc HP-Hr 453.6 g Year 2000 Lb = 0.48 Tons Voc HP-Hr 453.6 g Year 2000 Lb = 0.00 Tons War Hr Year 2000 Lb = 0.00 Tons Year Oo 0.012 lb 2.27 MMBtu FooH Hr 1 T	PM _{1,filt}	HP	-Hr			453.6 a	Ye	ear	2000 Lb		T IIC	=	Yea	ar		
PMcon 0.15 g 324.00 HP 1 Lb 500 Hr 1 Ton 0.4 PMcon/P = 0.011 Tons S0, 51.8135 b fuel 2.27 MMBtu 500 Hr 1 Ton 64.08 lb SO2 15 ppmm S = 0.00 Tons Nox 2 g 324.00 HP 1 Lb 500 Hr 1 Ton 64.08 lb SO2 15 ppmm S = 0.00 Tons Nox 2 g 324.00 HP 1 Lb 500 Hr 1 Ton S.F. = 0.36 Tons C0 2.6 g 324.00 HP 1 Lb 500 Hr 1 Ton S.F. = 0.46 Tons Voc HP-Hr 453.6 g Year 2000 Lb S.F. = 0.46 Tons Voc 1.00 g 324.00 HP 1 Lb 500 Hr 1 Ton S.F. = 0.46 Tons Voc 1.00 g 324.00 HP 1 Lb 500 Hr 1 Ton S.F. = 0.46 Tons Voc 1.00 g 324.00 HP 1 Lb 500 Hr 1 Ton S.F. =<		-				,										
PM.on HP-Hr 453.6 g Year 2000 Lb m = Year S0, 51.8135 lb fuel 2.27 MMBtu 500 Hrs 1 Ton 64.08 lb SO2 15 ppmm S = 0.00 Tons MMBtu Hr Year 2000 Lb 32.06 lb S 1000000 total ppn = 0.36 Tons NOx 2 g 324.00 HP 1 Lb 500 Hr 1 Ton S.F. = 0.46 Tons HP-Hr 453.6 g Year 2000 Lb S.F. = 0.46 Tons Year CO 2.6 g 324.00 HP 1 Lb 500 Hr 1 Ton S.F. = 0.46 Tons HP-Hr 453.6 g Year 2000 Lb Fear 0.01 Tons Year Voc 1.00 g 324.00 HP 1 Lb 500 Hr 1 Ton S.F. = 0.46 Tons HP-Hr 2.27 MMBtu 500 Hr 1 Ton S.F. = 0.00 Tons G0.00 0007 lb 2.27 MMBtu No So0 Hr		0.15	g	324.00	HP	1 Lb	500	Hr	1 Ton	0.4	PM _{con} /P		0.011	Tons		
So, $\frac{51.8135 \text{ lbs fuel}}{MMBtu}$ 2.27 MMBtu 500 Hrs 1 Ton 64.08 lbs SO2 15 ppmm S 1000000 total ppm $=$ No, $\frac{2}{9}$ 324.00 HP 1 Lb 500 Hr 1 Ton $S.F.$ HP.Hr $=$ 0.00 Tons Year No, $\frac{2}{9}$ 324.00 HP 1 Lb 500 Hr 1 Ton $S.F.$ HP.Hr $=$ 0.06 Tons Year Voc 1.00 g 324.00 HP 1 Lb 500 Hr 1 Ton $S.F.$ HP.Hr $=$ 0.46 Tons Year Voc 1.00 g 324.00 HP 1 Lb 500 Hr 1 Ton $S.F.$ HP.Hr $=$ 0.46 Tons Year Voc 1.00 g 324.00 HP 1 Lb 500 Hr 1 Ton $S.F.$ HP.Hr $=$ 0.018 Tons Year OU 0.001 Ib $2.27 MMBtu$ $500 Hr 1.10231 Tons = 93.80 Tons$	PM _{con}	HP-	-Hr			453.6 g	Ye	ear	2000 Lb	000 Lb	0011	- =	Yea	ar		
SO2 51.8135 lb fuel 2.27 MMBtu 500 Hr 1 Ton 64.08 lb SO2 15 ppmm S = 0.00 Tons MMBtu Hr Year 2000 Lb 32.06 lb S 1000000 total ppr = 0.36 Tons NOx 2 g 324.00 HP 1 Lb 500 Hr 1 Ton S.F. = 0.36 Tons HP-Hr 453.6 g Year 2000 Lb S.F. = 0.46 Tons Year CO 2.6 g 324.00 HP 1 Lb 500 Hr 1 Ton S.F. = 0.46 Tons Year 324.00 HP 1 Lb 500 Hr 1 Ton S.F. = 0.18 Tons Year 453.6 g Year 2000 Lb Ton S.F. = 0.00 Tons HP-Hr 453.6 g Year 2000 Lb S.F. = 0.00 Tons MMBtu hr Year 2000 Lb S.F. = 0.00 Tons Year MMBtu hr Year 2000 Lb S.F. <t< td=""><td></td><td></td><td></td><td></td><td></td><td>Ĵ</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>						Ĵ										
MMBtu Hr Year 2000 Lb 32.06 lb S 1000000 total ppm Year NOx 2 g 324.00 HP 1 Lb 500 Hr 1 Ton S.F. = 0.36 Tons HP-Hr 453.6 g Year 2000 Lb = 0.36 Tons Year CO 2.6 g 324.00 HP 1 Lb 500 Hr 1 Ton S.F. = 0.46 Tons VOC 1.00 g 324.00 HP 1 Lb 500 Hr 1 Ton S.F. = 0.46 Tons VOC 1.00 g 324.00 HP 1 Lb 500 Hr 1 Ton S.F. = 0.46 Tons VOC 1.00 g 324.00 HP 1 Lb 500 Hr 1 Ton S.F. = 0.46 Tons HP-Hr 453.6 g Year 2000 Lb = 0.00 Tons Year OO 0.0012 lb 2.27 MMBtu 500 Hr 1 Ton S.F. = 0.00 Tons MMBtu Hr MBtu Kg Year 1.10231 Tons<	SO2	51.8135	lb fuel	2.27	MMBtu	500 Hrs	1 Ton	64.08	lb SO2	15	ppmm S	=	0.00	Tons		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		MM	Btu	Н	r	Year	2000 Lb	32.06	lb S	1000000	total ppm		Yea	ar		
NOx 1 HP-Hr 1 LD 300 Hr 1 Tors 1 Corr $31.$ $=$ 300 Tors 324.00 HP 1 Lb 500 Hr 1 Tor $S.F.$ $=$ 0.46 Tors $78ar$ Voc 1.00 g 324.00 HP 1 Lb 500 Hr 1 Tor $S.F.$ $=$ 0.46 Tors $78ar$ Voc 1 HP-Hr 453.6 g $78ar$ 2000 Lb $S.F.$ $=$ 0.18 Tors $78ar$ Oc 0.001 lb 2.27 MMBtu 500 Hr 1 Tor $S.F.$ $=$ 0.000 Tors $78ar$ HAPs MMBtu Hr Year 2000 Lb 1 Tor 93.80 Tors 9.000 Tors $78ar$ $78ar$ Qo 2.27 MMBtu			a	324.00	цр	116	500	Hr	1 Ton		S E		0.36	Tons		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	NO _X	HP.	9 Hr	324.00	nr	453.6 a	500 Ve	ar	2000 1 h		3.F.	- =	Ve:	ar		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		1 111	-1 11			400.0 g	/ / /		2000 LD				100			
CO HP-Hr 453.6 g Year 2000 Lb - Year VOC 1.00 g 324.00 HP 1 Lb 500 Hr 1 Ton S.F. = 0.18 Tons Year HP-Hr 453.6 g Year 2000 Lb - - Year Year 0.0012 lb 2.27 MMBtu 500 Hr 1 Ton S.F. = 0.00 Tons Year non-CHO 0.0027 lb 2.27 MMBtu 500 Hr 1 Ton S.F. = 0.00 Tons Year MMBtu hr Year 2000 Lb - = 0.00 Tons Year 0.0027 lb 2.27 MMBtu 500 Hr 1 Ton S.F. = 0.00 Tons Year CO2 2.27 MMBtu Hr Ng Year 1 Mo Ton = 93.80 Tons Year HAPS MMBtu kg Year 1 M Ton = 0.00 Tons Year CO2 MMBtu kg Year 1 M Ton =	~~~	2.6	g	324.00	HP 1 Lb	1 Lb	500	Hr	1 Ton		S.F.	_	0.46	Tons		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		HP	-Hr			453.6 g	Ye	ear	2000 Lb			_	Yea	ar		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $								11.	4 7				0.40	T		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	voc	1.00	g	324.00	HP	1 Lb	500	Hr	1 Ion		S.F.	- =	0.18	lons		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		HP-	-Hr			453.6 g	ŶĔ	ear	2000 Lb				fea	ar		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		0.0012	lb	2.27	MMBtu		500	Hr	1 Ton		S.F.		0.00	Tons		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	CH₂O	MM	Btu	h	r		Ye	ear	2000 Lb			=	Yea	ar		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $																
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	non-CH ₂ O	0.0027	lb	2.27	MMBtu		500	Hr	1 Ton		S.F.	- =	0.00	Tons		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	HAPs	MM	Btu	н	r		Ye	ear	2000 Lb				Yea	ar		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		2.07	MMRtu	75.04	ka	0.001 M	atric Tor	500	Hr	1 10221	Tone		02 00	Tone		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	CO ₂	2.27	r	75.04 MM	<u>⊪y</u> Btu	0.001 1/1	a	500 V4	ear	1.10231 1 M	Ton	- =	93.00 Ye:	ar		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		J ''		101101		^	3	/ /		1 101			160			
N20 Hr MMBtu kg Year 1 M Ton $=$ Year CH4 2.27 MMBtu 0.003 kg 0.001 Metric Ton 500 Hr 1.10231 Tons $=$ 0.00 Tons Year Mass Sum Hr MMBtu kg Year 1 M Ton $=$ 0.00 Tons Year Mass Sum Year O Tons $+$ 0.0008 Tons $+$ $=$ 93.81 Tons $=$ 93.81 Tons $=$ Year Y	NO	2.27	MMBtu	0.0006	kg	0.001 M	etric Ton	500	Hr	1.10231	Tons	_	0.00	Tons		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1420	Н	r	MM	Btu	k	g	Ye	ear	1 M	Ton	_	Yea	ar		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			N 40 45 -								-			T		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	CH₄	2.27	MMBtu	0.003	kg	0.001 M	etric Ton	500	Hr	1.10231	Tons	- =	0.00	rons		
93.80 Tons + 0.0008 Tons + 0.0038 Tons = 93.81 Tons () Mass Sum Year Year Year + 0.0008 Tons = 93.81 Tons () () CO2 N2O Contract Contrant Contract Contract		H H	r	MM	ыtu	k	g	Ye	ear	1 M	ıon		Yea	ar		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		03 80	Tons		0 0008	Tons			0 0038	То	ns		93.81	Tons		
Marcol Marcol Marcol Marcol Marcol Marcol Marcol V V N2O V CH4 V V V V 93.80 TPY*1 0.0008 TPY*298 + 0.004 TPY*25 = 94.12 Tons 93.80 V V 0.009 CH4 V V V V 002 N2O CH4 CH4 V V V V V	Mass Sum	33.00 Vo	ar	+	0.0008 V	ear	+		0.0030 V/	j it. Par	010	=		ar		
Mark	Julie Guill	C	0, 0,		T	Year			۰۱ ۲	H ₄			re			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			-			-2~				• •4						
CO2e 93.80 + 0.22 + 0.09 = Year CO2 N2O CH4	CO ₂ e	93.80	TPY*1		0.0008	TPY*298			0.004	TP	Y*25	_	94.12	Tons		
CO ₂ N ₂ O CH ₄		93.	80	+	0	.22	+		0.	09			Yea	ar		
		CC	D ₂			N ₂ O			С	H ₄						

¹ EPA AP-42 factors assume gas to have 2000 gr S/MMScf (at EPA STP). This equates to 3.44 ppmv S, assuming ideal gas. AP-42 factor can be corrected to sulfur value of facility gas by comparing actual sulfur values to EPA reference point. Assume ppmv H₂S = ppmv S (true if H₂S = TRS and TRS is entirely monosulfur compounds).

² EPA AP-42 Ch. 3.3 & 3.4 factors account only for filterable particulate matter. In absence of PMcon factors for engines, applying ratio of PMfilt to PMcon factors from AP-42 Ch. 1.3 (for diesel) to PMfilt factors from Ch. 3.3 & 3.4

Remetalization: mass balance based on seam/application								
	30%	assumed lost overspray						
	70.0%	70.0% transferred as zinc coatin						
c	1000000	ft/yr	wire ft/yr = tube ft/yr?					
iting V×T	0.1875	inch w	0.015625 ft w					
Sea Coa L×V	120	um thick	0.000394 ft thick					
	445.3	lb/ft3	zinc density					
	2739.296	lb/yr	transferred to tube					
	1173.984	lb/yr	lost as emissions					
uncontrolled	0.586992	TPY	uncontrolled					
	0.000587	ТРҮ	99.9% control					

For reference only: Alternative calculations with assumed wire gauge									
Remetaliz	ation: mas	s balance 1 mm wire		Remetalization: mass balance 4 mm wire					
30%	assumed l	ost overspray		30% assumed lost overspray					
1000000	ft/yr	wire usage		1000000	ft/yr	wire usage			
1	mm diam	assumption #1		4	mm diam	assumption #2			
445.3	lb/ft3	zinc density		445.3	lb/ft3	zinc density			
1129.364	lb/yr	uncontrolled		18069.82	lb/yr	uncontrolled			
0.564682	ТРҮ			9.034911	ТРҮ				
0.000565	ТРҮ	99.9% control		0.009035	ТРҮ	99.9% control			