

Alabama Department of Environmental Management

adem.alabama.gov

1400 Coliseum Blvd. 36110-2400 Post Office Box 301463 Montgomery, Alabama 36130-1463 (334) 271-7700 FAX (334) 271-7950

April 4, 2025

Ms. Mary Box c/o The Broadway Group 216 Westside Square Sheffield, Alabama 35661

Dear Ms. Box:

RE: REVIEW OF FOR CORRECTIVE ACTION PLAN (CP12)

JC Box Texaco 400 East 2nd Street & Atlanta Street Sheffield, Colbert County, Alabama Facility I.D. No.: 11732-033-04341 UST Incident No.: UST21-09-05 ADEM File Code: UST210905/CORR09902

The Department has completed a review of the Corrective Action Plan (CAP) dated March 31, 2025 for the above referenced site. **The Plan is approved.** Please prepare Cost Proposal 15 to implement the CAP. Cost Proposal 15 should be uploaded into the appropriate AEPACS schedule by **April 30, 2025**.

If you have any questions regarding this matter, please call 334-271-7704 or email <u>james.robinson@adem.alabama.gov</u>.

Sincerely,

ames Robinson

James Robinson, PG Hydrogeologist UST Corrective Action State Fund Section Groundwater Branch Land Division JLR

Cc: Suzanne Evans, PM Environmental, 717 HWY 67 South, Suite 26, Decatur, AL 35803

Birmingham Office 110 Vulcan Road Birmingham, AL 35209-4702 (205) 942-6168 (205) 941-1603 (FAX) Decatur Office 2715 Sandlin Road, S.W. Decatur, AL 35603-1333 (256) 353-1713 (256) 340-9359 (FAX) Coastal Office 1615 South Broad Street Mobile, AL 36605 (251) 450-3400 (251) 479-2593 (FAX)

Environmental & Engineering Services Nationwide

REVISED CORRECTIVE ACTION PLAN

JC Box Texaco

400 East 2nd Street | Sheffield, Colbert County, Alabama UST21-09-05, Facility ID No. 11732-033-004341, ATTF CP #12 PM Project Number R070.00818.00A.0012

Prepared for:

Mary and Daniel Box c/o The Broadway Group 216 Westside Square Huntsville, Alabama 35801

Prepared by:

PM Environmental, a Pinchin Company 717 Highway 67 South, Suite 26 Decatur, Alabama 35603

ENVIRONMENTAL SERVICES

BUILDING ARCHITECTURE, ENGINEERING & SCIENCE

INDUSTRIAL HYGIENE SERVICES

BROWNFIELDS & ECONOMIC INCENTIVES CONSULTING

Know Your Risk. Take Control. Work with the Experts.

www.pmenv.com

Birmingham 201 Cahaba Valley Pkwy Suite 5 Pelham, AL 35124 f: 877.884.6775 t: 205.986.0270 Decatur 717 Highway 67 South Suite 26 Decatur, AL 35603 f: 877.884.6775 t: 256.353.6222 Florence 4050 Helton Drive Suite 111 Florence, AL 35633 f: 877.884.6775 t: 256.812.6000 Starkville 500 Russell Street Suite 106 Starkville, MS 39759 f: 877.884.6775 t: 800.313.2966

March 31, 2025

James Robinson, Hydrogeologist Alabama Department of Environmental Management Post Office Box 301463 Montgomery, Alabama 36130-1463

RE: Revised Corrective Action Plan

Former JC Box Texaco 400 East 2nd Street Sheffield, Colbert County, Alabama Facility I.D. No. 11732-033-004341 Incident No. UST21-09-05 PM Project No. R070.00818.00A.0012 ATTF Cost Proposal No. 12

Dear Mr. Robinson:

On behalf of Mary and Daniel Box and The Broadway Group, LLC, PM Environmental, a Pinchin Company (PM), is pleased to present this Revised Corrective Action Plan for the above referenced site.

If you have any questions, please feel free to Suzanne Evans in our Florence, Alabama office at (256) 367-0637.

Sincerely,

PM Environmental, a Pinchin Company

Suzanne Evans, P.G. NE E. EL **Project Manager** Alabama P.G. No. 1228 ABAM IC. 1228 SED PROFES

cc. The Broadway Group

Peter S. Bosanic, P.E. Senior Consultant Alabama P.E. No. 29882

PM ENVIRONMENTAL, A PINCHIN COMPANY

RISK WELL MANAGED

PROJECT NO. R070.00818.00A.0012 REVISED CORRECTIVE ACTION PLAN

Site Location:

FORMER JC BOX TEXACO

400 EAST 2ND STREET

SHEFFIELD, COLBERT COUNTY, ALABAMA

FACILITY ID NO. 11732-033-004341

UST RELEASE INCIDENT NO. UST21-09-05

COST PROPOSAL NO. 12

MARCH 31, 2025

Prepared for:

MARY AND DANIEL BOX C/O THE BROADWAY GROUP, LLC 216 WESTSIDE SQUARE HUNTSVILLE, ALABAMA 35801 <u>Trey.Lewis@broadwaygroup.net</u> (256) 533-7287 Prepared by:

PM ENVIRONMENTAL a PINCHIN COMPANY 717 HWY 67 S. SUITE 26 DECATUR, ALABAMA 35603 <u>Suzanne.Evans@pmenv.com</u> (256) 367-0637

TABLE OF CONTENTS

CE	RTII	FICATION PAGE	i
1.0		UST RELEASE FACT SHEET	1
2.0		INTRODUCTION	4
3.0		SUMMARY OF PREVIOUSLY CONDUCTED SITE ASSESSMENTS ACTIVITIES	4
4.0		PROJECT PERSONNEL	5
5.0		SUMMARY OF PREVIOUSLY CONDUCTED CORRECTIVE ACTION ACTIVIITIES	5
6.0		EXPOSURE ASSESSMENT	5
7.0		RATIONALE FOR SELECTION OF BIOSPHERE ORGANIC SOLUTION (BOS) 200+ INJECTION	5
	7.1	Site Characterization	6
	7.2	Site Remediation Goals Based on ARBCA Evaluation Data	6
	7.3		
	7.4	Evaluation of Plume	7
	7.5	Remedial Goals	7
8.0		GROUNDWATER MONITORING PROGRAM	7
9.0		CLEAN-UP GOALS	8
	9.1	Verification of Clean-up Goals	8
10.	0	PROPOSED REPORTING REQUIREMENTS	8
11.	0	CONCLUSIONS AND RECOMMENDATIONS	9

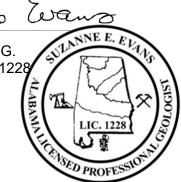
TABLES

- Table 1Summary of Soil Analytical Results
- Table 2
 Summary of Monitoring Well Construction, Groundwater Elevation and Analytical Results
- Table 3
 Summary of Groundwater Intrinsic Parameters Data
- Table 4
 Summary of Mobile Enhanced Multi-phase Extraction Data

LIST OF APPENDICES

- Appendix A Boring Logs
- Appendix B qHRSC Report and Bos 200+ Injection Proposal Figures

Tables Attachment A – Soil Boring Logs Attachment B – RPI Laboratory Analytical Report Attachment C – BOS 200+ Injection Design and Pricing, 3-Phase Partitioning Calculations


- Appendix C Health and Safety Plan
- Appendix D ARBCA Tier II Forms

Revised Corrective Action Plan for JC Box Texaco Located at 400 East 2nd Street, Sheffield, Colbert County, Alabama Facility ID. No. 11732-033-004341; UST Incident No. UST21-09-05 ATTF Cost Proposal No. 12; PM Job No. R070.00818.00A.0012

CERTIFICATION PAGE

"I certify under penalty of law that this Revised Corrective Action Plan and all technical data submitted within were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiring of the person or persons who directly gathered the enclosed information, the information submitted is, to the best of my knowledge and belief, true, accurate and complete. I am aware that there are significant penalties for submitting false information."

Suzanne Evans, P.G. Alabama P.G. No. 1228 Date: <u>03/31/2025</u>

Revised Corrective Action Plan for Former JC Box Texaco Located at 400 East 2nd Street, Sheffield, Colbert County, Alabama Facility ID. No. 11732-033-004341; UST Incident No. UST21-09-05 ATTF Cost Proposal No. 12; PM Job No. R070.00818.00A.0012

CERTIFICATION PAGE

"I certify under penalty of law that this Revised Corrective Action Plan and all technical data submitted within were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiring of the person or persons who directly gathered the enclosed information, the information submitted is, to the best of my knowledge and belief, true, accurate and complete. I am aware that there are significant penalties for submitting false information."

, I.I.

No. 29882 ROFESSION

111111

Peter S. Bosanic, P.E. Alabama P.E. No. 29882 Date: <u>03/31/2025</u>

PM Environmental, a Pinchin Company

1.0 UST RELEASE FACT SHEET AND SITE CLASSIFICATION CHECKLIST UST RELEASE FACT SHEET

GENERAL INFORMATION:

SITE NAME:	JC Box Texaco													
ADDRESS:400 East 2 nd Street (& Atlanta Ave), Sheffield, Colbert County, Alabama														
FACILITY I.D. NO.: 11732-033-004341														
UST INCIDENT NO .:														
RESULTS OF EXPOSURE ASSESSMENT:														
How many private drinking wa	0													
How many private uninking wa														
How many public water supply	0													
Have any drinking water supp	NO													
Is there an imminent threat of	contamination to any drinking water wells?	{ } Yes {X} No												
Have vapors or contaminated	groundwater posed a threat to the public?	{ } Yes {X} No												
Are any underground utilities i	mpacted or imminently threatened by the release?	{ } Yes {X} No												
Have surface waters been imp	{ } Yes {X} No													
Is there an imminent threat of	{ } Yes {X} No													
What is the type of surroundin	Commercial, Residential, & Vacant													

CONTAMINATION DESCRIPTION:

Type of contamination at site: {X} Gasoline, { } Diesel, { } Waste Oil	
{	

Free product present in wells? { } Yes {X} No Maximum thickness measured: Not Detected

Maximum BTEX concentrations measured in soil: 63.2 ppm in MW-3 at 34-36 feet below ground surface (bgs)

Maximum BTEX concentrations measured in groundwater: Historic: 11.8 ppm in RW-3 on 11/14/2024 Most Recent: 11.5 ppm in RW-1 on 02/20/2025

ADEM UST Form - 001 (04/22/93)

Revised Corrective Action Plan for Former JC Box Texaco Located at 400 East 2nd Street, Sheffield, Colbert County, Alabama Facility ID. No. 11732-033-004341; UST Incident No. UST21-09-05 ATTF Cost Proposal No. 12; PM Job No. R070.00818.00A, 0012

ADEM GROUNDWATER BRANCH UST SITE CLASSIFICATION SYSTEM CHECKLIST

Please read all of the following statements and mark either yes or no if the statement applies to your site. If you have conducted a Preliminary or Secondary Investigation, all questions should be answered. Closure site assessment reports may not provide you with all the necessary information, but answer the statements with the knowledge obtained during the closure site assessment.

SITE NAME: SITE ADDRESS:	JC Box Texaco 400 East 2 nd Street Sheffield, Colbert County, Alabama
FACILITY I.D. NO.: UST INCIDENT NO.:	11732-033-004341 UST21-09-05
OWNER NAME: OWNER ADDRESS:	Mary & Daniel Box c/o The Broadway Group 216 Westside Square Huntsville, Alabama 35801
NAME & ADDRESS OF PERSON COMPLETING THIS FORM:	Suzanne Evans, P.G. PM Environmental, a Pinchin Company 717 Highway 67 South, Suite 26 Decatur, Alabama 35603

CLASSIFICATION	DESCRIPTION	YES	NO
CLASS A	IMMEDIATE THREAT TO HUMAN HEALTH, HUMAN SAFETY OR SENSITIVE ENVIRONMENTAL RECEPTOR		
A.1	Vapor concentrations at or approaching explosive levels that could cause health effects, are present in a residence or building.		
A.2	Vapor concentrations at or approaching explosive levels are present in subsurface utility system(s), but no buildings or residences are impacted.		
CLASS B	IMMEDIATE THREAT TO HUMAN HEALTH, HUMAN SAFETY OR SENSITIVE ENVIRONMENTAL RECEPTOR		
B.1	An active public water supply well, public water supply line, or public surface water intake is impacted or immediately threatened.		\boxtimes
B.2	An active domestic water supply well, domestic water supply line or domestic surface water intake is impacted or immediately threatened.		
B.3	The release is located within a designated Wellhead Protection Area I.		
CLASS C	IMMEDIATE THREAT TO HUMAN HEALTH, HUMAN SAFETY OR SENSITIVE ENVIRONMENTAL RECEPTOR		
C.1	Ambient vapor/particulate concentrations exceed concentrations of concern from an acute exposure, or safety viewpoint.		\boxtimes
C.2	Free product is present on the groundwater, at ground surface, on surface water bodies, in utilities other than water supply lines, or in surface water runoff.		

Revised Corrective Action Plan for Former JC Box Texaco Located at 400 East 2nd Street, Sheffield, Colbert County, Alabama Facility ID. No. 11732-033-004341; UST Incident No. UST21-09-05 ATTF Cost Proposal No. 12; PM Job No. R070.00818.00A, 0012

CLASSIFICATION	DESCRIPTION	YES	NO
CLASS D	SHORT TERM THREAT TO HUMAN HEALTH, SAFETY, OR SENSITIVE ENVIRONMENTAL RECEPTORS		
D.1	There is a potential for explosive levels, or concentrations of vapors that could cause acute effects, to accumulate in a residence or other building.		
D.2	A non-potable water supply well is impacted or immediately threatened.		\boxtimes
D.3	Shallow contaminated surface soils are open to public access, and dwellings, parks, playgrounds, day care centers, schools or similar use facilities are within 500 feet of those soils.		
CLASS E	SHORT TERM THREAT TO HUMAN HEALTH, SAFETY, OR SENSITIVE ENVIRONMENTAL RECEPTORS		
E.1	A sensitive habitat or sensitive resources (sport fish, economically important species, threatened and endangered species, etc.) are impacted and affected.		\boxtimes
CLASS F	SHORT TERM THREAT TO HUMAN HEALTH, SAFETY, OR SENSITIVE ENVIRONMENTAL RECEPTORS		
F.1	Groundwater is impacted and a public well is located within 1 mile of the site.		\boxtimes
F.2	Groundwater is impacted and a domestic well is located within 1,000 feet of the site.		\boxtimes
F.3	Contaminated soils and/or groundwater are located within designated Wellhead Protection Areas (Areas II or III).		\boxtimes
CLASS G	SHORT TERM THREAT TO HUMAN HEALTH, SAFETY, OR SENSITIVE ENVIRONMENTAL RECEPTORS		
G.1	Contaminated soils and/or groundwater are located within areas vulnerable to contamination from surface sources.		\boxtimes
GLASS H	SHORT TERM THREAT TO HUMAN HEALTH, SAFETY, OR SENSITIVE ENVIRONMENTAL RECEPTORS		
H.1	Impacted surface water, stormwater or groundwater discharges within 500 feet of a surface water body used for human drinking water, whole body water-contact sports, or habitat to a protected or listed endangered plant and animal species.		
CLASS I	LONG TERM THREAT TO HUMAN HEALTH, SAFETY, OR SENSITIVE ENVIRONMENTAL RECEPTORS		
1.1.	Site has contaminated soils and/or groundwater but does not meet any of the above mentioned criteria.	\boxtimes	

ADDITIONAL COMMENTS:

NAPL last detected at the site in November 2023.

Complete the classification evaluation questions listed above. Upon completion, determine the highest rank of the site (A.1 is the highest rank) based on the statements answered with a yes.

ADEM GROUNDWATER BRANCH SITE CLASSIFICATION CHECKLIST (5/8/95)

2.0 INTRODUCTION

This Revised Corrective Action Development portion of the Corrective Action Plan (CAP) has been prepared in response to a directive provided by the Alabama Department of Environmental Management (ADEM) and was developed in accordance with the CAP requirements of the ADEM Administrative Code R. 335-6-15-29. ADEM requires that corrective actions be taken when soil and/or groundwater contamination is found to exceed the established corrective action limits. Measured concentrations of gasoline constituents in the soils and groundwater at the subject site exceed the established corrective action limits. The objective of this CAP is to:

- Evaluate the current condition of the groundwater and soil contamination at the subject site;
- Evaluate potential remediation technologies which will result in soil and groundwater contaminants below the corrective action limits in an effective and timely matter;
- Address the measures to be taken to control concentrations of COC's above the Alabama Risked Based Corrective Actions Groundwater Resource Protection Target Levels (ARBCA GRP Target Levels); and
- Provide a proposed schedule for a monitoring plan.

The geographic location, site description, site history and status, surrounding development, water well inventory, underground utilities, regional geology and hydrology, local geology and hydrology, groundwater flow and gradient, surface water drainage, and physical soil characteristics were evaluated in the Corrective Action Evaluation and are not being re-evaluated here. Please refer to Figures 1-10 for site vicinity, site diagram, and historical data. Please refer to Tables 1, 2, and 3 for tables summarizing the soil and groundwater data for the site. Please refer to Appendix A for the boring logs associated with the site.

3.0 SUMMARY OF PREVIOUSLY CONDUCTED SITE ASSESSMENTS AND REMEDIAL ACTIVITIES

This section lists the previously conducted site assessments including the Preliminary Investigation, the Secondary Investigation, the Additional Well Installation Report, Groundwater Monitoring Reports, the Tier II Alabama Risk Based Corrective Action Report, and the Corrective Action Evaluation which were summarized in the Corrective Action Evaluation.

Date:	Chronology Of Events
October 28, 2021	Based upon the finding of a Phase II Environmental Site Assessment conducted by PM, The ADEM issued a Notification of Requirement to Conduct Investigative and Corrective Actions to Estes Oil Company.
December 20, 2021	Daniel Box, as tank operator, and his wife Mary Box agreed to be responsible to sign the Cost Proposals and Payment Request.
April 29, 2022	A Preliminary Investigation Report was submitted to ADEM by PM. Cost Proposal-1 (CP-1)
December 6, 2023	An On-site Secondary Site Investigation Report was submitted to ADEM by PM. (CP-2)
July 24, 2023	A Monitoring Well Installation and Groundwater Monitoring Report was submitted to ADEM by PM. (CP-3)
July 24, 2023	A Groundwater Monitoring Report was submitted to ADEM by PM. (CP-4)

Revised Corrective Action Plan for Former JC Box Texaco Located at 400 East 2nd Street, Sheffield, Colbert County, Alabama Facility ID. No. 11732-033-004341; UST Incident No. UST21-09-05 ATTF Cost Proposal No. 12; PM Job No. R070.00818.00A, 0012

Date:	Chronology Of Events
October 30, 2023	A Groundwater Monitoring Report was submitted to ADEM by PM. (CP-5)
March 8, 2024	A Groundwater Monitoring with Monitoring Well Installation Report was submitted to ADEM by PM. (CP-6)
March 15, 2024	The ARBCA Tier 1 and Tier 2 Evaluation was submitted to ADEM by PM. (CP-7)
March 26, 2024	The ARBCA Tier I and Tier II Evaluation was approved by ADEM.
August 19, 2024	A Groundwater Monitoring with MEME Event and Free Product Check Report was submitted to ADEM by PM. (CP-8)
September 5, 2024	The Corrective Action Evaluation was submitted to ADEM by PM. (CP-10)
November 15, 2024	A Groundwater Monitoring with MEME Event and Free Product Check Report was submitted to ADEM by PM. (CP-9)
January 10, 2025	An Additional Well Installation Report was submitted to ADEM by PM. (CP-11)
March 31, 2025	A Quantitative High Resolution Site Characterization Report was submitted to ADEM by PM. (CP-13)
March 31, 2025	A Groundwater Monitoring with MEME Event Report was submitted to ADEM by PM. (CP-14)

4.0 **PROJECT PERSONNEL**

The Project Manager for this project is Suzanne Evans (PG #1228) a Professional Geologist with PM. The Professional Geologist reviewing the CAP is Suzanne Evans, P.G. The Professional Engineer reviewing the CAP is Peter S. Bosanic (P.E. # 29882). The Cost Proposal, Work Plan, and CAP were written by Suzanne Evans. The report was compiled by Marian Edmonson, a staff scientist with PM, and the figures were created by Chad Seely, Brian Bradford, and Matt Miner of PM.

5.0 SUMMARY OF PREVIOUS CONDUCTED CORRECTIVE ACTIONS

PM has conducted four (4) MEME events at this site. Since the last reporting period, a MEME event was conducted on January 9, 2025. In summary, during the 4 MEME events conducted since May 2024, approximately 217 gallons of liquid have been removed with 8.2 equivalent gallons of hydrocarbons. Free product has not been detected at the site during any of these MEME events. A summary of MEME data is included in Table 4.

6.0 EXPOSURE ASSESSMENT

The exposure assessment was completed during the Corrective Action Evaluation and is not being repeated in this CAP Development.

7.0 RATIONALE FOR SELECTION OF BIOSPHERE ORGANIC SOLUTION (BOS) 200+ INJECTION

The following is a discussion of the proposed remedial methods for the impacted soils and groundwater at the subject site.

7.1 Site Characterization

The site characterization was completed during the Corrective Action Evaluation and is not being repeated in this CAP Development.

7.2 Site Remediation Goals Based on ARBCA Evaluation Data

Based on the findings of the 2024 ARBCA Tier I and II evaluation, it is recommended that remedial activities be instituted in order to reach the GRP Target Levels. Therefore, it is proposed that BOS 200+[®] be injected into the area of concern. BOS 200+[®] provides a unique opportunity to utilize the proven technology to effectively remediate petroleum hydrocarbon sites. The technology incorporates the treatment via biological degradation within the BOS 200+[®] matrix as the product incorporates both aerobic and anaerobic microbial processes.

The BOS 200+[®] injection design by AST is described on pages 3 through 6 of the AST report in Appendix B. "The product comes as a fine-grained dry material which consists of carbon, calcium sulfate, nitrate, phosphate, and ammonia in a proprietary blend." The contaminant plume has been divided into four areas (Area A, Area B, Area C, and Area D) each requiring a different treatment interval and concentration of application of BOS 200+®. Within each treatment area borings should be spaced on a six-foot grid (horizontal) with two-foot injection intervals (vertical). The treatment design for the seven borings in Area A is 12 intervals from 32 to 55 feet bgs, for the seven borings in Area B is three intervals from 35 to 40 feet bgs, for the 20 borings in Area C is approximately 15 intervals from 35 to 65 feet bgs, and for the nine borings in Area D is approximately five intervals from 30 to 40 feet. Please refer to Figure 11 for the Proposed Injection Diagram for proposed soil boring locations.

No injection activities will be initiated until after the UIC permit has been approved. Additionally, prior to soil boring advancement the area will be cleared utilizing ground penetrating radar. All borings will be advanced utilizing direct push technology to the appropriate depths. Due to the soil type and cherty zones encountered during previous drilling events a Geoprobe 3200 DT or equivalent will be utilized for the injections.

Daylighting

Daylighting, during injection activities, is surfacing of injected materials. Due to the shallowest depths of the injections in the proposed borings ranging from 30 to 35 feet bgs, daylighting is not anticipated at the site. However, as stated in the AST proposal, daylighting requires recognition and immediate action (injections will stop in that boring at that depth, given a chance to stabilize, and investigate and address the root cause before resuming injections) and proper housekeeping (materials that reach the surface will be cleaned up and drummed for proper disposal later). Drumming and disposal of any material recovered during daylighting is not covered by the AST proposal.

7.3 Receptor Evaluation

The Receptor Evaluation was completed during the Corrective Action Evaluation and is not being repeated in this CAP Development.

7.4 Evaluation of Plume

The plume evaluation was completed during the Corrective Action Evaluation and is not being repeated in this CAP Development.

7.5 Remedial Goals

Groundwater concentrations of benzene have exceeded the ARBCA GRP Target Levels during aroundwater sampling events within the last two years at MW-1 and MW-5. The application of BOS 200+[®] would remediate groundwater at the site to achieve the remedial goals set by the ARBCA Assessment. Groundwater sampling events will be conducted tri-annually with the first sample event being collected four months after the application of the BOS 200+®. The proposed sampling parameters BTEX, MTBE, and naphthalene via EPA Method 8260B, Anions using EPA Method 300.1 Ion Chromatography, and Dissolved Gases using RSK 175 will be submitted for laboratory analysis.

8.0 **GROUNDWATER MONITORING PROGRAM**

Monitoring Wells

Proposed monitoring wells to encompass all wells (MW-1 through MW-11; and RW-1, through RW-4) associated with the site. A copy of the Health and Safety Plan is included in Appendix C.

Determination of Static Water Level/Free Product Thickness

Static water level and free product thickness, if any, measurements will be recorded using an electronic interface probe, accurate to 0.01-foot, from each monitoring well prior to purging and sampling activities. To avoid the potential for cross contamination, the interface probe will be decontaminated by washing and rinsing between each use. All groundwater level measurements will be recorded within a 24-hour time period to avoid any temporal variations which may occur in groundwater flow systems. Measurements will be made from the top of the casing which have been surveyed to feet above mean sea level. After measuring the static water level, sampling personnel will determine the total depth of the monitoring well to evaluate if excessive siltation has occurred within the well and to determine purge volumes.

Sampling Procedures

Sample Collection: Groundwater samples will be collected by personnel who have thoroughly reviewed this monitoring program and are familiar with the sampling procedures. Care will be taken to avoid the potential for cross contamination between samples and to prevent loss of volatiles to the atmosphere. Groundwater samples will be collected using a new disposable bailer with new nylon cord. Prior to sample collection, wells will be purged until a minimum of three well casing volumes are evacuated.

Groundwater sampling will proceed from the least contaminated well to the most contaminated well. Equipment decontamination fluids and purged groundwater evacuated from each monitoring well will be transported to a disposal facility after the groundwater sampling event.

Sample Preservation: Groundwater samples will be collected in the designated size and type of containers required for specific parameters. Sample containers will be filled in such a manner as not to lose any preservative chemicals from the containers.

Sample Shipment: The samples will be stored in an ice-packed cooler and transported, with appropriate trip blanks and chain-of-custody forms, to the laboratory for chemical analysis within the appropriate holding times.

Chain-of-Custody: Chain-of-custody procedures will be used to allow for the tracing of possession and handling of samples from the time of collection to the completion of laboratory analysis. A chain-of-custody form will accompany each set of samples transported to the laboratory.

Detection Limits: Laboratory analysis of all test parameters listed as part of the groundwater monitoring plan will meet or exceed the site specific target levels.

Quality Assurance/Quality Control

Laboratory QA/QC: At least one duplicate sample from a monitoring well within the contaminant plume will be submitted to the laboratory for analysis of VOCs. This will be done to evaluate sampling and analysis reproducibility. The sample duplicate will be labeled Duplicate. Sampling personnel will record the actual well number of the duplicate in their field notes. The duplicate location and sample results will be reported in each monitoring report.

Well Maintenance

The condition of each monitoring well will be evaluated for integrity during each monitoring event. All monitoring wells at the subject site will be clearly labeled, securely capped, locked, and covered with protective casings. ADEM will be notified in advance of replacing or repairing any monitoring well.

9.0 **CLEAN-UP GOALS**

The subject site-specific clean-up goals will be determined by the Rule 335-6-15.32 which allows for the development of alternative corrective action limits through a Risk Assessment (Rule 335-6-15.33) or when the concentrations of groundwater contamination have reached asymptotic levels.

Please refer Appendix D for ARBCA Tier II forms for the GRP Target Levels. Additionally the ARBCA GRP Target Levels can be found on Tables 1 and 2.

9.1 Verification of Clean-up Goals

Verification of clean-up goals sampling will be initiated when the following benchmark criteria has been met during implementation of the remediation plan:

The concentrations in the source area monitoring wells have demonstrated a reduction of contaminants from pre-treatment groundwater concentrations to below the site specific Tier II cleanup criteria for the subject site, for a period of one year (3 tri-annual sampling events).

PROPOSED REPORTING REQUIREMENTS 10.0

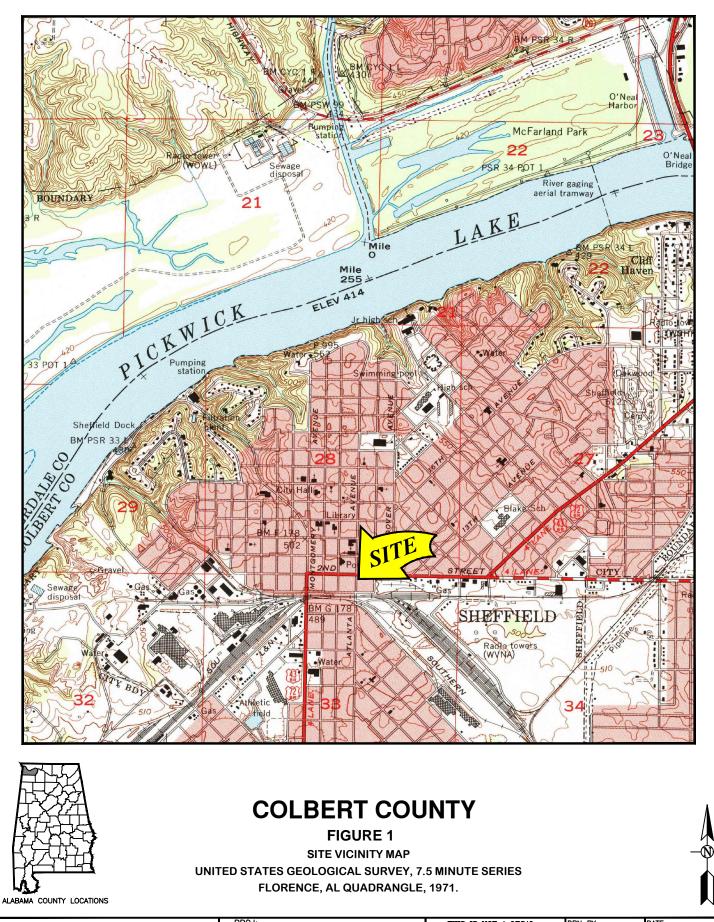
An Injection Implementation Report will be submitted to ADEM upon completion of the injection activities and receipt of the AST Report.

Revised Corrective Action Plan for Former JC Box Texaco Located at 400 East 2nd Street, Sheffield, Colbert County, Alabama Facility ID. No. 11732-033-004341; UST Incident No. UST21-09-05 ATTF Cost Proposal No. 12; PM Job No. R070.00818.00A, 0012

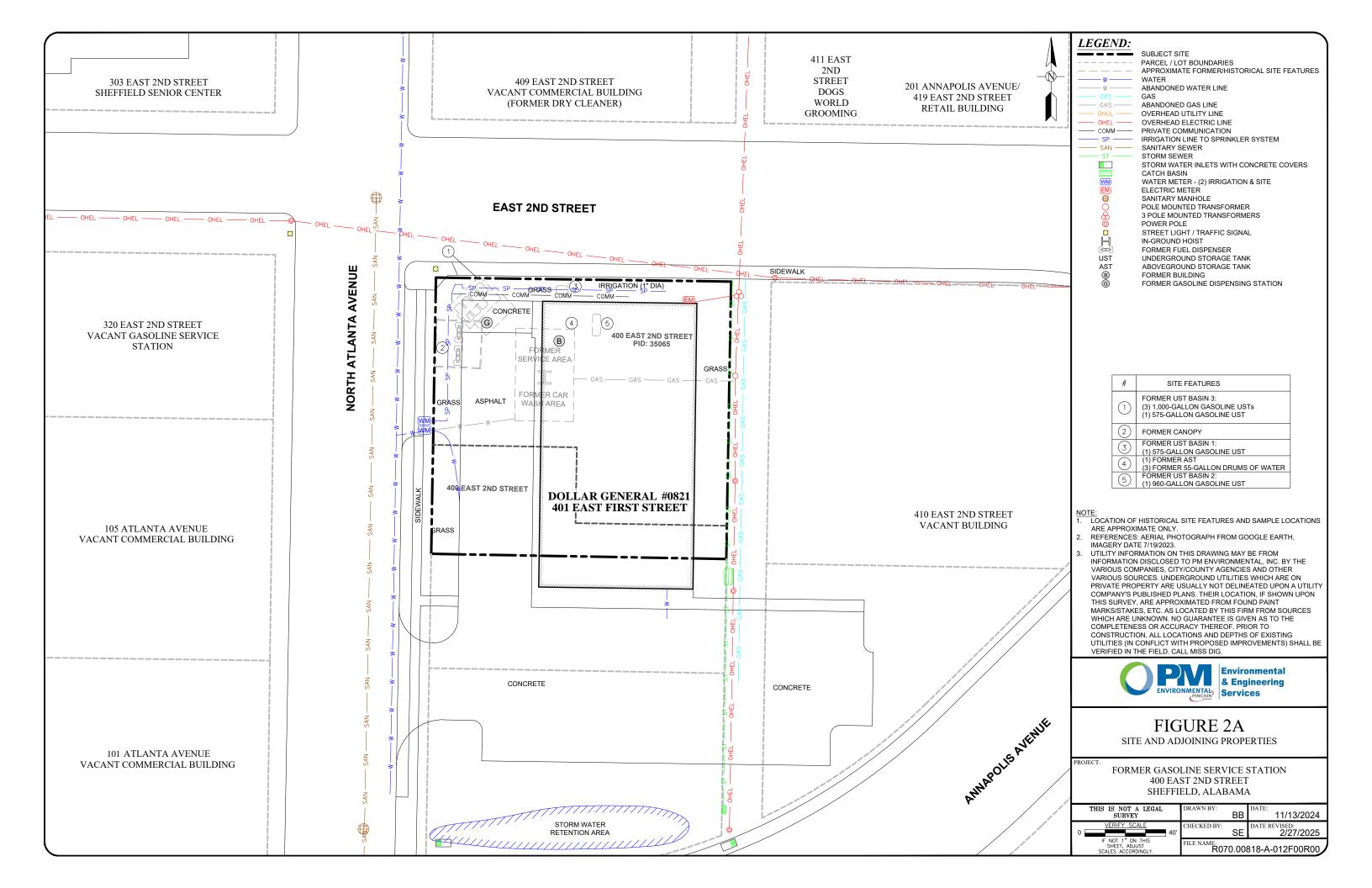
Tri-annual Post Injection Groundwater Monitoring Reports will be submitted to ADEM for one year. The first groundwater sampling event will be conducted approximately four months post injection. Each report will include the following:

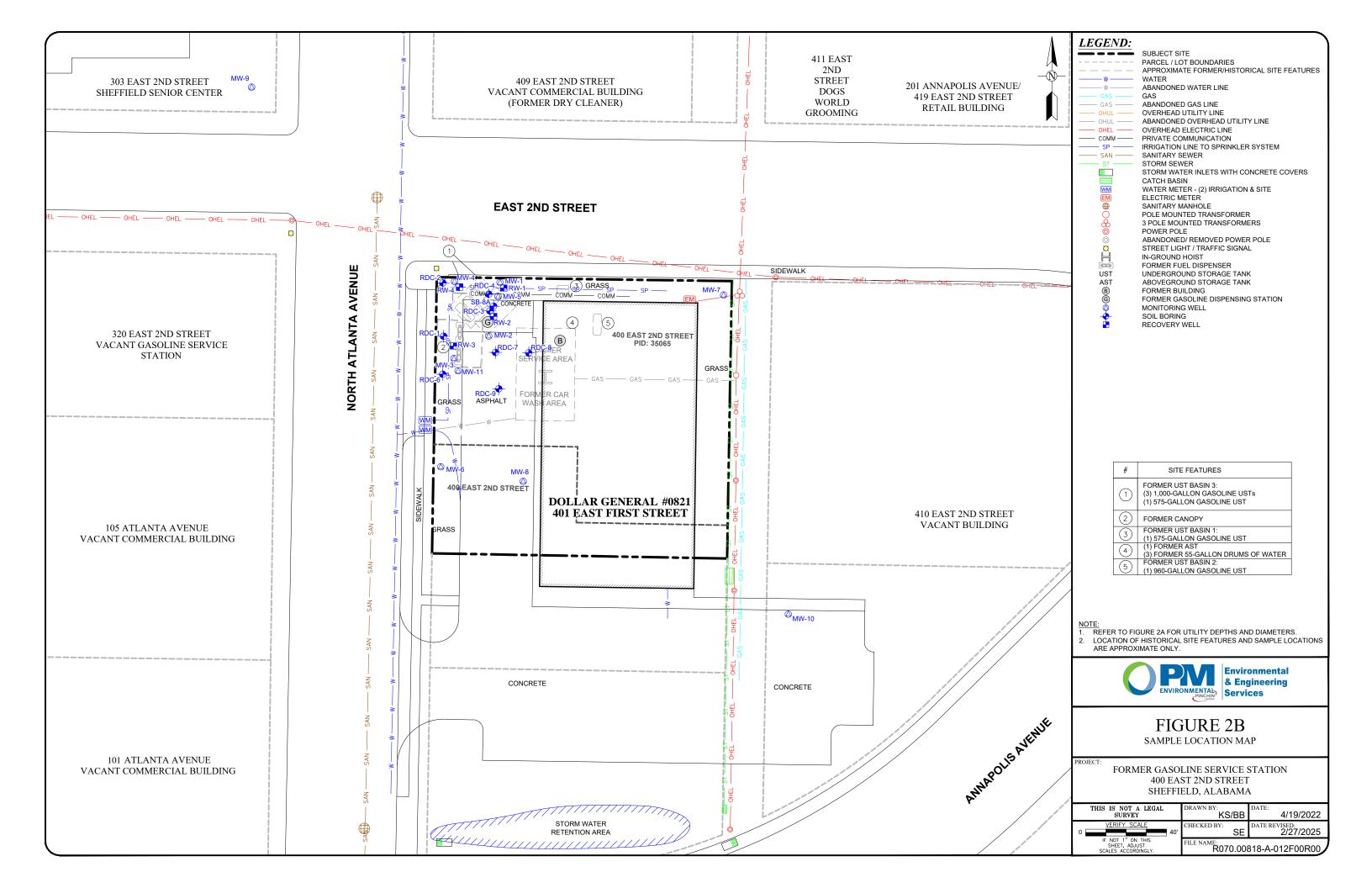
- A. Site Summary
- B. Site Vicinity Map
- C. Generalized Diagram of the Subject Property and Adjoining Properties
- D. Natural Attenuation Monitoring Report forms
 - a. Site Summary
 - b. Well Inventory Data
 - c. History of Sampling
 - d. Sampling Methodology
 - e. Cost versus Time
 - f. Current Sampling Data
- E. Laboratory Reports and Chain of Custody

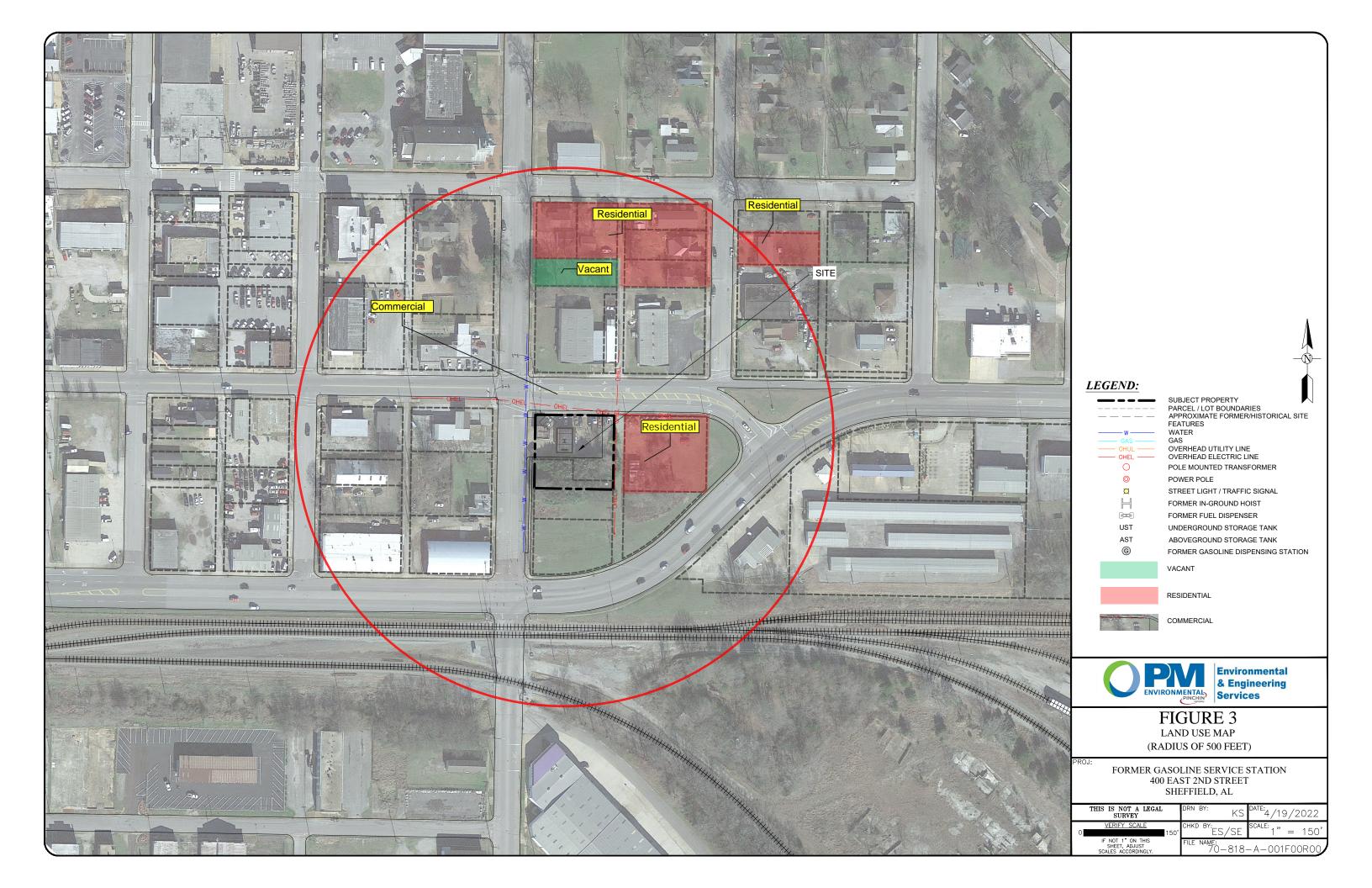
When monitoring reports indicate the remediation activities have achieved the clean-up goals or the remaining contamination has reached asymptotic levels, a request for cessation of corrective action (or monitoring only) will be submitted to the ADEM. It will include data indicating that the clean-up goals have been achieved or the remaining contamination has reached asymptotic levels and proposed methods to abandon the monitoring and recovery wells.

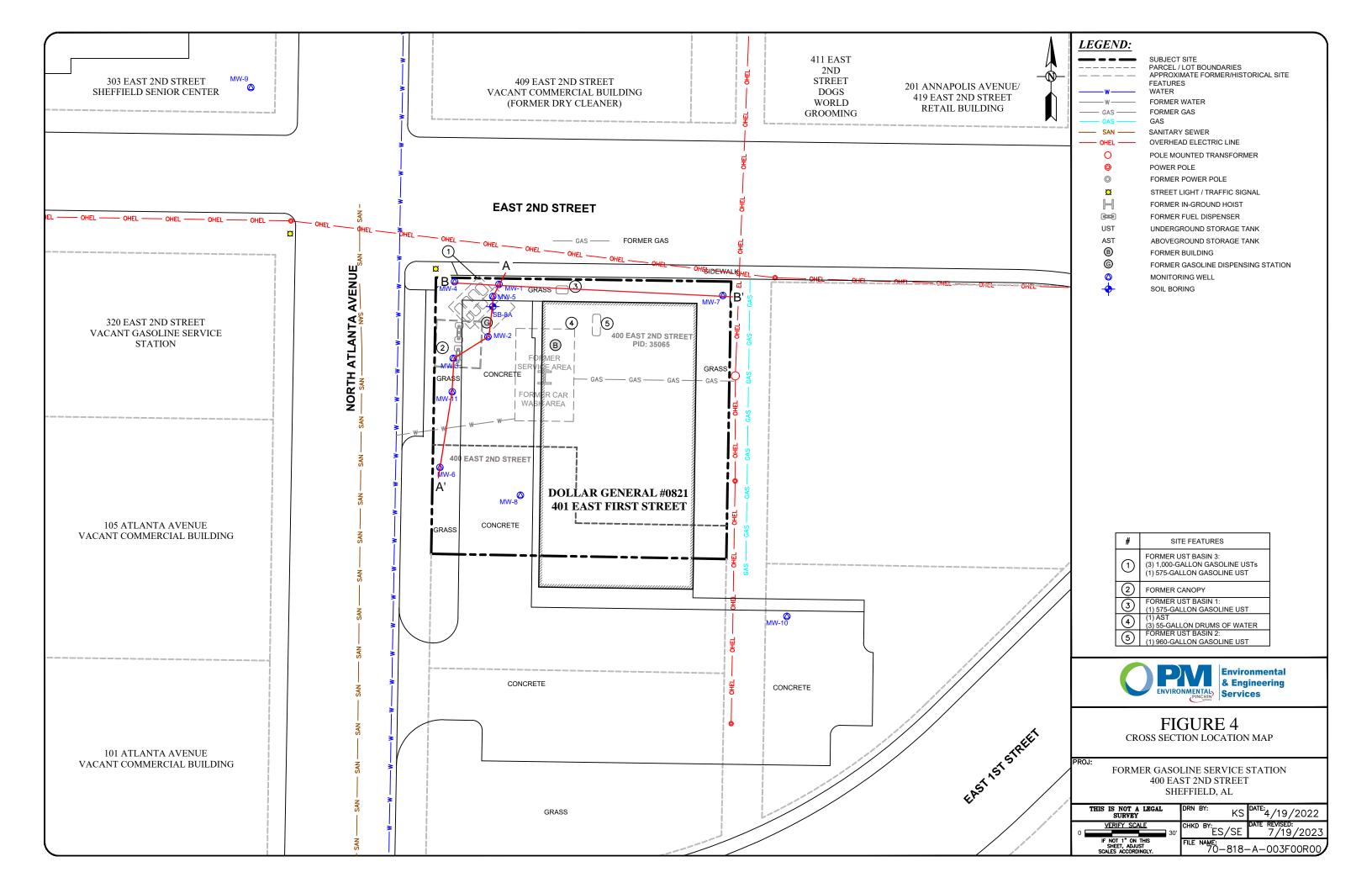

Upon approval of the request for cessation of the corrective action from ADEM, a site closure report summarizing closure activities will be prepared and submitted to the ADEM. This report will include the details of the well abandonment.

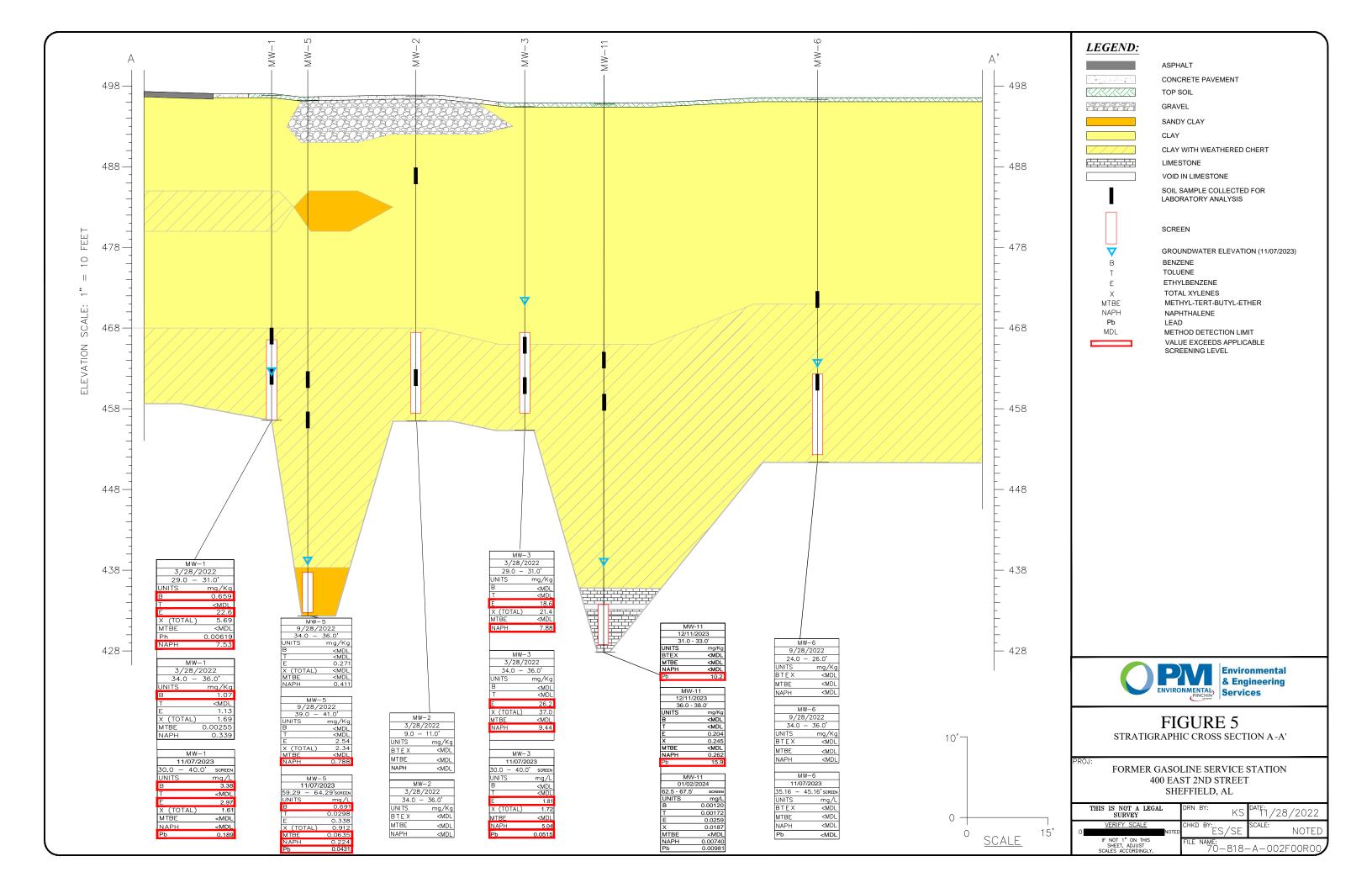
11.0 CONCLUSIONS AND RECOMMENDATIONS

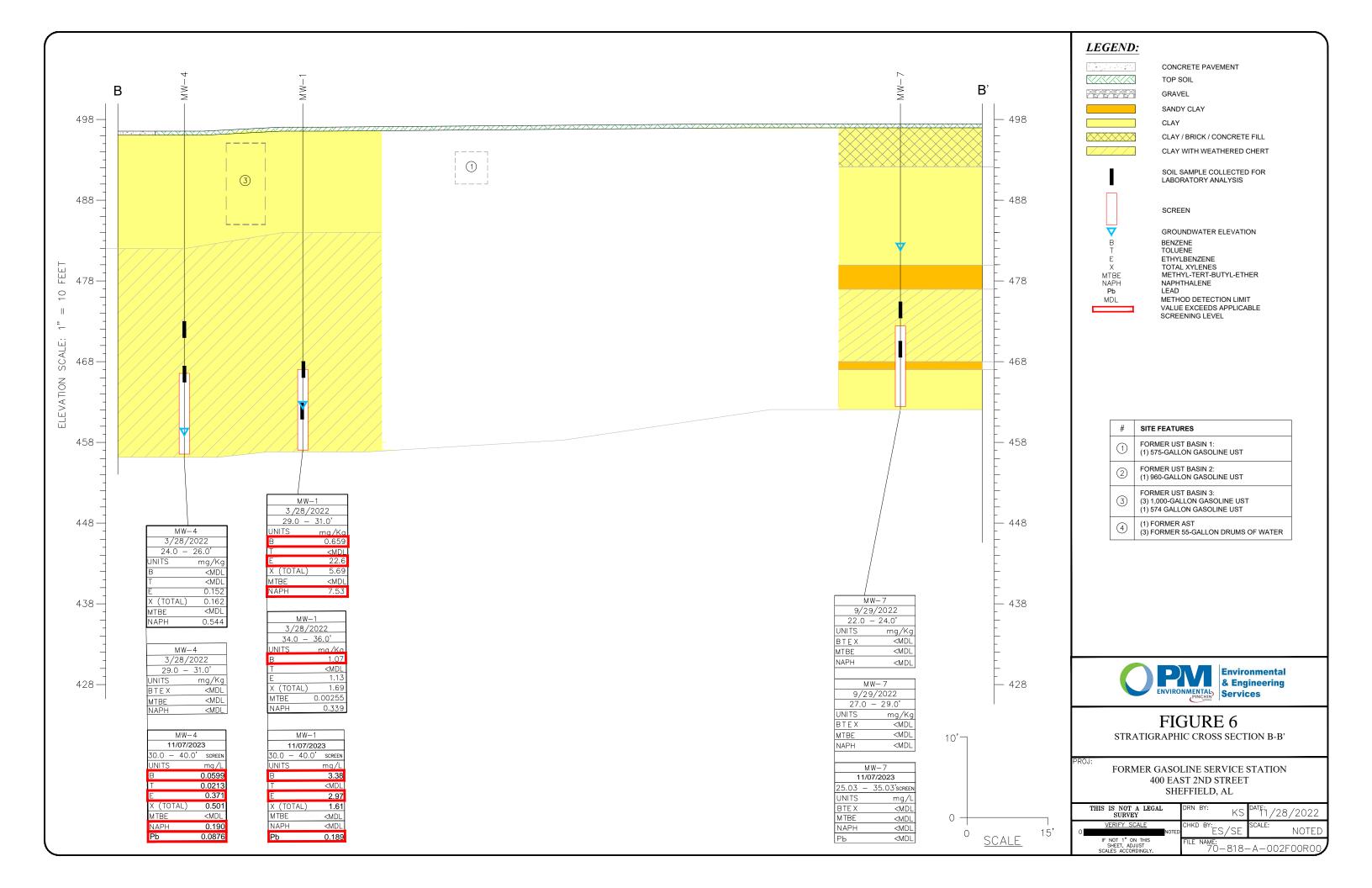

This CAP has developed a remediation alternative within the limits that are currently set for the site. Further PM recommends that the proposed remedial activities be evaluated at one year to ensure remedial goals have been meet.

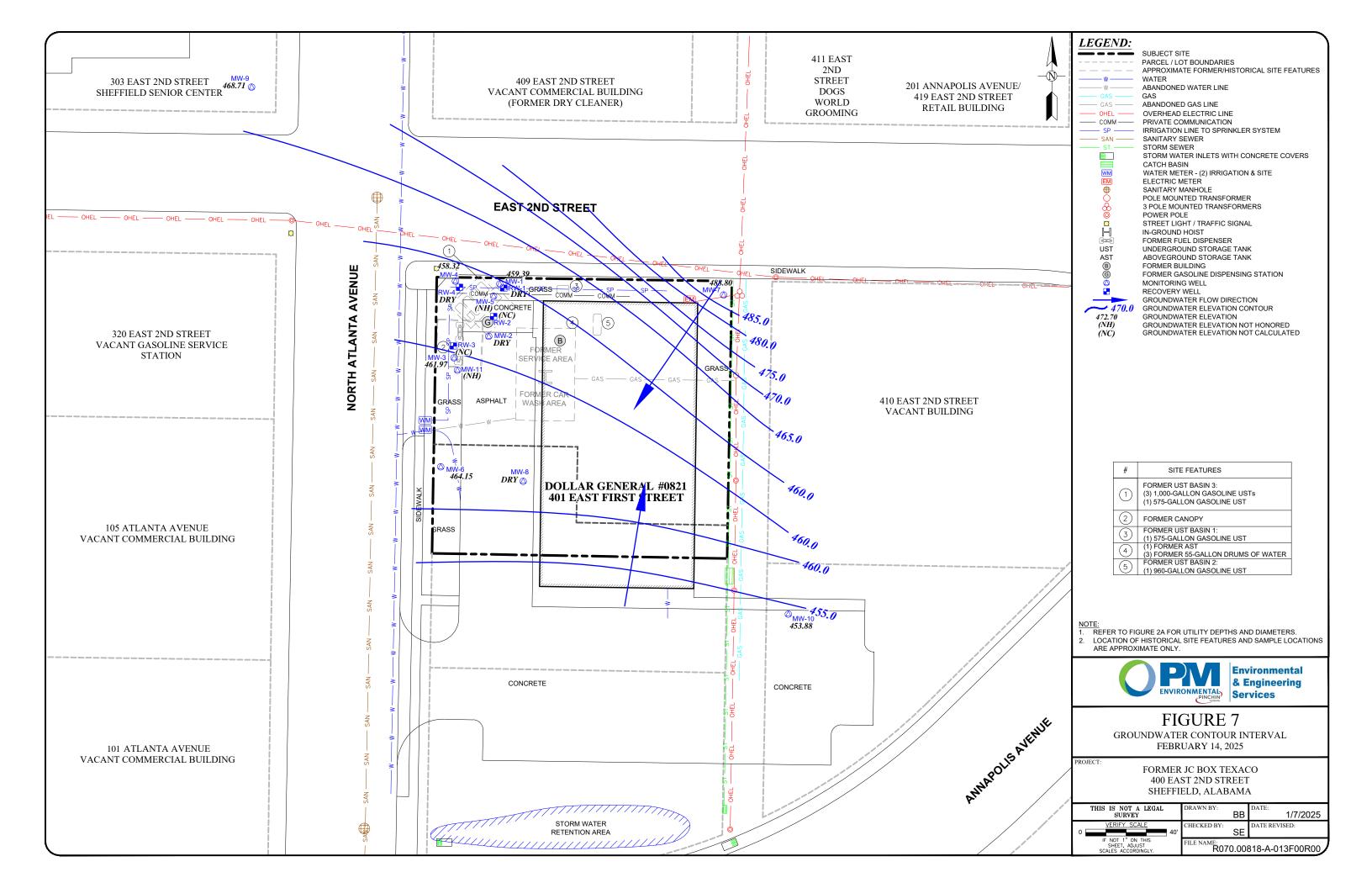

Figures

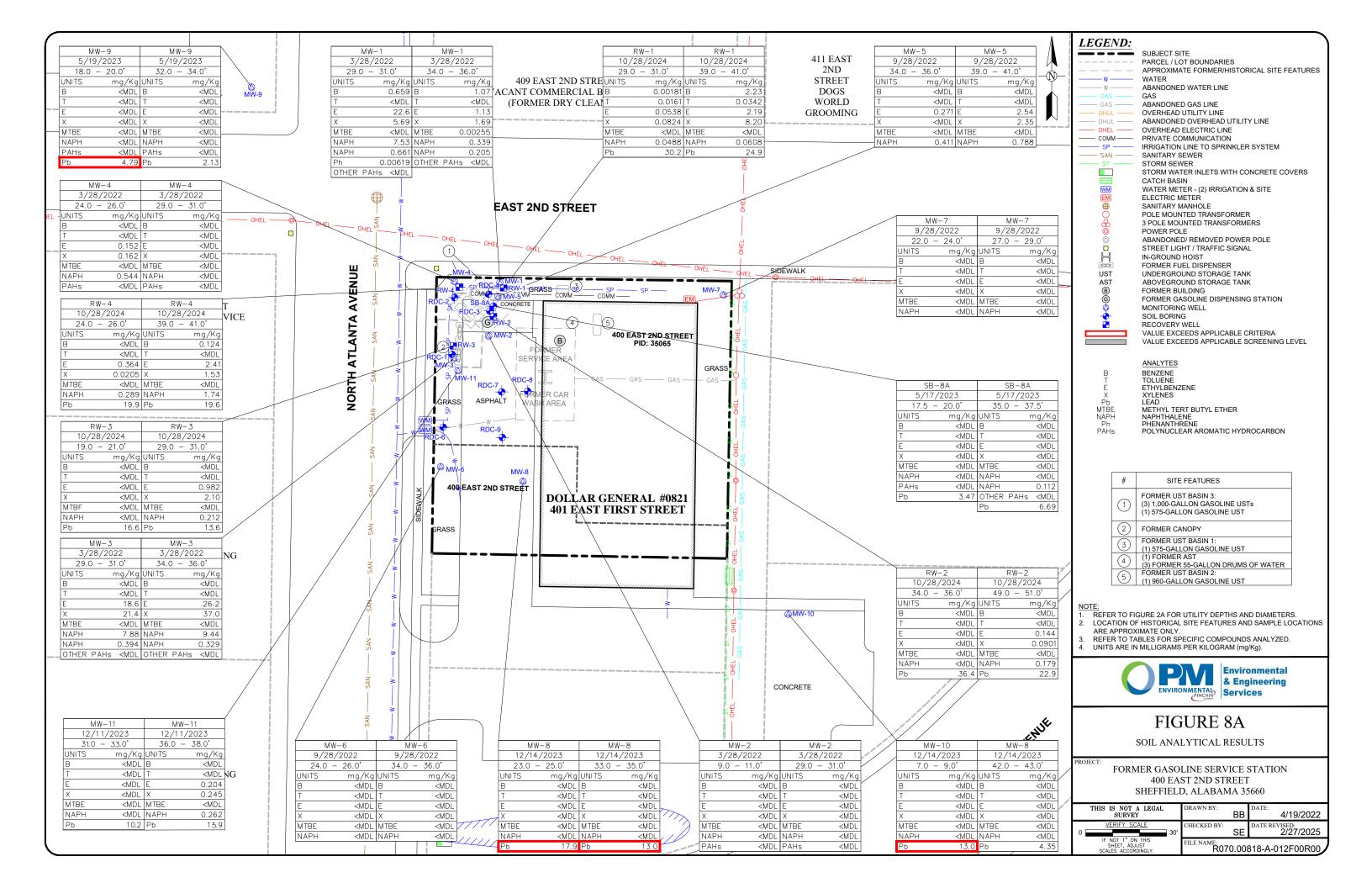


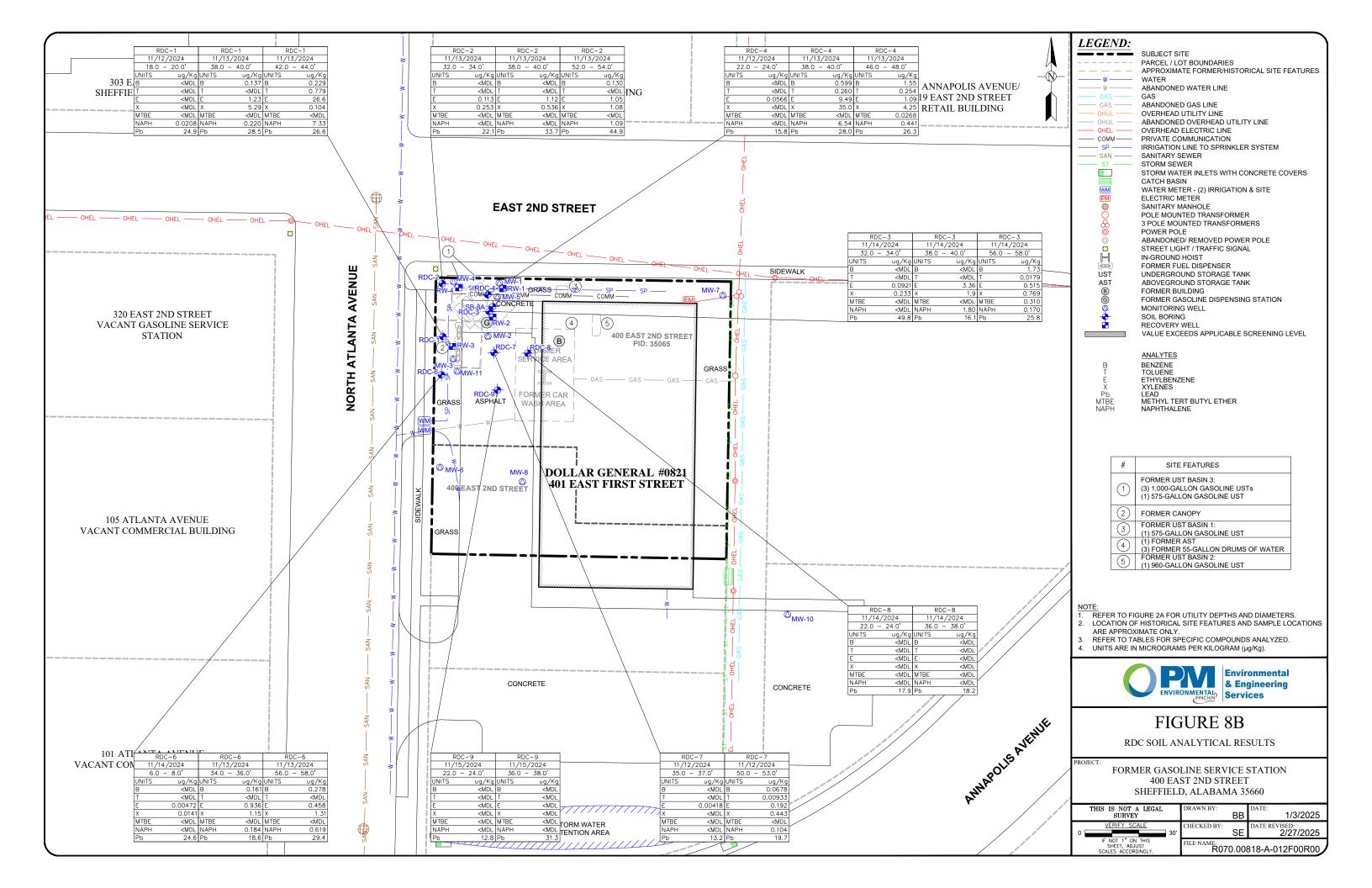


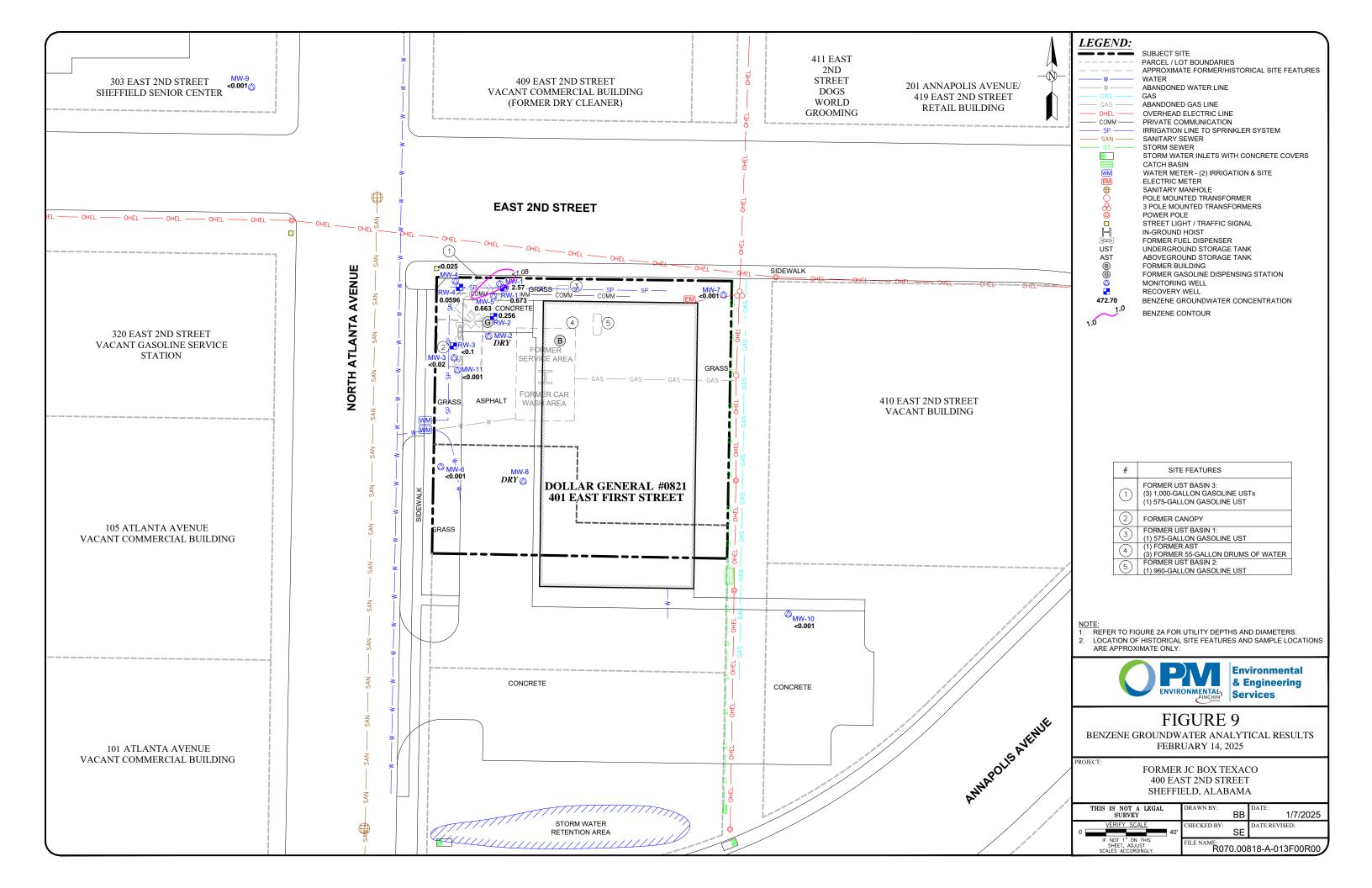

Environmental	PROJ: FORMER GASOLINE SERVICE STATION	THIS IS NOT A LEGAL SURVEY	^{drn by:} KS/CS	date: 4/19/2022
ENVIRONMENTAL Services	400 EAST 2ND STREET SHEFFIELD. AL	0 2000'	ËS/SE	date revised: 7/19/2023
ENVIRONMENTAL Services	······································	IF NOT 1" ON THIS SHEET, ADJUST SCALES ACCORDINGLY.	FILE NAME: 70-818-	-A-003F00R00

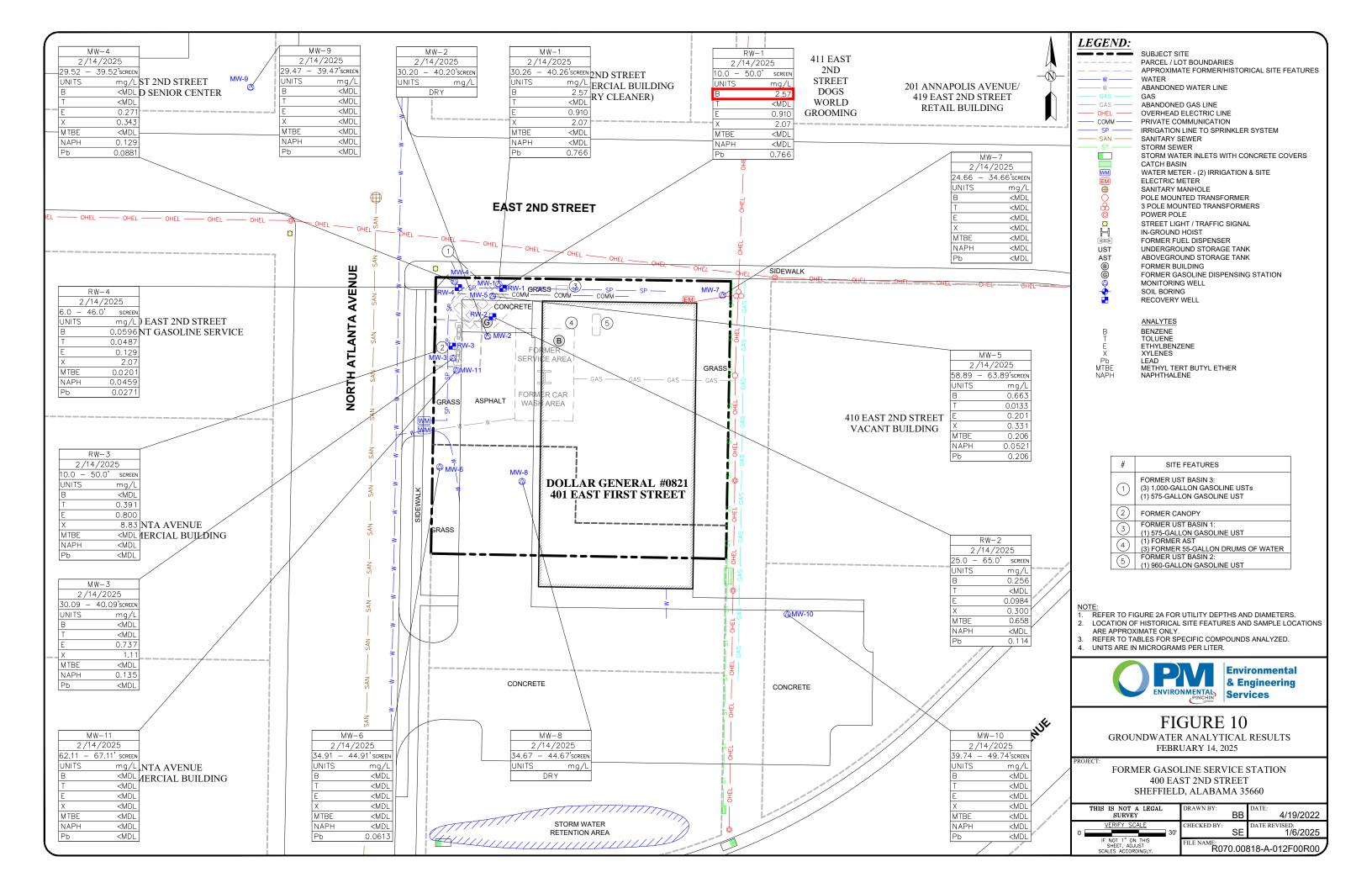


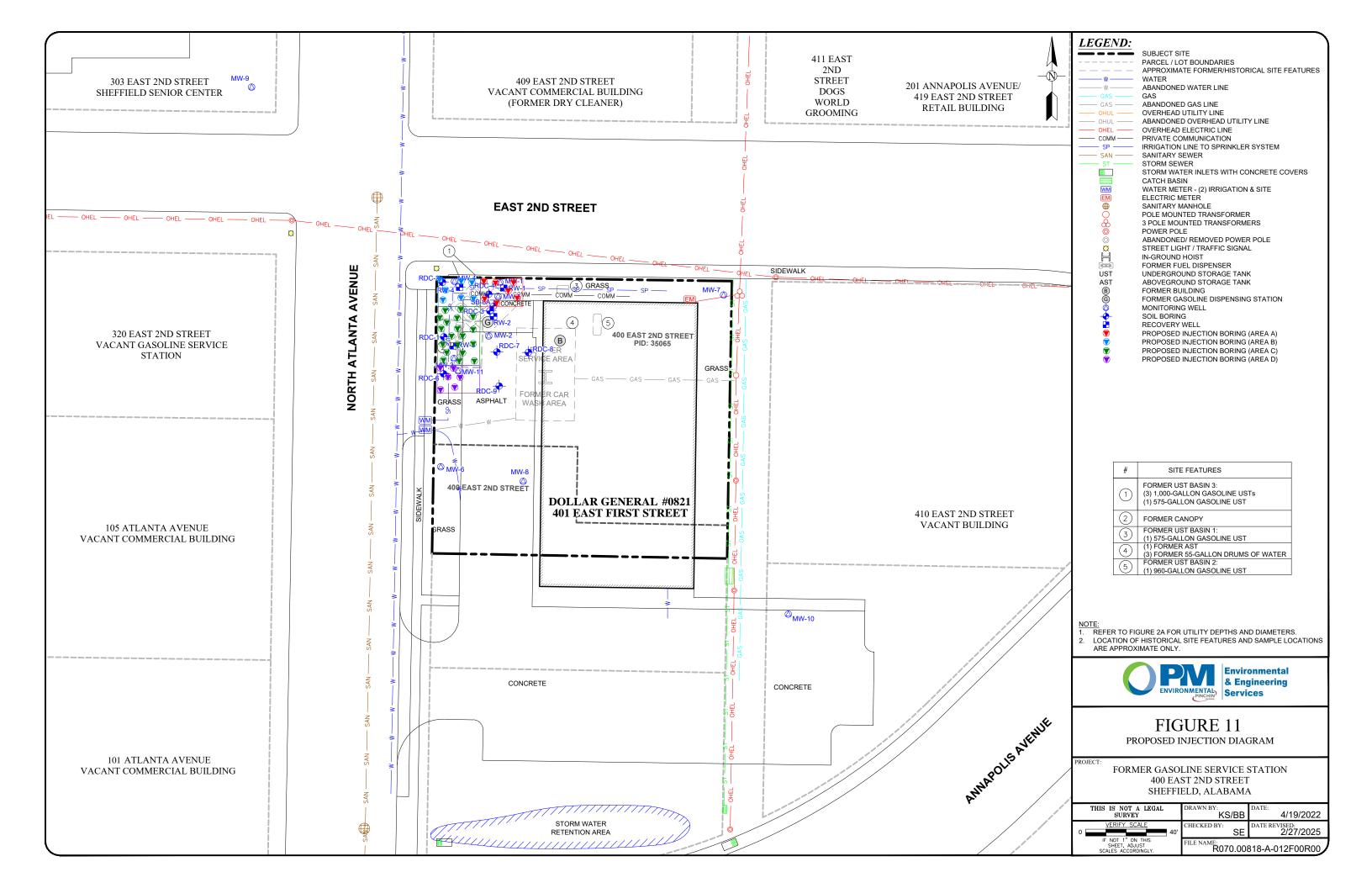












Tables

TABLE 1

SUMMARY OF SOIL SAMPLE ANALYTICAL RESULTS FORMER JC BOX TEXACO 400 E. 2ND ST ATLANTA AVE, SHEFFIELD, COLBERT COUNTY, ALABAMA FACILITY I.D. #11732-033-004341; UST INCIDENT #UST21-09-05

Benzene, Toluene, Ethylbenzene, Tota Methyl-tert-butyl-ether (M Polynuclear Aromatic Hydrocarl and Lead, (mg/Kg)		TBE),	Benzene	Toluene	Ethylbenzene	Total Xylenes	Methyl-tert-butyl ether (MTBE)	Naphthalene	Anthracene	Benzo (a) anthracene	Benzo (a) pyrene	Benzo (b) fluoranthene	Benzo (g,h,i) perylene	Benzo (k) fluoranthene	Chrysene	Fluoranthene	Fluorene	Naphthalene	Phenanthrene	Pyrene	Lead
			71-43-2	108-88-3	100-41-4	1330-20-7	1634-04-4	91-20-3	120-12-7	56-55-3	50-32-8	205-99-2	191-24-2	207-08-9	218-01-9	206-44-0	86-73-7	91-20-3	85-01-8	129-00-0	7439-92-1
Sample ID	Sample Date	Sample Depth (feet bgs)		BTEX, N	ITBE, & Na	phthalene	- 8260B			-	-			PAHs - 82	270C - SIM	-	-				LEAD - 6010B
MW-1 3/28/2022	29-31'	0.659	<0.2	22.6	5.69	<0.04	7.53	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	0.661	0.00619	<0.006	NS	
	34-36'	1.07	<0.005	1.13	1.69	0.00255	0.339	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	0.205	<0.006	<0.006	NS	
Polynuclear Aromatic Hydrocari and Lead, (mg/Kg)Sample IDSample DateMW-13/28/2022MW-23/28/2022MW-33/28/2022MW-43/28/2022MW-59/28/2022MW-69/28/2022MW-69/28/2022MW-79/28/2022MW-79/28/2022SB-8A5/17/2023	3/28/2022	9-11'	<0.001	<0.005	<0.0025	<0.0065	<0.001	<0.0125	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.02	<0.006	<0.006	NS
	29-31'	<0.001	<0.005	<0.0025	<0.0065	<0.001	<0.0125	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.02	<0.006	<0.006	NS	
MW-3	3/28/2022	29-31'	<0.02	<0.1	18.6	21.4	<0.02	7.88	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	0.394	<0.006	<0.006	NS
		34-36'	<0.02	<0.1	26.2	37.0	<0.02	9.44	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	0.329	<0.006	<0.006	NS
MW-4 3/28/2022	24-26'	<0.02	<0.1	0.152	0.162	<0.02	0.544	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.02	<0.006	<0.006	NS	
		29-31'	<0.008	<0.04	<0.02	<0.052	<0.008	<0.1	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.02	<0.006	<0.006	NS
MW-3 3/28/2022 MW-4 3/28/2022 MW-5 9/28/2022 MW-6 9/28/2022 MW-7 9/28/2022 ARBCA ISLS 9/28/2022	34-36'	<0.008	<0.04	0.271	<0.052	<0.008	0.411	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	
		39-41'	<0.008	<0.04	2.54	2.34	<0.008	0.788	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	GRP Target Level		31.0	4,700	2,190	2,770	25.6	2,330										2,330			2,840
MW-6	9/28/2022	24-26'	<0.001	<0.005	<0.0025	<0.0065	<0.001	<0.125	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
		34-36'	<0.001	<0.005	<0.0025	<0.0065	<0.001	<0.125	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
MW-7	9/28/2022	22-24'	<0.001	<0.005	<0.0025	<0.0065	<0.001	<0.125	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
		27-29'	<0.001	<0.005	<0.0025	<0.0065	<0.001	<0.125	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
		(= = 00)	0.00845	3.6	3.61	62.4	0.00862	0.579	11.2	10.1	2.24	18.5	11.1	9.84	6.37	101	153	0.579	141	91.8	4.43
SB-8A	5/17/2023	17.5-20'	< 0.001	< 0.005	<0.0025	< 0.0065	<0.001	<0.0125	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	< 0.006	< 0.006	<0.006	<0.02	<0.006	<0.006	3.47
		35-37.5'	< 0.001	< 0.005	<0.0025	< 0.0065	<0.001	<0.0125	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	0.112	<0.006	<0.006	6.69
	GRP Target Level	23-25'	31.0 < 0.001	4,700 <0.005	2,190 <0.0025	2,770 <0.0065	25.6	2,330 <0.0125	 NS	 NS	 NS	 NS	 NS	 NS		 NS	 NS	2,330		 NS	2,840 17.9
MW-8	12/14/2023				<0.0025		< 0.001		NS	NS	NS NS	NS NS	NS NS	NS	NS NS	NS	NS	NS NS	NS NS	NS NS	17.9
		33-35' 18-20'	<0.001 <0.001	<0.005 <0.005	<0.0025	<0.0065 <0.0065	<0.001 <0.001	<0.0125 <0.0125	<0.006	< 0.006	<0.006	<0.006	< 0.006	<0.006	< 0.006	<0.006	<0.006	<0.02	< 0.006	<0.006	4.79
MW-9	5/19/2023	32-34'	<0.001	<0.005	<0.0025	< 0.0065	<0.001	<0.0125	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	< 0.006	<0.006	<0.006	<0.02	<0.006	<0.006	2.13
		7-9'	<0.001	<0.005	<0.0025	<0.0065	<0.001	<0.0125	 NS	<0.000 NS	<0.000 NS	<0.000 NS	<0.000 NS	<0.000 NS	<0.000 NS	<0.000 NS	<0.000 NS	NS	<0.000 NS	<0.000 NS	13.0
MW-10	12/14/2023	42-43'	<0.001	<0.005	<0.0025	<0.0005	<0.001	<0.0125	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	4.35
		31-33'	<0.001	<0.005	<0.0025	<0.0005	<0.001	<0.0125	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	10.2
MW-11	12/11/2023	36-38'	<0.001	<0.005	0.204	0.245	<0.001	0.262	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	15.9
	ARBCA ISLs	00-00	0.00845		3.61	62.4	0.00862	0.202	11.2	10.1	2.24	18.5	11.1	9.84	6.37	101	153	0.579	141	91.8	4.43
	ANDUA IOLS		0.00043	0.0	5.01	02.4	0.00002	0.375	11.4	10.1	2.24	10.5	11.1	5.04	0.57	101	133	0.379	141	31.0	4.40

TABLE 1

SUMMARY OF SOIL SAMPLE ANALYTICAL RESULTS FORMER JC BOX TEXACO 400 E. 2ND ST ATLANTA AVE, SHEFFIELD, COLBERT COUNTY, ALABAMA FACILITY I.D. #11732-033-004341; UST INCIDENT #UST21-09-05

Meth	e, Ethylbenzene, Tota hyl-tert-butyl-ether (MT r Aromatic Hydrocarb and Lead, (mg/Kg)	ſBE),	Benzene	Toluene	Ethylbenzene	Total Xylenes	Methyl-tert-butyl ether (MTBE)	Naphthalene	Anthracene	Benzo (a) anthracene	Benzo (a) pyrene	Benzo (b) fluoranthene	Benzo (g,h,i) perylene	Benzo (k) fluoranthene	Chrysene	Fluoranthene	Fluorene	Naphthalene	Phenanthrene	Pyrene	Lead
Sample ID	Sample Date	Sample Depth (feet bgs)	71-43-2	•	100-41-4 ITBE, & Na	•	•	91-20-3	120-12-7	56-55-3	50-32-8	205-99-2	191-24-2	207-08-9 PAHs - 82		206-44-0	86-73-7	91-20-3	85-01-8	129-00-0	7439-92-1 LEAD - 6010
DW/ 4	10/28/2024	29-31	0.00181	0.0161	0.0538	0.0824	<0.00181	0.0488	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	30.2
RW-1	10/28/2024	39-41	2.23	0.0342	2.19	8.20	<0.00199	0.0608	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	24.9
DW/ 2	10/00/0004	34-36	<0.00157	<0.00785	<0.00393	<0.0102	<0.00157	<0.0196	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	36.4
RVV-2	10/28/2024	49-51	<0.00658	<0.0329	0.144	0.0901	<0.00658	0.179	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	22.9
RW-3	10/28/2024	19-21	<0.0164	<0.08231	<0.0411	<0.107	<0.0164	<0.205	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	16.6
RW-3	10/28/2024	29-31	<0.00179	<0.00897	0.982	2.10	<0.00179	0.212	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	13.6
RW-4 RDC-1	10/00/0004	24-26	<0.00167	<0.00834	0.364	0.0205	<0.00167	0.289	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	19.9
	10/28/2024	39-41	0.124	<0.0868	2.41	1.53	<0.0174	1.74	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	19.6
RDC-1	11/12/2024	18-20	<0.00166	<0.00832	<0.00416	<0.018	<0.00166	0.0208	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	24.9
	11/13/2024	38-40	0.137	<0.07454	1.23	5.29	<0.0149	0.220	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	28.5
	11/13/2024	42-44	0.229	0.779	26.6	0.104	<0.0366	7.33	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	26.6
RDC-2	11/13/2024	32-34	<0.00140	<0.00698	0.113	0.253	<0.00140	<0.174	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	22.1
		38-40	<0.00142	<0.00710	1.12	0.536	<0.00142	<0.177	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	33.7
		52-54	0.130	<0.0768	1.05	1.08	<0.0154	1.09	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	44.9
		32-34	<0.0348	<0.174	0.0921	0.233	<0.0348	<0.435	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	49.8
RDC-3	11/14/2024	38-40	<0.0655	<0.328	3.36	1.90	<0.0655	1.80	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	16.1
		56-58	1.73	0.0179	0.515	0.769	0.310	0.170	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	25.8
	11/12/2024	22-24	<0.0128	<0.0641	0.0566	<0.0833	<0.0128	<0.160	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	15.8
RDC-4	11/13/2024	38-40	0.599	0.260	9.49	35.0	<0.0141	6.54	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	28.0
	11/13/2024	46-48	1.55	0.254	1.09	4.25	0.0268	0.441	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	26.3
	11/14/2024	6-8	<0.00160	<0.00798	0.00472	0.0141	<0.00160	<0.0199	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	24.6
RW-1 RW-2 RW-3 RW-4 RDC-1 RDC-2 RDC-3	11/13/2024	34-36	0.161	<0.00875	0.936	1.15	<0.00175	0.184	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	18.6
	11/13/2024	56-58	0.278	<0.212	0.458	1.31	<0.0424	0.619	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	29.4
RDC-4 RDC-6	11/12/2024	35-37	<0.00137	<0.00687	0.00418	<0.00893	<0.00137	<0.0172	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	13.2
	11/12/2024	50-53		0.00933	0.192	0.443	<0.00155		NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	19.7
RDC-8	11/14/2024	22-24	<0.00179	<0.00894	<0.00447	<0.0116	<0.00179	<0.0223	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	17.9
	11/14/2024	36-38	<0.00145	<0.00724	<0.00362	<0.00941	<0.00145	<0.0181	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	18.2
	11/15/2024	22-24	<0.00159	<0.00795	<0.00397	<0.0103	<0.00159	<0.0199	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	12.8
	11/15/2024	36-38	<0.00169	<0.00845	<0.00422	<0.0110	<0.00169	<0.0211	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	31.3
	GRP Target Level		31.0	4,700	2,190	2,770	25.6	2,330										2,330			2,840

3. ARBCA ISLs - Alabama Risk Based Corrective Action Initial Screening Levels

TABLE 2 SUMMARY OF WELL CONSTRUCTION, GROUNDWATER ELEVATION, & ANALYTICAL RESULTS FORMER JC BOX TEXACO 400 E. 2ND ST ATLANTA AVE, SHEFFIELD, COLBERT COUNTY, ALABAMA

Benzene, Poly	Benzene	Toluene	Ethylbenzene	Total Xylenes	Methyl-tert- butyl ether (MTBE)	Naphthalene	Anthracene	Benzo (a) anthracene	Benzo (a) pyrene	Benzo (b) fluoranthene	Benzo (g,h,i) perylene	Benzo (k) fluoranthene	Chrysene	Fluoranthene	Fluorene	Naphthalene	Phenanthrene	Pyrene	Lead			
CAS #				71-43-2	108-88-3	100-41-4	1330-20-7	1634-04-4	91-20-3	120-12-7	56-55-3	50-32-8	205-99-2	191-24-2	207-08-9	218-01-9	206-44-0	86-73-7	91-20-3	85-01-8	129-00-0	7439-92-1
Sample Date	Depth to Water Free Product Water Table Elevation (feet below TOC) (feet) (feet above msl)			ⁿ BTEX, MTBE, & Naphthalene - 8260B							POLYNUCLEAR AROMATIC HYDROCARBONS - 8270C-SIM											LEAD - 6010B
MW-1	Date o	f Installation:	March 28-29, 2	2022	22 Surface Elevation in feet above msl:				497.05	TOC Elevation in feet above msl:			496.83	Well Type: 2" Type II			Screen	Screened Interval in feet below TOC:				6-40.26'
03/30/22	34.50	ND	462.33	2.96	0.145	3.29	3.94	<0.001	0.563	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.0001	0.283	0.574	0.352	0.0000527	NS
10/05/22	34.62	ND	462.21	0.718	<0.010	2.13	0.830	<0.010	0.523	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
10/00/22		DUPLICATE		0.768	0.00290	1.96	0.806	<0.001	0.425	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
05/24/23	38.03	ND	458.80	2.03	<0.1	2.17	0.792	<0.1	<0.5	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.0001	0.000192	0.661	0.000255	<0.00005	0.0926
07/13/23	38.97	ND	457.86	2.26	<0.1	2.64	1.26	<0.1	NS	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.0001	0.000187	0.615	0.000239	<0.00005	0.0957
09/07/23	37.60	ND	459.23	1.62	0.07970	2.74	1.33	<0.005	0.576	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.0001	0.000221	0.436	0.000301	0.0000544	0.0633
11/07/23	39.80	ND	457.03	3.38	<0.2	2.97	1.61	<0.2	<1.0	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	0.189
07/12/24	38.78	ND	458.05	2.59	<0.2	2.28	1.72	<0.2	<1.0	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	0.00369
10/16/24	37.58	ND	459.25	1.56	<0.2	2.17	3.79	<0.2	<1.0	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	0.0233
11/14/24		DRY		NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
02/14/25	37.44	ND	459.39	2.57	<0.2	0.91	2.07	<0.2	<1.0	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	0.766
02/14/25 37.44 ND 459.39 GRP Target Level				1.08	215	151	175	4.30	4.30										4.30			3.23
MW-2	MW-2 Date of Installation: March 28-29,		2022	Surface	e Elevatio	n in feet al	bove msl:	496.86	TOC Eleva	tion in feet	above msl:	496.67	Well	Гуре:	2" Type II	Screen	ed Interval	in feet b	elow TOC:	30.20)-40.20'	
03/30/22	29.30	ND	467.37	<0.001	<0.01	<0.001	<0.003	<0.001	<0.005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.0001	<0.00005	0.378	0.0651	<0.00005	NS
10/05/22		DRY		NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
05/24/23		DRY		NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
07/13/23		DRY		NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
09/07/23	DRY			NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
11/07/23		DRY		NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
07/12/24		DRY		NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
10/16/24		DRY		NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
11/14/24	DRY			NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
02/14/25		DRY		NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	GRP Ta	rget Level		1.08	215	151	175	4.30	4.30										4.30			3.23

TABLE 2 SUMMARY OF WELL CONSTRUCTION, GROUNDWATER ELEVATION, & ANALYTICAL RESULTS FORMER JC BOX TEXACO 400 E. 2ND ST ATLANTA AVE, SHEFFIELD, COLBERT COUNTY, ALABAMA

FACILITY I.D. #11732-033-004341; UST INCIDENT #UST21-09-05

Benzene, Poly	Benzene 71-43-2	Toluene	Ethylbenzene	Total Xylenes	Methyl-tert- butyl ether (MTBE)	Naphthalene	Anthracene	Benzo (a) anthracene	Benzo (a) pyrene	Benzo (b) fluoranthene	Benzo (g,h,i) perylene	Benzo (k) fluoranthene	Chrysene	Eluoranthene	Fluorene	Naphthalene	Phenanthrene	Pyrene	Lead			
Sample Date	CAS # Sample Date Depth to Water Free Product Water Table Elevation (feet below TOC) (feet) (feet above msl)				•		aphthalen	1634-04-4	91-20-3	120-12-7	56-55-3	50-32-8	205-99-2 POI YNI	191-24-2	207-08-9	218-01-9	206-44-0	86-73-7	91-20-3	85-01-8	129-00-0	7439-92-1
MW-3	(feet below TOC)	(feet above msl) March 28-29, 2	2022	· · · ·					TOC Eleva	tion in feet a	above msl:	495.42	Well 7						-40.09'			
03/30/22	21.66	ND	473.76	<0.001	<0.01	2.06	3.42	<0.001	0.566	<0.00005	<0.00005	<0.00005	< 0.00005	<0.00005	<0.00005	2" Type II <0.00005	<0.0001	0.227	0.425	0.155	< 0.00005	NS
10/05/22	24.49	ND	470.93	<0.001	0.00138	0.997	1.27	<0.001	0.173	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
05/24/23	31.50	ND	463.92	<0.05	<0.05	2.15	2.17	<0.05	0.471	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.0001	0.0000967	0.300	<0.00005	<0.00005	0.0289
07/13/23	34.17	ND	461.25	<0.05	<0.05	1.86	1.79	<0.05	NS	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.0001	0.000128	0.237	<0.00005	<0.00005	0.0153
09/07/23	33.62	ND	461.80	<0.1	<0.1	1.79	2.08	<0.1	<0.0005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.0001	0.000143	0.273	0.0000689	<0.00005	0.00803
11/07/23	37.77	0.03	457.67	<0.05	<0.05	1.81	1.72	<0.05	0.504	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	0.0515
07/12/24	36.84	ND	458.58	<0.5	<0.5	1.11	1.68	<0.5	0.435	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	0.00540
10/16/24	36.76	ND	458.66	<0.05	<0.05	0.880	1.37	<0.05	0.361	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	0.0118
11/14/24	40.04	ND	455.38	<0.02	<0.02	1.01	1.01	<0.02	0.499	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	0.0607
02/14/25	33.45	ND	461.97	<0.02	<0.02	0.74	1.11	<0.02	0.135	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	<0.006
GRP Target Level				1.08	215	151	175	4.30	4.30										4.30			3.23
MW-4	Date o	Date of Installation: March 28-29,		2022	Surface	ace Elevation in feet above msl:			496.55	TOC Elevation in feet above msl: 496.1			496.15	15 Well Type: 2" Type II			Screened Interval in feet below TOC:				29.52-39.52'	
03/30/22	36.20	ND	459.95	0.0409	0.0415	0.833	1.56	<0.001	0.272	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.0001	0.278	0.165	0.341	0.0000810	NS
00/00/22		DUPLICATE		0.0604	0.0397	0.767	1.41	<0.010	0.298	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.0001	0.271	0.183	0.360	0.0000847	NS
10/05/22	37.26	ND	458.89	0.0224	0.0257	0.856	1.78	<0.02	0.224	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
05/24/23	37.83	ND	458.32	<0.001	<0.01	0.266	0.426	<0.001	0.0792	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.0001	0.000275	0.0812	0.000237	<0.00005	0.183
07/13/23	38.00	ND	458.15	0.0126	<0.01	0.298	0.514	<0.01	NS	<0.00005	0.0000583	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	0.000136	0.000916	0.160	0.00129	0.000317	0.0265
		DUPLICATE		<0.020	<0.020	0.438	0.750	<0.020	NS	<0.00005	0.000057	<0.00005	<0.00005	<0.00005	<0.00005	0.0000507	0.000135	0.000946	0.194	0.00133	0.000343	0.0415
09/07/23	38.10	ND	458.05	<0.020	<0.020	0.215	0.350	<0.020	0.101	<0.00005	0.000110	<0.00005	<0.00005	0.0000551	<0.00005	0.0000859	0.000318	0.00242	0.124	0.00268	0.000622	0.0415
		DUPLICATE		<0.010	<0.01	0.508	0.885	<0.010	0.263	<0.00005	0.000104	<0.00005	<0.00005	<0.00005	<0.00005	0.0000884	0.000335	0.00245	0.123	0.00281	0.000647	0.0563
11/07/23	39.00	0.26	457.34	0.0599	0.0213	0.371	0.501	<0.010	0.190	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	0.0876
01/26/24	36.60	ND	459.55	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
07/12/24	37.51	ND	458.64	<0.1	<0.1	0.102	0.0930	<0.1	<0.5	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	0.0244
		DUPLICATE		0.00630	0.00262	0.105	0.0957	0.00158	0.0462	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	0.0179
10/16/24	37.70	ND	458.45	0.0110	<0.01	0.128	0.114	<0.01	0.0539	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	0.0163
	DUPLICATE		[0.00588	0.00221	0.0851	0.0644	<0.001	0.0406	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	0.0195
11/14/24	39.08	ND	457.07	<0.025	<0.025	0.571	0.817	<0.025	0.372	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	0.512
02/14/25	37.83	ND	458.32	<0.025	<0.025	0.271	0.343	<0.025	0.129	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	0.0881
02/14/25	I	arget Level		-0.020	-0.020	•.=	0.0.10	0.020	0.125	NO	NO	NO	NO	NO						110		

TABLE 2 SUMMARY OF WELL CONSTRUCTION, GROUNDWATER ELEVATION, & ANALYTICAL RESULTS FORMER JC BOX TEXACO 400 E. 2ND ST ATLANTA AVE, SHEFFIELD, COLBERT COUNTY, ALABAMA

		tyl ether (MTB	E),	Benzene	Toluene	Ethylbenzene	Total Xylenes	Methyl-tert- butyl ether (MTBE)	Naphthalene	Anthracene	Benzo (a) anthracene	Benzo (a) pyrene	Benzo (b) fluoranthene	Benzo (g,h,i) perylene	Benzo (k) fluoranthene	Chrysene	Fluoranthene	Fluorene	Naphthalene	Phenanthrene	Pyrene	Lead
	Depth to Water	Free Product	CAS # Water Table Elevation	71-43-2	108-88-3		1330-20-7		91-20-3	120-12-7	56-55-3	50-32-8	205-99-2	191-24-2	207-08-9	218-01-9	206-44-0	86-73-7	91-20-3	85-01-8	129-00-0	7439-92-1
Sample Date	(feet below TOC)	(feet)	(feet above msl)		BTEX, M	TBE, & Na	aphthalene	e - 8260B					POLYNU	JCLEAR AF	ROMATIC H	IYDROCARI	BONS - 827	70C-SIM				LEAD - 6010B
MW-5	Date o	of Installation:	Sept. 28 - Oct. 3	3, 2022	Surface	Elevation	n in feet al	oove msl:	496.62	TOC Eleva	tion in feet	above msl:	496.22	Well 1	Гуре:	2" Type III	Screen	ed Interval	in feet b	elow TOC:	58.89	9-63.89'
10/05/22	57.47	ND	438.75	0.691	0.0298	0.338	0.912	0.0635	0.0844	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
05/24/23	52.60	ND	443.62	2.25	0.0066	0.183	0.12	0.383	<0.1	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.0001	<0.00005	0.137	<0.00005	<0.00005	0.0609
		DUPLICATE		2.05	0.00725	0.174	0.116	0.353	<0.1	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.0001	<0.00005	0.101	<0.00005	<0.00005	0.0613
07/13/23	57.24	ND	438.98	0.889	<0.02	0.120	0.104	0.164	NS	<0.000106	<0.000106	<0.000106	<0.000106	<0.000106	<0.000106	<0.000106	<0.000211	<0.000106	0.00855	<0.000106	<0.000106	0.0245
09/07/23	56.97	ND	439.25	1.02	<0.05	0.0500	<0.150	0.201	<0.250	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.0001	<0.00005	0.00158	<0.00005	<0.00005	0.0443
11/07/23	59.70	ND	436.52	3.08	0.00988	0.238	0.208	0.539	0.0349	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	0.0431
07/12/24	56.70	ND	439.52	0.450	<0.025	0.0337	<0.075	0.131	<0.125	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	0.0264
10/16/24	56.50	ND	439.72	0.917	<0.025	0.195	0.275	0.215	<0.125	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	0.0524
11/14/24	58.74	ND	437.48	<0.005	<0.005	0.905	0.925	<0.005	0.389	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	0.0347
02/14/25	48.69	ND	447.53	0.663	0.0133	0.201	0.331	0.206	0.0521	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	0.206
	GRP Ta	arget Level		1.08	215	151	175	4.30	4.30										4.30			3.23
MW-6	Date o	of Installation:	Sept. 28-29, 2		Surface	Elevation	n in feet al	oove msl:	496.54	TOC Eleva	tion in feet	above msl:	496.29	Well	Гуре:	2" Type II	Screen	ed Interval	in feet b	elow TOC:	34.91	1-44.91'
10/05/22	33.04	ND	463.25	<0.001	<0.001	<0.001	<0.003	<0.001	<0.005	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
05/24/23	38.00	ND	458.29	<0.001	<0.001	<0.001	<0.003	<0.001	<0.005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.0001	<0.00005	<0.00025	<0.00005	<0.00005	0.00637
07/13/23	38.30	ND	457.99	<0.001	<0.001	<0.001	<0.003	<0.001	NS	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.0001	<0.00005	<0.00025	<0.00005	<0.00005	<0.006
09/07/23	38.34	ND	457.95	<0.001	<0.001	<0.001	<0.003	<0.001	<0.005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.0001	<0.00005	<0.00025	<0.00005	<0.00005	<0.006
11/07/23	39.98	ND	456.31	<0.001	<0.001	<0.001	<0.003	<0.001	<0.005	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	<0.006
07/12/24	38.30	ND	457.99	<0.001	<0.001	<0.001	<0.003	<0.001	<0.005	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	0.00202
10/16/24	38.08	ND	458.21	<0.001	<0.001	<0.001	<0.003	<0.001	<0.005	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	<0.006
11/14/24	39.24	ND	457.05	<0.001	<0.001	<0.001	<0.003	<0.001	<0.005	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	0.0613
02/14/25	32.14	ND	464.15	<0.001	<0.001	<0.001	<0.003	<0.001	<0.005	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	<0.006
	GRP Ta	arget Level		0.547	109	76.6	175	2.19	2.19										2.19			1.64

TABLE 2 SUMMARY OF WELL CONSTRUCTION, GROUNDWATER ELEVATION, & ANALYTICAL RESULTS FORMER JC BOX TEXACO 400 E. 2ND ST ATLANTA AVE, SHEFFIELD, COLBERT COUNTY, ALABAMA

		tyl ether (MTB	E),	euezue Beuzue 71-43-2	auanjo Los 88 3	thylbenzene	Total Xylenes	Methyl-tert- butyl ether (MTBE)	Naphthalene 2-20-3	Anthracene 120-12-7	Benzo (a) anthracene	Benzo (a) byrene	Benzo (b) fluoranthene	(i,h,i) berylene	Benzo (k) fluoranthene	Chrysene Chrysene 218-01-9	Fluoranthene 506-44-0	Elinorene 86-73-7	Naphthalene	Phenanthrene 8-01-8	bytene 129-00-0	Peag 1 7439-92-1
Sample Date	Depth to Water	Free Product	Water Table Elevation	77-45-2	•	TBE, & Na		•	91-20-5	120-12-1	00-00-0	00-02-0							97-20-5	00-07-0	123-00-0	LEAD - 6010B
MW-7	(feet below TOC)	(feet) of Installation:	(feet above msl) September 28,	2022	-		-	bove msl:	497.47	TOC Eleva	tion in feet	above msl:	497.10	Well		2" Type II		ed Interva	l in feet b	elow TOC:	24.66	6-34.66'
10/05/22	15.30	ND	481.80	<0.001	<0.001	<0.001	<0.003	<0.001	<0.005	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
05/24/23	20.54	ND	476.56	<0.001	<0.001	<0.001	<0.003	<0.001	<0.005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.0001	<0.00005	<0.00025	<0.00005	<0.00005	0.0207
07/13/23	22.34	ND	474.76	<0.001	<0.001	<0.001	<0.003	<0.001	NS	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.0001	<0.00005	<0.00025	<0.00005	<0.00005	<0.006
09/07/23	23.05	ND	474.05	<0.001	<0.001	<0.001	<0.003	<0.001	<0.005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.0001	<0.00005	<0.00025	<0.00005	<0.00005	0.014
11/07/23	27.50	ND	469.60	<0.001	<0.001	<0.001	<0.003	<0.001	<0.005	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	<0.006
07/12/24	21.39	ND	475.71	<0.001	<0.001	<0.001	<0.003	<0.001	<0.005	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	0.00446
10/16/24	22.53	ND	474.57	<0.001	<0.001	<0.001	<0.003	<0.001	<0.005	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	0.0253
11/14/24	24.40	ND	472.70	<0.001	<0.001	<0.001	<0.003	<0.001	<0.005	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	0.0143
02/14/25	8.30	ND	488.80	<0.001	<0.001	<0.001	<0.003	<0.001	<0.005	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	<0.006
	GRP Ta	arget Level		0.172	34.3	24.0	175	0.686	0.686										0.686			0.515
MW-8	Date o	of Installation:	December 14,	2023	Surface	Elevatior	n in feet al	bove msl:	496.64	TOC Eleva	tion in feet	above msl:	496.31	Well	Гуре:	2" Type II	Screen	ed Interva	l in feet b	elow TOC:	34.67	7-44.67'
01/02/24		DRY		NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
07/12/24		DRY		NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
10/16/24		DRY		NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
11/14/24		DRY		NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
02/14/25		DRY		NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	GRP Ta	arget Level		0.361	72.2	50.6	175	1.44	1.44										1.44			1.08
MW-9	Date c	of Installation:	May 19, 202	23	Surface	e Elevatior	n in feet al	bove msl:	497.86	TOC Eleva	tion in feet	above msl:	497.33	Well		2" Type II	Screen	ed Interva	l in feet b	elow TOC:	29.47	7-39.47'
05/24/23	28.70	ND	468.63	<0.001	<0.001	<0.001	<0.003	<0.001	<0.005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.0001	<0.00005	<0.00025	<0.00005	<0.00005	0.0613
07/13/23	32.30	ND	465.03	<0.001	<0.001	<0.001	<0.003	<0.001	NS	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.0001	<0.00005	<0.00025	<0.00005	<0.00005	<0.006
09/07/23	32.99	ND	464.34	<0.001	<0.001	<0.001	<0.003	<0.001	<0.005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.0001	<0.00005	<0.00025	<0.00005	<0.00005	<0.006
11/07/23	35.27	ND	462.06	<0.001	<0.001	0.00109	<0.003	<0.001	<0.005	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	<0.006
07/12/24	31.35	ND	465.98	<0.001	<0.001	<0.001	<0.003	<0.001	<0.005	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	<0.002
10/16/24	33.25	ND	464.08	<0.001	<0.001	<0.001	<0.003	<0.001	<0.005	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	<0.006
11/14/24	39.15	ND	458.18	<0.001	<0.001	<0.001	<0.003	<0.001	<0.005	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	<0.006
02/14/25	28.62	ND	468.71	<0.001	<0.001	<0.001	<0.003	<0.001	<0.005	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	<0.006
	GRP Ta	arget Level		0.101	20.1	14.1	175	0.402	0.402										0.402			0.302

TABLE 2 SUMMARY OF WELL CONSTRUCTION, GROUNDWATER ELEVATION, & ANALYTICAL RESULTS FORMER JC BOX TEXACO 400 E. 2ND ST ATLANTA AVE, SHEFFIELD, COLBERT COUNTY, ALABAMA

FACILITY I.D. #11732-033-004341; UST INCIDENT #UST21-09-05

		yl ether (MTB	E),	Benzene	Toluene	Ethylbenzene	Total Xylenes	Methyl-tert- butyl ether (MTBE)	Naphthalene	Anthracene	Benzo (a) anthracene	Benzo (a) pyrene	Benzo (b) fluoranthene	Benzo (g,h,i) perylene	Benzo (k) fluoranthene	Chrysene	Fluoranthene	Fluorene	Naphthalene	Phenanthrene	Pyrene	Lead
	Depth to Water	Free Product	CAS # Water Table Elevation	71-43-2		•		1634-04-4	91-20-3	120-12-7	56-55-3	50-32-8	205-99-2	191-24-2	207-08-9	218-01-9	206-44-0	86-73-7	91-20-3	85-01-8	129-00-0	7439-92-1
Sample Date	(feet below TOC)	(feet)	(feet above msl)				aphthalen						POLYNU	JCLEAR AF	ROMATIC I	HYDROCARE	BONS - 82	70C-SIM				LEAD - 6010B
MW-10	Date o	f Installation:	December 14,	2023	Surface	e Elevatior	n in feet al	bove msl:	496.65	TOC Eleva	tion in feet	above msl:	496.39	Well	Туре:	2" Type II	Screen	ed Interval	in feet be	elow TOC:	39.74	-49.74'
01/02/24	45.92	ND	450.47	<0.001	<0.001	<0.001	<0.003	<0.001	<0.005	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	<0.006
07/12/24	41.40	ND	454.99	<0.001	<0.001	<0.001	<0.003	<0.001	<0.005	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	<0.002
10/16/24	46.10	ND	450.29	<0.001	<0.001	<0.001	<0.003	<0.001	<0.005	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	<0.006
11/14/24	47.31	ND	449.08	<0.001	<0.001	<0.001	<0.003	<0.001	<0.005	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	<0.006
02/14/25	42.51	ND	453.88	<0.001	<0.001	<0.001	<0.003	<0.001	<0.005	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	<0.006
	GRP Ta	rget Level		0.0544	10.9	7.62	109	0.218	0.218										0.218			0.163
MW-11	Date o	f Installation:	December 11-13	3, 2023	Surface	e Elevatior	n in feet al	bove msl:	496.86	TOC Eleva	tion in feet	above msl:	496.47	Well	Гуре:	2" Type III	Screen	ed Interval	in feet be	elow TOC:	62.11	-67.11'
01/02/24	57.90	ND	438.57	0.00120	0.00172	0.0259	0.0187	<0.001	0.00740	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	0.00981
07/12/24	54.65	ND	441.82	<0.001	<0.001	0.00502	0.00396	0.00251	<0.005	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	0.00324
10/16/24		DRY		NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	0.0195
11/14/24	52.22	ND	444.25	<0.001	<0.001	<0.001	<0.003	0.00137	<0.005	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	0.00639
00/44/05	56.90	ND	439.57	<0.001	<0.001	<0.001	<0.003	<0.001	<0.005	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	<0.006
02/14/25	'	DUPLICATE	•	<0.001	<0.001	<0.001	<0.003	<0.001	<0.005	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	0.00929
	GRP Ta	rget Level		1.07	214	150	175	4.29	4.29										4.29			3.22
RW-1	Date o	f Installation:	October 22-23,	2024	Surface	e Elevatior	n in feet al	bove msl:		TOC Eleva	tion in feet	above msl:		Well	Туре:	4" Type II	Screen	ed Interval	in feet be	elow TOC:	10.0	-50.0'
11/14/24		DRY		NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
02/14/25	47.30	ND	NC	0.673	0.334	2.13	8.35	<0.02	0.328	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	0.0439
	GRP Ta	rget Level		1.08	215	151	175	4.30	4.30										4.30			3.23
RW-2	Date o	f Installation:	October 28-29,	2024	Surface	e Elevatior	n in feet al	bove msl:		TOC Eleva	tion in feet	above msl:		Well	Туре:	4" Type II	Screen	ed Interval	in feet be	elow TOC:	25.0	0-65.0
44/45/04	58.65	ND	NC	0.653	0.0116	0.125	1.36	0.121	0.171	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	0.00834
11/15/24	'	DUPLICATE	1	0.660	0.0115	0.148	1.32	0.120	0.170	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	<0.006
02/14/25	48.66	ND	NC	0.256	<0.01	0.0984	0.300	0.658	<0.05	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	0.0114
	GRP Ta	rget Level		1.08	215	151	175	4.30	4.30										4.30			3.23

TABLE 2 SUMMARY OF WELL CONSTRUCTION, GROUNDWATER ELEVATION, & ANALYTICAL RESULTS FORMER JC BOX TEXACO 400 E. 2ND ST ATLANTA AVE, SHEFFIELD, COLBERT COUNTY, ALABAMA FACILITY I.D. #11732-033-004341; UST INCIDENT #UST21-09-05

		tyl ether (MTE	SE),	Benzene	Toluene	Ethylbenzene	Total Xylenes	Methyl-tert- butyl ether (MTBE)	Naphthalene	Anthracene	Benzo (a) anthracene	Benzo (a) pyrene	Benzo (b) fluoranthene	Benzo (g,h,i) perylene	Benzo (k) fluoranthene	Chrysene	Fluoranthene	Fluorene	Naphthalene	Phenanthrene	Pyrene	Lead
	Denth to Materia	France Dava dava 4	CAS #	71-43-2	108-88-3	100-41-4	1330-20-7	1634-04-4	91-20-3	120-12-7	56-55-3	50-32-8	205-99-2	191-24-2	207-08-9	218-01-9	206-44-0	86-73-7	91-20-3	85-01-8	129-00-0	7439-92-1
Sample Date	Depth to Water (feet below TOC)	Free Product (feet)	Water Table Elevation (feet above msl)		BTEX, M	ITBE, & Na	aphthalen	e - 8260B					POLYNU	JCLEAR A	ROMATIC I	IYDROCAR	BONS - 82	70C-SIM				LEAD - 6010B
RW-3	Date o	of Installation:	October 24-28,	2024	Surface	e Elevatior	n in feet a	bove msl:		TOC Eleva	tion in feet	above msl:		Well	Туре:	4" Type II	Screen	ed Interva	l in feet be	elow TOC:	10.0)-50.0'
11/14/24	48.25	ND	NC	0.0608	0.864	1.02	9.83	<0.01	0.281	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	0.0161
02/14/25	41.57	ND	NC	<0.1	0.391	0.8	8.83	<0.1	<0.5	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	<0.006
	GRP Ta	arget Level		1.08	215	151	175	4.30	4.30										4.30			3.23
RW-4	Date o	of Installation:	October 23-24,	2024	Surface	e Elevatior	n in feet a	bove msl:	•	TOC Eleva	tion in feet	above msl:	•	Well	Туре:	4" Type II	Screen	ed Interva	l in feet be	elow TOC:	6.0	-46.0'
11/14/24		DRY		NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
02/14/25	44.70	ND	NC	0.0596	0.00487	0.129	0.207	0.00201	0.0459	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	0.0271
	GRP Ta	arget Level		1.08	215	151	175	4.30	4.30										4.30			3.23
<u>NOTES:</u> 1.) 2.) 3.) 4.) 5.)	ARBCA ISLs - Alab GRP Target Levels The surface elevati	bama Risk Based s - Groundwater ion and top of ca	parts per million; CAS# d Corrective Action Initi Resource Protection Ta using data were calibrat ighlighted values excee	al Screening arget Levels ed based u	g Levels s (Approved pon the elev	I March 26, vation data t	2024)	·	-				-	⊃ - Non Dete	ect; NS - Not	Sampled						

Bolded and Highlighted values exceed the GRF

TABLE 3 SUMMARY OF WELL INTRINSIC PARAMETERS DATA FORMER JC BOX TEXACO 400 E. 2ND ST ATLANTA AVE, SHEFFIELD, COLBERT COUNTY, ALABAMA FACILITY I.D. #11732-033-004341; UST INCIDENT #UST21-09-05

DATE	STATIC WATER	TEMPERATURE	CONDUCTIVITY	DISSOLVED OXYGEN	рН	ORP
	feet below TOC	Celcius	mS/cm	mg/L		mV
		allation: March		Size and T	ype of Well	2" Type II
MW-1	TOC Elevation ir	n feet above msl:	496.83	Screened Inter	-	30.26-40.26'
07/06/18	16.34	20.2	0.138	1.50	5.76	79.3
10/05/22	34.62	21.1	0.299	0.76	5.94	0.323
05/24/23	38.03	23.2	766.9	0.31	6.74	0.351
07/13/23	38.97	22.1	0.2823	8.23	6.84	-85.7
09/07/23	37.60	21.6	0.309	0.77	5.96	0.339
11/07/23	39.80		I	nsufficient Volume	9	
07/12/24	38.78	22.7	0.386	3.91	7.49	-32.6
10/16/24	37.58	20.1	0.312	1.02	7.05	-42.1
11/14/24			DF			1
02/14/25	37.44	16.70	0.2613	2.49	6.92	-34.7
	Date of Inst	allation: March	28-29, 2022	Size and T	pe of Well	2" Type II
MW-2	TOC Elevation ir	n feet above msl:	496.67	Screened Inter	val in feet bgs:	30.20-40.20'
07/06/18	54.94	20.1	0.112	1.61	5.83	80.1
10/05/22			DF	۱ ۲Y		1
05/24/23			DF	٦Y		
07/13/23			DF	٦Y		
09/07/23			DF	٦Y		
11/07/23			DF	٦Y		
07/12/24			DF	٦Y		
10/16/24			DF			
11/14/24			DF	٦Y		
02/14/25			DF	٦Y		
	Date of Inst	allation: March			ype of Well	2" Type II
MW-3	TOC Elevation ir	n feet above msl:	495.42	Screened Inter		30.09-40.09'
07/06/18	12.46	20.5	0.231	2.95	6.11	80.9
10/05/22	24.49	21.2	0.910	0.81	5.86	0.980
05/24/23	31.50	21.7	767.3	0.77	6.36	0.522
07/13/23	34.17	20.9	0.396	0.80	6.50	-88.6
09/07/23	33.62	21.5	0.458	1.12	6.11	0.489
11/07/23	37.80	21.9	0.499	0.12	7.36	529.3
07/12/24	36.84	27.1	0.257	1.32	6.67	-73.9
10/16/24	36.76	20.2	0.343	0.99	6.52	-54.9
11/14/24	40.04			nsufficient Volume		
02/14/25	33.45	19	0.3006	3.75	6.9	-64.7
		allation: March	28-29, 2022	Size and T	ype of Well	2" Type II
MW-4	TOC Elevation ir	n feet above msl:	496.15	Screened Inter	-	29.52-39.52'
07/06/18	17.06	20.0	0.109	2.18	6.21	68.8
10/05/22	37.26	22.0	0.426	0.40	5.87	0.450
05/24/23	37.83	23.9	767.0	0.34	6.75	0.485
07/13/23	38.00	21.6	0.381	7.03	6.6	-108.4
09/07/23	38.10	21.7	0.452	0.56	6.33	0.469
11/07/23	38.81			nsufficient Volume		
07/12/24	37.51	28.3	0.42	0.72	6.77	95.4
		20.1	0.394	0.98	6.79	-45.1
10/16/24	3/ /0	20.1				
10/16/24 11/14/24	37.70 39.08	20.1	0.261	1.47	7.19	36.5

TABLE 3 SUMMARY OF WELL INTRINSIC PARAMETERS DATA FORMER JC BOX TEXACO 400 E. 2ND ST ATLANTA AVE, SHEFFIELD, COLBERT COUNTY, ALABAMA FACILITY I.D. #11732-033-004341; UST INCIDENT #UST21-09-05

DATE	STATIC WATER	TEMPERATURE	CONDUCTIVITY	DISSOLVED OXYGEN	рН	ORP
	feet below TOC	Celcius	mS/cm	mg/L		mV
MW-5	Date of Instal	lation: Sept. 28	- Oct. 3, 2022	Size and T	ype of Well	2" Type III
C- VV IVI	TOC Elevation ir	n feet above msl:	496.22	Screened Inter	val in feet bgs:	58.89-63.89'
10/05/22	57.47	21.2	1.200	1.45	7.76	1.29
05/24/23	52.60	22.5	767.1	0.23	6.98	0.92
07/13/23	57.24	20.8	0.680	2.37	7.08	-39.7
09/07/23	56.97	20.6	0.670	0.76	7.13	0.730
11/07/23	59.70	20.7	0.700	1.21	6.03	599.3
07/12/24	56.70	26.2	0.682	1.46	7.94	-43.6
10/16/24	56.50	19.4	0.425	1.43	6.60	-60.5
11/14/24	58.74	21.1	0.475	2.75	6.68	-40.4
02/14/25	48.69	18.4	0.3619	2.06	7.05	-53.2
MW-6	Date of Install	ation: September	⁻ 28 - 29, 2022	Size and T	ype of Well	2" Type II
101.04-0	TOC Elevation ir	n feet above msl:	496.29	Screened Inter	val in feet bgs:	34.91-44.91'
10/05/22	33.04	19.7	0.125	1.32	6.51	0.138
05/24/23	38.00	21.0	767.5	1.77	7.47	0.119
07/13/23	38.30	20.4	0.101	6.26	6.40	17.17
09/07/23	38.34	20.3	0.081	5.19	5.93	0.089
11/07/23	39.98	19.9	0.082	5.42	7.11	650.2
07/12/24	38.30	23.5	0.087	3.90	6.05	20.6
10/16/24	38.08	19.6	0.090	4.97	6.42	-45.6
11/14/24	39.24	18.8	0.087	6.48	7.24	22.7
02/14/25	32.14	19.2	0.1083	3.71	6.90	-1.4
MW-7	Date of Install	ation: September	⁻ 29 - 30, 2022	Size and T	ype of Well	2" Type II
101 00 - 7	TOC Elevation ir	n feet above msl:	497.10	Screened Inter	val in feet bgs:	24.66-34.66'
10/05/22	15.23	20.9	0.510	1.38	5.86	0.550
05/24/23	20.54	23.0	767.2	1.50	10.85	2.4
07/13/23	22.34	22.2	0.177	10.65	6.14	116.4
09/07/23	23.05	20.4	0.402	5.11	6.36	0.4
11/07/23	27.50	20.6	0.400	5.27	7.12	670.3
07/12/24	21.39	22.4	0.381	3.88	7.68	-30.2
10/16/24	22.53	20.0	0.430	5.46	6.77	758.3
11/14/24	24.40	21.0	0.384	5.04	7.24	22.7
02/14/25	8.30	19.0	0.3622	2.59	6.74	-11.1
M\A/ 0	Date of Inst	allation: Decemb	per 14, 2023	Size and T	ype of Well	2" Type II
MW-8	TOC Elevation ir	n feet above msl:	496.31	Screened Inter	val in feet bgs:	35.0-45.0'
01/02/24			DF	RY		
07/12/24			DF	RY		
10/16/24			DF	RY		
11/14/24			DF	RY		
02/14/25			DF	RY		

TABLE 3 SUMMARY OF WELL INTRINSIC PARAMETERS DATA FORMER JC BOX TEXACO 400 E. 2ND ST ATLANTA AVE, SHEFFIELD, COLBERT COUNTY, ALABAMA FACILITY I.D. #11732-033-004341; UST INCIDENT #UST21-09-05

DATE	STATIC WATER	TEMPERATURE	CONDUCTIVITY	DISSOLVED OXYGEN	рН	ORP
	feet below TOC	Celcius	mS/cm	mg/L		mV
	Date of	Installation: May	19, 2023	Size and T	ype of Well	2" Type II
MW-9	TOC Elevation ir	feet above msl:	497.86	Screened Inter	val in feet bgs:	29.47-39.47
05/24/23	28.70	23.1	766.8	1.50	10.85	2.42
07/13/23	32.30	22.1	3.61	8.10	12.36	-111.2
09/07/23	32.99	21.8	2.58	2.80	6.47	2.74
11/07/23	35.27	21.6	3.03	3.81	6.99	672.3
07/12/24	31.35	26.7	0.68	3.31	9.73	-74.2
10/16/24	33.25	21.5	0.95	3.24	7.33	-46.1
11/14/24	35.15	18.7	1.13	4.24	9.31	24.6
02/14/25	28.62	19.4	0.7270	2.03	10.6	-75.3
MM 40	Date of Inst	allation: Decemb	er 14, 2023	Size and T	ype of Well	2" Type II
MW-10	TOC Elevation ir	n feet above msl:	496.39	Screened Inter		40.0-50.0'
01/02/24	45.92	17.2	0.310	4.33	7.97	2.3
07/12/24	41.40	23.0	0.257	2.67	8.16	-33.5
10/16/24	46.10	20.1	0.283	3.50	6.37	-124.1
11/14/24	47.31	18.5	0.249	4.12	6.47	29.2
02/14/25	42.51	17.0	0.2327	3.29	6.44	-1.2
	Date of Instal	lation: Decembe	r 11-13, 2023	Size and T	ype of Well	2" Type III
MW-11	TOC Elevation ir	n feet above msl:	496.47	Screened Inter	-	62.5-67.5
01/02/24	57.90	17.2	0.417	5.07	9.01	38.2
07/12/24	54.65	22.3	0.360	1.68	8.17	-138.5
10/16/24			DF	۲ ۲		1
11/14/24	52.22	19.0	0.33	4.71	6.32	20.60
02/14/25	56.90	18.0	0.3727	1.28	7.48	-64.7
B 144	Date of Insta	allation: October	22-23, 2024	Size and T	ype of Well	4" Type III
RW-1	TOC Elevation ir	n feet above msl:		Screened Inter		10.0-50.0
11/14/24			DF	٦Y		
02/14/25	47.30	20.0	0.3406	1.32	6.75	-27.7
	Date of Insta	allation: October	28-29, 2024	Size and T	ype of Well	4" Type III
RW-2	TOC Elevation ir	n feet above msl:		Screened Inter		25.0-65.0
11/14/24	58.65	19.7	0.464	2.08	7.12	28.1
02/14/25	48.66	19.3	0.3904	1.50	7.03	-44.2
		allation: October			ype of Well	4" Type III
RW-3	TOC Elevation ir			Screened Inter	val in feet bgs:	10.0-50.0
11/14/24	48.25	18.5	0.305	3.41	6.69	-35.2
02/14/25	41.57	19.5	0.3211	1.00	6.69	-29.1
		allation: October			ype of Well	4" Type III
RW-4		n feet above msl:	-	Screened Inter	-	6.0-46.0'
11/14/24			DF		<u></u>	
02/14/25	44.70	19.3	0.4358	1.34	6.87	-66.0

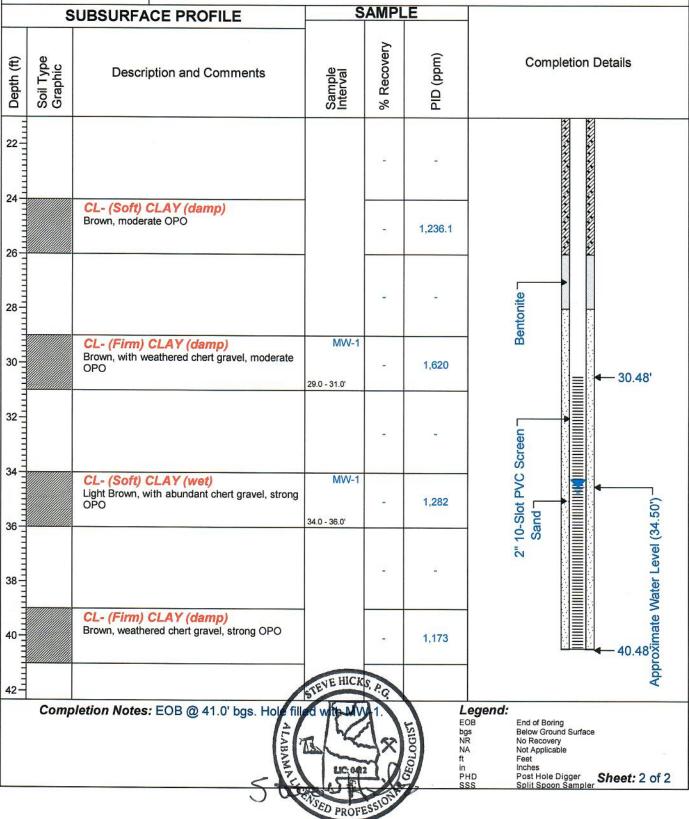
TABLE 4

SUMMARY OF MOBILE ENHANCED MULIT-PHASE EXTRACTION DATA FORMER JC BOX TEXACO 400 E. 2ND ST ATLANTA AVE, SHEFFIELD, COLBERT COUNTY, ALABAMA FACILITY I.D. #11732-033-004341; UST INCIDENT #UST21-09-05

MEME DATE	MEME Provider	Duration (hours)	Equivalent Gallons of Hydrocarbons (gallons)	Hydrocarbons (pounds)	Total Liquid (gallons)	Extraction Wells (per event)
05/13-05/14/2024	РМ	8	0.73	4.5	122	MW-1, MW-3, MW-4, & MW-5
08/07-08/08/2024	PM	8	0.60	3.67	65	MW-1, MW-3, MW-4, & MW-5
11/05-11/06/2024	PM	8	3.46	21.21	9	RW-1, RW-2, RW-3, & RW-4
01/09/2025	PM	8	3.41	20.90	21	RW-1, RW-2, RW-3, & RW-4
SUB-TOT	AL	32	8.20	50.2	217	

Appendix A

Well Log


Well No.: MW-1 Drill Rig: CME-75 Drilling Method: Hollow Stem Auger Sampling Method: PHD/ SSS Drilling Contractor: TDS (Technical Drilling Services, Inc.)

-	S		S		E		(Technical Dir	lling Services, Inc.)
Depth (ft)	Soil Type Graphic	Description and Comments	Sample Interval	% Recovery	PID (ppm)		Completion Det	ails
0-		Ground Surface	-			_		
2		CL- (Firm) CLAY (damp) FILL, Reddish/Brown		-	2.2		THE REPORT OF THE PARTY OF THE	Ground Surface
4		CL- (Soft) CLAY (damp) FILL, Brown	ā.		3.6			Ground
6				12	5.4			
8				÷	÷			
10		CL- (Soft) CLAY (damp) Brown			33.9			
12				-	÷			
14		CL- (Soft) CLAY (damp) Dark Brown, minor chert gravel		-	12.4	2		
18					-	2" PVC Casing ⁻	A REAL	HICKS P.G.
20		CL- (Soft) CLAY (damp) Dark Brick Red, moderate OPO OPO - Old Petroleum odor			437.7	2" 1	5	Filt
	Comp	letion Notes: EOB @ 41.0' bgs. Hole fille	ed with MV	V-1.		Legend: EOB bgs NR NA ft in PHD SSS	End of Boring Below Ground Surface No Recovery Not Applicable Feet Inches	eet: 1 of 2

Well Log

Well No.: MW-1 Drill Rig: CME-75 Drilling Method: Hollow Stem Auger Sampling Method: PHD/ SS Drilling Contractor: TDS

Well Log

Well No.: MW-2 Drill Rig: CME-75 Drilling Method: Hollow Stem Auger Sampling Method: PHD/SS Drilling Contractor: TDS

	S	UBSURFACE PROFILE	S	AMPL	E	
Depth (ft)	Soil Type Graphic	Description and Comments	Sample Interval	% Recovery	PID (ppm)	Completion Details
0-		Ground Surface CRUSHER RUN				
2		CRUSHER KUN		æ	0.0	Surface
2				-	0.0	Ground Surface
4		CL- (Firm) CLAY (damp) Brick Red		-	0.0	
8				-	-	2" PVC Casing
10		CL- (Firm) CLAY (damp) Brick Red	MW-2	£	0.7	
12				-	-	
14 11 11 11 11 11 11 11 11 11 11 11 11 1		CL- (Firm) CLAY (damp) Brick Red		121	0.0	
18						2" PVC Casing
201111		CL- (Firm) CLAY (damp) Brick Red	NE HICKS	RG.	0.0	2" PVC Co
7	Comp	letion Notes: EOB @ 41.0' bgs. Hog illed	D PROFE	H. Le	I,	Legend: EOB End of Boring bgs Below Ground Surface NR No Recovery NA Not Applicable ft Feet in Inches PHD Post Hole Digger SSS Split Spoon Sampler

Well Log

Well No.: MW-2 Drill Rig: CME-75 Drilling Method: Hollow Stem Auger Sampling Method: PHD/ SS Drilling Contractor: TDS

• 1 24	S	SUBSURFACE PROFILE	S	AMPL	E	
Ueptn (II)	Soil Type Graphic	Description and Comments	Sample Interval	% Recovery	PID (ppm)	Completion Details
2				-	÷	
4 6		CL- (Firm) CLAY (damp) Light Brown		-	0.0	
				1	-	Bentonite
TUTTITI		CL- (Firm) CLAY (damp) Light Brown, abundant weathered chert gravel		-	0.0	
IIIIIIII					-	2" 10-Slot PVC Screen
1 mmmmmm		CL- (Firm) CLAY (damp) Light Brown and Yellowish-orange, abundant weathered chert gravel	MW-2 34.0 - 36.0'	-	0.0	2" 10-Slot PVC Screen Sand Approximate Water L
minin				-	-	3 "
munn		CL- (Firm) CLAY (damp) Yellowish-orange, abundant weathered chert gravel			0.0	40.39'
III	Comp	oletion Notes: EOB @ 41.0' bgs. Hole fill	STENE HIC	XX	OE010GIST	Legend: EOB End of Boring bgs Below Ground Surface NR No Recovery NA Not Applicable ft Feet in Inches PHD Post Hole Digger SSS Split Spoon Sampler

Well Log

Well No.: MW-3 Drill Rig: CME-75 Drilling Method: Hollow Stem Auger Sampling Method: PHD/SS Drilling Contractor: TDS

	S		S	AMPL	.E	
Depth (ft)	Soil Type Graphic	Description and Comments	Sample Interval	% Recovery	PID (ppm)	Completion Details
0		Ground Surface CL- (Soft) CLAY (damp)				
		Brick Red		-	0.0	LEARIN Burface
2					1.5	Ground Surface
4 1 1 1 1 1 1		CL- (Soft) CLAY (damp) Brick Red		-	6.2	
8				-		Ising
10		CL- (Firm) CLAY (damp) Brick Red		· •	4.3	
12				1-1	12	
14		CL- (Firm) CLAY (damp) Brick Red			4.2	
18			STEVE HICK	- R.G.	-	2" PVC Casing
20		CL- (Firm) CLAY (damp) Brick Red CL- (Firm) CLAY (damp) Light Brown		1. X	1519070	2" PVC Ce
	Comp	eletion Notes: EOB @ 41.0' bgs. Hole file S	d with M	200	5	Legend: EOB End of Boring bgs Below Ground Surface NR No Recovery NA Not Applicable ft Feet in Inches
						PHD Post Hole Digger SSS Split Spoon Sampler Sheet: 1 of 2

Well Log

Well No.: MW-3 Drill Rig: CME-75 Drilling Method: Hollow Stem Auger Sampling Method: PHD/SS Drilling Contractor: TDS

	S	UBSURFACE PROFILE	S	AMPL	E	_	
Depth (ft)	Soil Type Graphic	Description and Comments	Sample Interval	% Recovery	PID (ppm)		Completion Details
22				-	-		21.66 ⁽)
24		CL- (Firm) CLAY (damp) Brown, slight OPO		÷	27.3		Mater Level (21.66')-
28				, z	15		Bentonite
30		CL- (Firm) CLAY (damp) Light Brown, minor weathered chert gravel, strong OPO	MW-3 29.0 - 31.0'	-	1,033		m30.54'
22111111				-	-		2" 10-Slot PVC Screen
34 1 11111		CL- (Firm) CLAY (damp) Light Brown, abundant weathered chert gravel	MW-3 34.0 - 36.0'	-	732		2" 10-Slot PVC Screen -
38111				-	-		
40 1111111111		CL- (Firm) CLAY (damp) Light Brown, abundant weathered chert gravel	STEVE HIC	KS, P.G.	610.2		40.54'
12-		4LABA	EL	Sx	LOGIST		
	Comp	letion Notes: EOB @ 41.0' bgs. Hole fit	ed with MV	V-3.	Don	Legend: EOB bgs NR NA ft PHD SSS	End of Boring Below Ground Surface No Recovery Not Applicable Feet Inches Post Hole Digger Split Spoon Sampler

Well Log

Well No.: MW-4 Drill Rig: CME-75 Drilling Method: Hollow Stem Auger Sampling Method: PHD/SS Drilling Contractor: TDS

	S	UBSURFACE PROFILE	S	AMPL	E	
Depth (ft)	Soil Type Graphic	Description and Comments	Sample Interval	% Recovery	PID (ppm)	Completion Details
0		Ground Surface CL- (Soft) CLAY (damp)				
2		Brown		-	0.6	Surface
4					5.1	Ground Surface
6				-	7.9	
8		8	27	15	-	asing
10		CL- (Soft) CLAY (damp) Dark Brick Red		12	13.1	
12				-	-	
14 111111		CL- (Firm) CLAY (damp) Dark Brick Red/Brown, minor chert gravel		2	14.5	
16 17 18			STEVE HIC	KS, P	-	2" PVC Casing
20		CL- (Firm) CLAY (damp) Dark Brown, strong OPO	Red of	A-X	15194.2	2" PVC C
	Comp	Ietion Notes: EOB @ 41.0' bgs. Hole Till	ed with MV	14	and a start	Legend: EOB End of Boring bgs Below Ground Surface NR No Recovery NA Not Applicable ft Feet in Inches PHD Post Hole Digger SSS Split Spoon Sampler

Well Log

Well No.: MW-4 Drill Rig: CME-75 Drilling Method: Hollow Stem Auger Sampling Method: PHD/SS Drilling Contractor:

	S	UBSURFACE PROFILE	S	AMPL	E	_		
Depth (ft)	Soil Type Graphic	Description and Comments	Sample Interval	% Recovery	PID (ppm)		Comp	oletion Details
22				-	-			
24		CL- (Firm) CLAY (damp) Brown/Tan, minor weathered chert gravel, stong OPO	MW-4 24.0 - 26.0'		1,401			
8				-	-		Bentonite	
2011		CL- (Firm) CLAY (damp) Brown, abundant weathered chert gravel, moderate OPO	MW-4 29.0 - 31.0'	×	164.6		Ben	← 29.92'
2				л	-		screen 7	
4 11111111 6		CL- (Firm) CLAY (wet) Brown, abundant weathered chert gravel, strong OPO		-	381.8		2" 10-Slot PVC Screen ⁻ Sand	
8				-	-		2" 10 %	vel (36.20')
0		CL- (Firm) CLAY (wet) Brown, abundant weathered chert gravel, moderate OPO	STEVE HIC	XS AC	210.6			Approx Water Lev
2			F	A.				Appr
	Comp	letion Notes: EOB @ 41.0' bgs. Hole fil	LIC: 04	-JX	A Children Participation	Legend: EOB bgs NR NA ft in PHD SSS	End of Borin Below Grour No Recover Not Applicat Feet Inches Post Hole D Split Spoon	nd Surface y ble Digger Sheet: 2 of 2

Well Log

Well No.: MW-5 Drill Rig: CME-75 Drilling Method: HSA Sampling Method: SSS/PHD Drilling Contractor: Technical Drilling Service

SAMPLE SUBSURFACE PROFILE Recovery Soil Type Graphic PID (ppm) **Completion Details** Depth (ft) Sample Interval **Description and Comments** % Ground Surface 0 **TOPSOIL** Ground Surface 0.0 LS- CRUSHED ROCK 2 Grout-0.0 4 6 -Grout CL- (Firm) CLAY (damp) 2 0.0 8 Dark Brown, sandy 2 -CL- (Firm) CLAY (damp) 10 -0.0 Dark Brown, sandy 12 14 CL- (Firm) CLAY (damp) 10" PVC Isolation Casing-0.0 -Dark Brown, sandy 16 18 CL- (Firm) CLAY (damp) 20 -2.2 Dark Brown, sandy, minor highly weathered chert gravel 22-24 CL- (Soft) CLAY (damp) 124.6 Light Brown, sandy, minor weathered chert 2" PVC Casing gravel, moderate OPO 26 28-CL- (Soft) CLAY (damp) 30 206.9 Light Brown, sandy, minor weathered chert Bentonite gravel, moderate OPO 32 Legend: Completion Notes: EOB @ 66.0' bgs. Hole filled with MW-5. End of Boring EOB bgs NR Below Ground Surface No Recovery NA Not Applicable ft Feet in Inches Sheet: 1 of 2

 Project No.: 70-818-A-002

 Project Name: JC Boc Texaco

 Address: 400 E 2nd St, Sheffield, AL

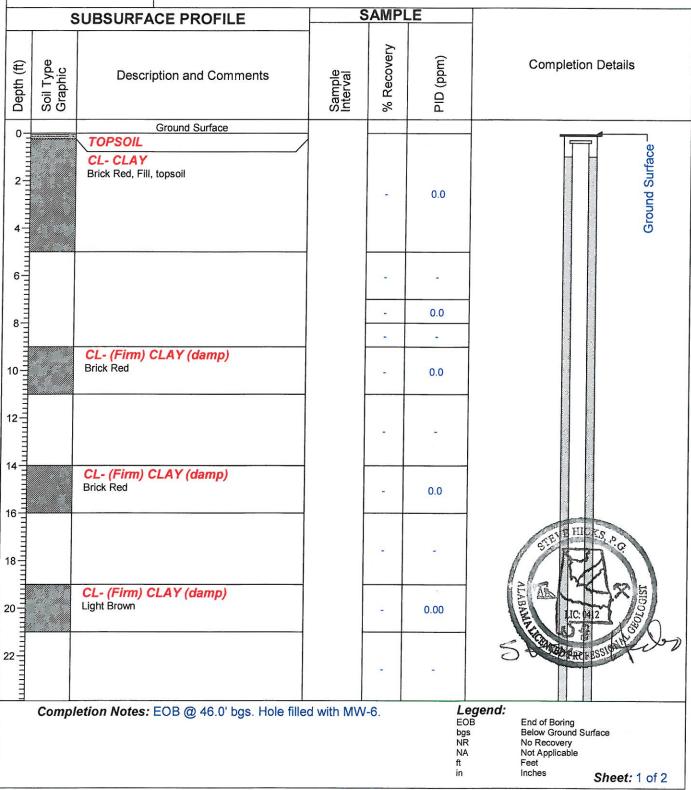
 Facility ID#: 11732-033-004341

 Date Drilled: 9/28-10/03/2022

 Logged By: SH

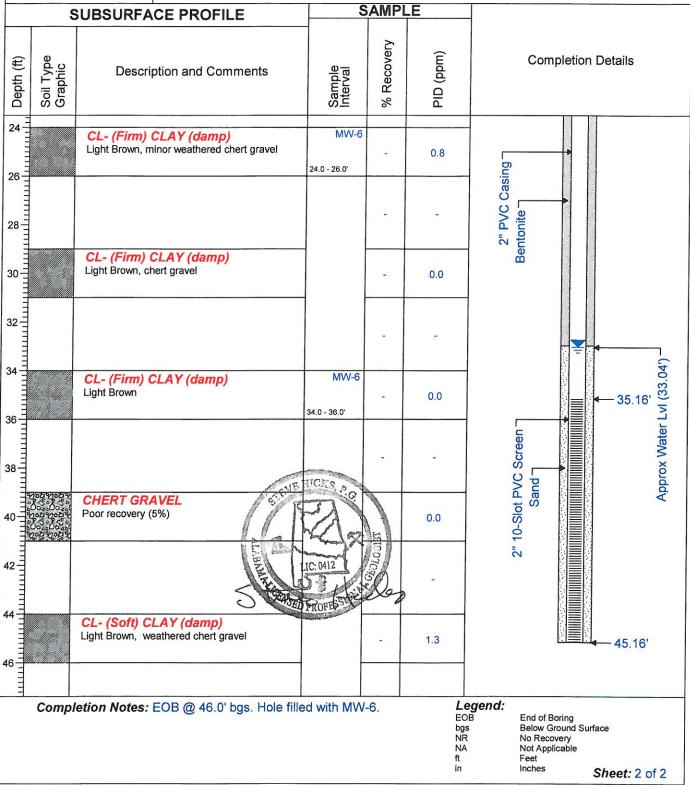
Well Log

Well No.: MW-5 Drill Rig: CME-75 Drilling Method: HSA Sampling Method: SSS/PHD

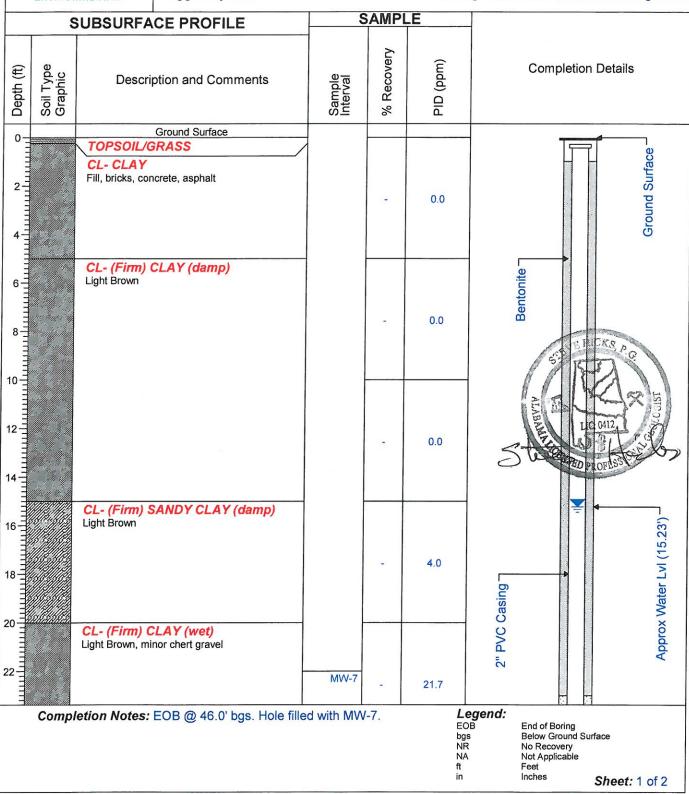

Drilling Contractor: Technical Drilling Service

	S		S	AMPL	.E	-
Depth (ft)	Soil Type Graphic	Description and Comments	Sample Interval	% Recovery	PID (ppm)	Completion Details
34		CL- (Soft) CLAY (damp) Light Brown, sandy, minor weathered chert gravel, strong OPO	MW-5 34.0 - 36.0'	-	1,176	
38				-	-	Grout
40		CL- (Soft) CLAY (damp) Light Brown, sandy, minor weathered chert gravel, strong OPO	MW-5 39.0 - 41.0'	-	1,610	
42				-	-	
44		CL- (Soft) CLAY (damp) Light Brown, sandy, moderate weathered fine chert gravel, slight OPO		-	166.6	Bentonite
48				-	-	sing the second se
50		CL- (Soft) CLAY (damp) Light Brown, sandy, moderate weathered fine chert gravel, slight OPO		-	97.1	10" PVC Isolation Casing
52				-	-	CIsola
54		CL- (Soft) CLAY (damp) Light Brown, sandy, moderate weathered fine chert gravel, slight OPO		-	32.8	
				-	-	
58				-	-	C C C assing C C C C assing C C C C C C C C C C C C C C C C C C C
60		NO RECOVERY	-	-	-	
62				-	-	2" P Sand Sand X Water Lvl (
64		NO RECOVERY		-	-	2" 10-Slot PVC Screer Sand 667'F9 Approx Water Lvl (5
66						►
	Comp	oletion Notes: EOB @ 66.0' bgs. Hole fill	⊔ ed with MW	/-5.	E bộ N	Legend: OB End of Boring gs Below Ground Surface R No Recovery A Not Applicable Feet

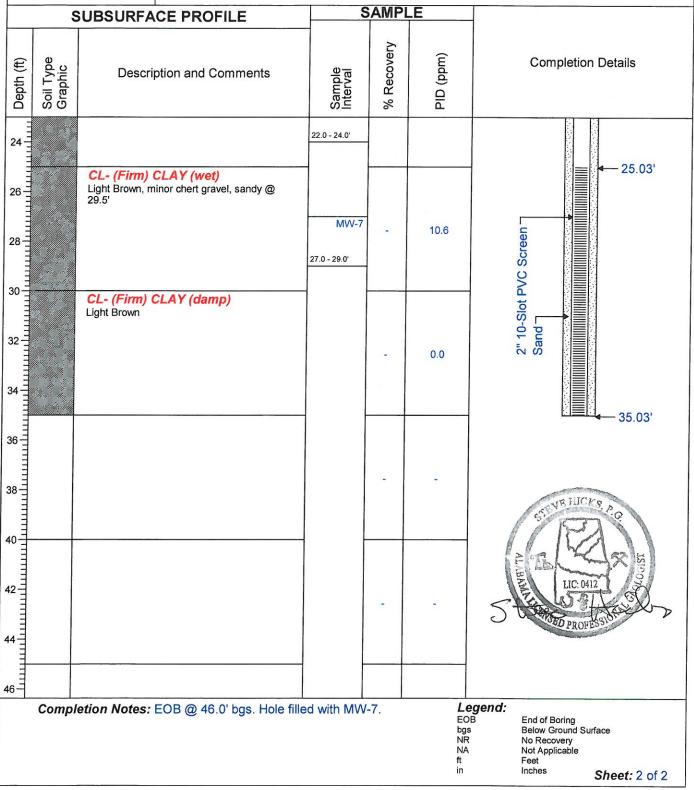
Well Log

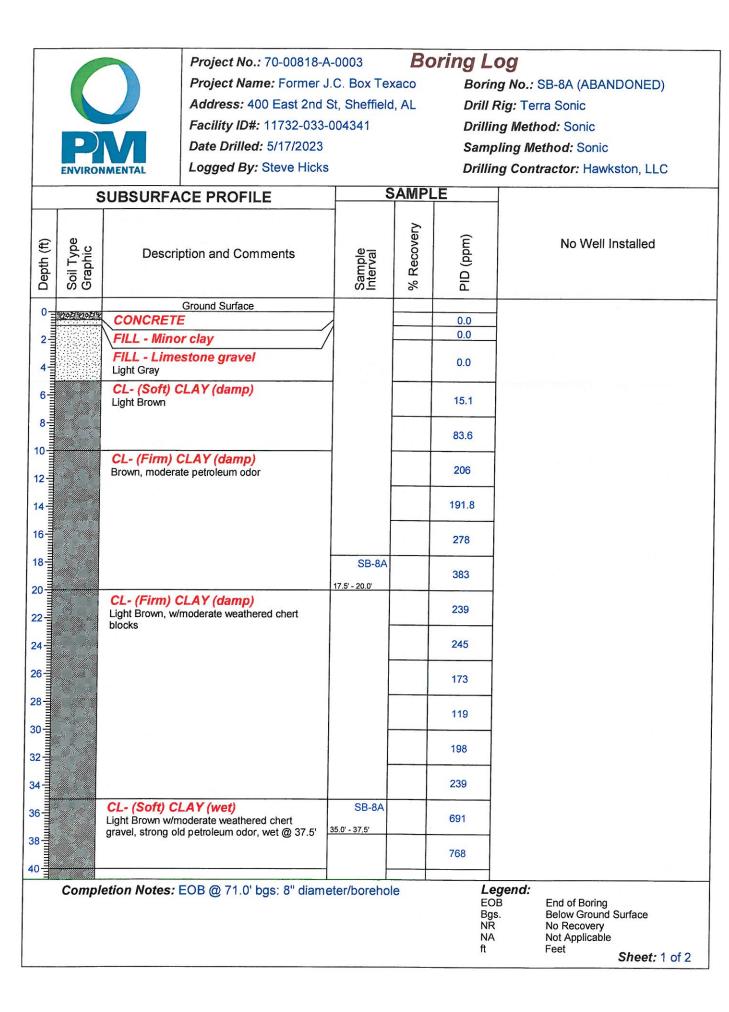

Well No.: MW-6 Drill Rig: CME-75 Drilling Method: HSA Sampling Method: SSS/PHD Drilling Contractor: Technical Drilling Service

Well Log


Well No.: MW-6 Drill Rig: CME-75 Drilling Method: HSA Sampling Method: SSS/PHD Drilling Contractor: Technical Drilling Service

Well Log


Well No.: MW-7 Drill Rig: CME-75 Drilling Method: HSA Sampling Method: SSS/PHD Drilling Contractor: Technical Drilling Service



Well Log

Well No.: MW-7 Drill Rig: CME-75 Drilling Method: HSA Sampling Method: SSS/PHD Drilling Contractor: Technical Drilling Service

0
PN

Project No.: 70-00818-A-0003 Project Name: Former J.C. Box Texaco Address: 400 East 2nd St, Sheffield, AL Facility ID#: 11732-033-004341 Date Drilled: 5/17/2023 Logged By: Steve Hicks

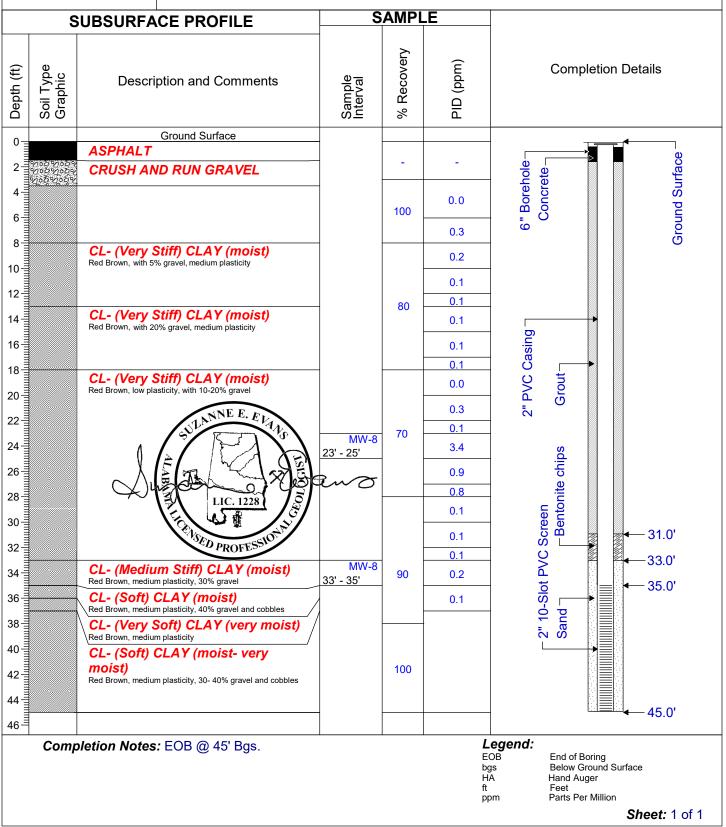
Boring Log

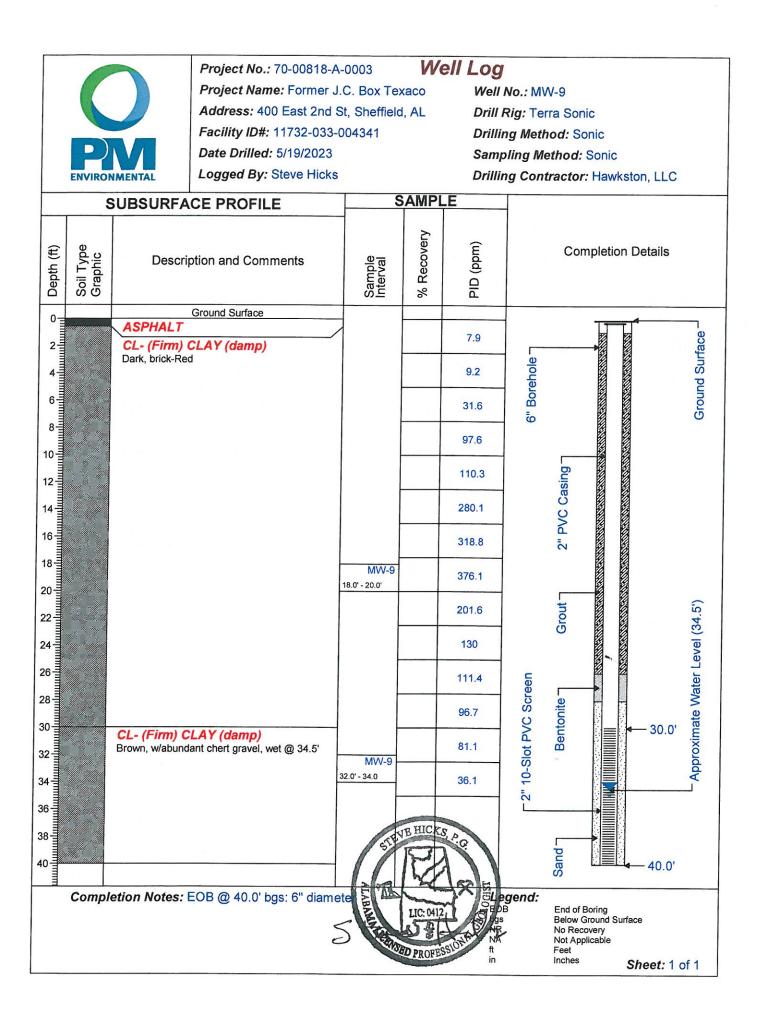
Boring No.: SB-8A (ABANDONED) Drill Rig: Terra Sonic Drilling Method: Sonic Sampling Method: Sonic Drilling Contractor: Hawkston, LLC

	5	SUBSURFACE PROFILE	S		ĻE	
Depth (ft)	Soil Type Graphic	Description and Comments	Sample Interval	% Recovery	PID (ppm)	No Well Installed
42		CL- (Soft) CLAY (moist) Light Brown, w/abundant chert blocks and gravel			610	
44	lle in traff tog i provinsi internationalistication	3.0.0			508	
46 1111		CL- (Soft) CLAY (moist) Light Brown, w/abundant chert blocks and gravel, very strong old petroleum odor			2,180	
48 -					3,365	
52-		CL- (Soft) CLAY (moist) Light Brown, w/abundant chert blocks and gravel			3,980	
54					4,473	
56-					3,980	
58-IIII					3,624	
62					566	
64					419	
66					317	
68		LIMESTONE LENS VOID			-	SEVE HICKS, P.Q
70		LS- (Hard) LIMESTONE (damp) Light Gray, abundant brackiopods LS- (Hard) LIMESTONE (damp)	-		333.6	5TB PAC
72- 74-		Medium Gray, siliceous/cherty w/minor				ALAR LIC: 0412
76		LS- (Hard) LIMESTONE (damp) Dark Gray, siliceous, w/minor brackiopods END OF BORING @ 71'				LIC: 0412
78-1						THE PROFESSION
	Compl	letion Notes: EOB @ 71.0' bgs: 8" diame	ter/boreho	le		R No Recovery

	P		Project Name: Former Address: 400 East 2nd Facility ID#: 11732-033 Date Drilled: 5/23/2023 Logged By: Steve Hicks	St, Sheffield -004341		Drill Rig: Drilling N Sampling	o.: SB-8B (ABANDONED) Terra Sonic <i>Method:</i> Sonic <i>Method:</i> Sonic Contractor: Hawkston, LLC
	S	UBSURFA	CE PROFILE	S	AMPL	E	이 같은 아이는 것이 같았는
Depth (ft)	Soil Type Graphic	Descri	ption and Comments	Sample Interval	% Recovery	PID (ppm)	No Well Installed
2 4 10 11 12 14 16 10 11 12 14 16 10 11 12 14 16 10 10 11 12 14 10 10 10 10 10 10 10 10 10 10 10 10 10		CONCRETI FILL - Mino CL- (Soft) (Brown					
32-	Compl	letion Notes:	EOB @ 61.0' bgs: 6" dian	neter/boreho	ble	Lege EOB Bgs. NR NA ft	nd: End of Boring Below Ground Surface No Recovery Not Applicable Feet

Boring Log


Boring No.: SB-8B (ABANDONED) Drill Rig: Terra Sonic Drilling Method: Sonic Sampling Method: Sonic Drilling Contractor: Hawkston, LLC


	\$	SUBSURFA	CE PROFILE	S	AMPL	E	
Uepth (ft)	Soil Type Graphic		otion and Comments	Sample Interval	% Recovery	PID (ppm)	No Well Installed
		CHERT BLC VOID	DCKS				STRUE HICKS ACTION
	Comp	letion Notes:	EOB @ 61.0' bgs: 6" diame	ter/boreho	le	EC Bg NF NA ft	s. Below Ground Surface No Recovery

Project No.: 70-00818-A-0006WeProject Name: Former J.C. Box TexacoAddress: 400 East 2nd Street, Sheffield, ALFacility ID#: 11732-033-004341Date Drilled: 12/14/2023Logged By: Suzanne Evans

Well Log o Well No.: MW-8 d, AL Drill Rig: Sonic Drilling Method: HA/ Sonic Sampling Method: VersaSonic Drilling Contractor: Walker-Hill Environmental

Project No.: 70-00818-A-0006WeiProject Name: Former J.C. Box TexacoAddress: 400 East 2nd Street, Sheffield, ALFacility ID#: 11732-033-004341Date Drilled: 12/14/2023Logged By: Suzanne Evans

Well Log well No.: MW-10 d, AL Drill Rig: Sonic Drilling Method: HA/ Sonic Sampling Method: VersaSonic Drilling Contractor: Walker-Hill Environmental

	S	UBSURFACE PROFILE	S	AMPL	E			
Depth (ft)	Soil Type Graphic	Description and Comments	Sample Interval	% Recovery	PID (ppm)		Comp	letion Details
0		Ground Surface	_				-	· · · · · ·
2		ASPHALT CL- (Firm) CLAY (moist) Red-Brown, with 10% gravel (chert), medium plasticity	_	-	-	6" Borehole	Concrete	Ground Surface
4		CL- (Firm) CLAY (moist) Red-Brown, with 10% gravel (chert), medium plasticity			7.0	0 0 	Con	Ground
6				100	7.9			
8			MW-10		11.6		L	•
		CL- (Very Firm) CLAY (moist) Red-Brown, with 10% gravel (chert), medium	7.0' - 9.0'		11.6		Grout-	
10		plasticity			2.2		9	
12				50	2.2			
14					0.6	Ďu		•
16					0.3	2" PVC Casing		
18					3.1	E E		
20		CL- (Very Firm) CLAY (moist) Red-Brown, with 20- 30% gravel (chert), medium plasticity			0.3	2"		
22				80	0.3			
24				00	0.3			
26					0.2			
	Comp	oletion Notes: EOB @ 50' Bgs.				Legend: EOB bgs HA ft ppm	End of B Below Gr Hand Aug Feet Parts Per	round Surface ger

Project No.: 70-00818-A-0006Well LogProject Name: Former J.C. Box TexacoWell NAddress: 400 East 2nd Street, Sheffield, ALDrill RFacility ID#: 11732-033-004341DrillinDate Drilled: 12/14/2023SampLogged By: SEEDrillin

Well No.: MW-10 Drill Rig: Sonic Drilling Method: HA/ Sonic Sampling Method: VersaSonic Drilling Contractor: WHE

	S		S	AMPL	E	
Depth (ft)	Soil Type Graphic	Description and Comments	Sample Interval	% Recovery	PID (ppm)	Completion Details
28		CL- (Firm) CLAY (moist) Red-Brown, with 20- 30% gravel (chert),	-		0.3	
30		medium plasticity			0.4	
32					1.0	
34				80	0.3	
36					0.2	
88			_		0.2	
0.0		CL- (Firm) CLAY (moist) Red Brown, medium plasticity, 30% gravel			0.7	Bentonite chips − 40.0,
			MW-10		0.7	
2		CL- (Firm) CLAY (moist) Red-Brown, with 20- 30% gravel (chert), medium plasticity	42' - 43'	100	0.6	
.4		SAND SEAM (wet) CL- (Firm) CLAY (wet) Red-Brown, with 20- 30% gravel (chert),				2" 10-Slot PVC Screen Sand 0.000 Approximate Water Level (43.0')
48		medium plasticity CL- (Firm) CLAY (moist) Red Brown, 30- 40% gravel and cobbles chert				PVC Screen-
50		SULAN	E E. EVAN	100		2" 10-Slot PVC Sand 0.005
52		Juzet	IC. 1228	CI OT CALL	wo	2" 1(Approv
	Comp	oletion Notes: EOB @ 50' Bgs.	ROFESSION		1	Legend: EOB End of Boring bgs Below Ground Surface HA Hand Auger ft Feet ppm Parts Per Million Sheet: 2 of 2

Project No.: 70-00818-A-0006Project Name: Former J.C. Box TexacoAddress: 400 East 2nd Street, Sheffield, ALFacility ID#: 11732-033-004341Date Drilled: 12/11 - 12/13/2023Logged By: SH/SEE

Well Log Well No.: MW-11 Id, AL Drill Rig: Sonic Drilling Method: HA/ Sonic Sampling Method: PHD/ Sonic Drilling Contractor: WHE

	SUBSURFACE PROFILE SAMPLE							
Depth (ft)	Soil Type Graphic	Description and Comments	Sample Interval	% Recovery	PID (ppm)		Comp	pletion Details
0		Ground Surface	_				_	
2		CL- (Soft) CLAY (damp) Brown			0.0	10" Borehole	Concrete	Ground Surface
6 8 8		CL- (Soft) CLAY (damp) Brown, with minor chert gravel			0.0	10"		Gro
10					0.8			
12					0.0			
14					0.0	asing	р. Б	•
16					0.0	lation C	2" PVC Casing	
20					0.0	PVC Isolation Casing	2" PV	
22		CL- (Soft) CLAY (damp) Brown with moderate chert gravel			0.3	0		
24					1.1			
26		CL- (Soft) CLAY moist) Light Brown, slight old petroleum odor			1.8		Grout-	
28					8.9		Grout	
32		CL- (Soft) CLAY (moist) Light Brown, with chert blocks, slight old petroleum odor	MW-11 31' - 33'		27.3		U	
34		CL- (Soft) CLAY (moist) Light Brown, with chert blocks, moderate old petroleum odor			197.6			
	Comp	oletion Notes: EOB @ 68' Bgs.			1	Legend: EOB bgs HA ft ppm	Hand Au Feet	Ground Surface

 Project No.: 70-00818-A-0006
 Wei

 Project Name: Former J.C. Box Texaco
 Address: 400 East 2nd Street, Sheffield, AL

 Facility ID#: 11732-033-004341
 Date Drilled: 12/11 - 12/13/2023

 Logged By: SH/SEE
 Vei

Well Log

Well No.: MW-11 Drill Rig: Sonic Drilling Method: HA/ Sonic Sampling Method: PHD/ Sonic Drilling Contractor: WHE

	S		SAMPLE			
Depth (ft)	Soil Type Graphic	Description and Comments	Sample Interval	% Recovery	PID (ppm)	Completion Details
38		CL- (Soft) CLAY (moist) Light Brown, with chert blocks, strong old petroleum odor	MW-11 36' - 38'		558.3	
40		CL- (Soft) CLAY (wet) Light Brown with moderate chert gravel			367.7	
42 44					214.2	
		CL- (Soft) CLAY (wet)	-		310.8	
46		Light brown with moderate chert blocks			353.4	
48 50					330.6	VC Screen ehole Grout Bentonite Grout Approximate Water Level (57.9) Grout Approximate Depth to Bedrock (60.0')
52					297.5	Grout
54		CL- (Soft) CLAY (wet) Light Brown with Abundant chert blocks			388.1	ximate Dept
56					412.5	/C Screen hole Bentonite Appro
58						Deprov
60			-		621.4	Borehole Borehole 2.882 Appro
62		LIMESTONE White (Fossiliferous)	E. F.			
64		VOID LIMESTONE	E. ELANS			
66			Ast			p ware S
68		X Hopertus		ja		67.5'
70		ALCENSED PRO	FESSIONAL			
70 72						
	Comp	oletion Notes: EOB @ 68' Bgs.	1	1	1	Legend: EOB End of Boring bgs Below Ground Surface HA Hand Auger ft Feet ppm Parts Per Million Sheet: 2 of 2

Well Log

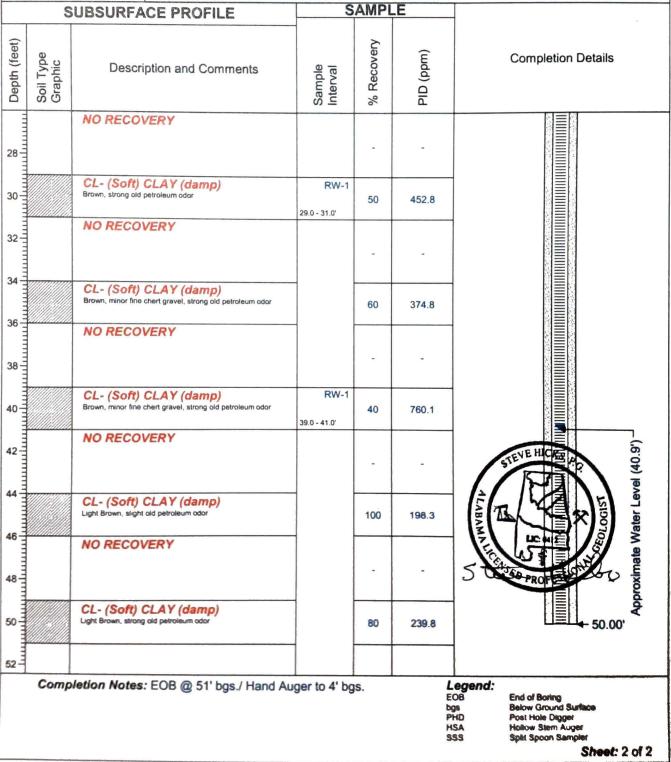
Well No.: PPB Drill Rig: Terra Sonic Drilling Method: Sonic Sampling Method: Sonic Drilling Contractor: Hawkston, LLC

ENVIRONMENTAL LOGGED BY. STT Drining Contractor: Hawkston, LLC									
SUBSURFACE PROFILE			SAMPLE			-			
Depth (ft)	Soil Type Graphic	Descri	ption and Comments	Sample Interval	% Recovery	PID (ppm)	No Well Installed		
0-			Ground Surface						
2-		TOPSOIL CL- CLAY Brick Red, Fill,	topsoil		-	-			
6				ST-1	-	-			
6				5.0 - 7.0'					
8					17				
10		CL- (Firm) C Brick Red	CLAY (damp)		-	-			
12					-	-			
14		CL- (Firm) C Brick Red	CLAY (damp)		-	-			
16					-	-	STBVE HICKS P.C		
20		CL- (Firm) C Light Brown	LAY (damp)		-	-	ALLIC: CHI2		
22					-	-	O REPARED PROFESSION		
	Completion Notes: EOB @ 38.0' bgs. Hole filled with bentonite. Soil profile obtained from MW-6. Legend: EOB End of Boring bgs Below Ground Surface NR NR No Recovery NA Not Applicable ft Feet in Inches Sheet: 1 of 2								

Project No.: R070.00818.00A We Project Name: Former J.C. Box Texaco Address: 400 East 2nd Street, Sheffield, AL Facility ID#: 11732-033-004341 Date Drilled: 10/22/2024 Logged By: Steve Hicks

Well Log RW-1

Well No.: RW-1 Drill Rig: CME-75 Drilling Method: PHD/ HSA Sampling Method: PHD/ SSS Drilling Contractor: Challenge Testing, LLC


-	S	UBSURFACE PROFILE	SAMPLE						
Depth (feet)	Soil Type Graphic	Description and Comments	Sample Interval	% Recovery	PID (ppm)		Completion Details		
0		Ground Surface CL- (Firm) CLAY (damp)	-			_			
2		Fill, Brown		100	0.0	hole	6u	urfac	
4				100	0.2	8" Borehole	4" PVC Casing Grout	Ground Surface	
6		SW- (Loose) SAND (damp) Fill, Light Tan		10	16.8		4" PV	Ū	
8		NO RECOVERY		-	-		Bentonite	Ground Surface	
10		CL- (Firm) CLAY (damp) Dark Brown		50	17.2		Bent	● 10.00'	
12		NO RECOVERY		-	-		Sand		
14		CL- (Firm) CLAY (damp) Brown, minor chert gravel		25	13.8				
16		NO RECOVERY		-	-	4" 10-Slot PVC Screen			
20		CL- (Soft) CLAY (damp) Brown, strong old petroleum odor		80	267	Slot PV(
22		NO RECOVERY		-	-	4" 10-5			
24		CL- (Soft) CLAY (damp) Brown, moderate old petroleum odor		80	95.4				
Completion Notes: EOB @ 51' bgs./ Hand Auger to 4' bgs. EOB End of Boring bgs Below Ground Surfac PHD Post Hole Digger HSA Hollow Stem Auger SSS Split Spoon Sampler							Boring Ground Surface le Digger Stem Auger		

Project No.: R070.00818.00A VVC Project Name: Former J.C. Box Texaco Address: 400 East 2nd Street, Sheffield, AL Facility ID#: 11732-033-004341 Date Drilled: 10/22/2024 Logged By: Steve Hicks

Well Log RW-1

Well No.: RW-1 Drill Rig: CME-75 Drilling Method: PHD/ HSA Sampling Method: PHD/ SSS Drilling Contractor: Challenge Testing, LLC

4 1

O PM

Project No.: R070.00818.00A Project Name: Former J.C. Box Texaco Address: 400 East 2nd Street, Sheffield, AL Facility ID#: 11732-033-004341 Date Drilled: 10/28/2024 Logged By: Steve Hicks

Well Log RW-2

Well No.: RW-2 Drill Rig: CME-75 Drilling Method: PHD/ HSA Sampling Method: PHD/ SSS Drilling Contractor: Challenge Testing, LLC

-	S	UBSURFACE PROFILE	S	AMPL	E			
Depth (feet)	Soil Type Graphic	Description and Comments	Sample Interval	% Recovery	PID (ppm)		Compl	etion Details
0	້ວິຊຳວິດ	Ground Surface	-			_	7	
2	10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Fill		100	0.0	ole	6	face
		LS- CRUSHER RUN Fill, 57 stone		100	0.0	8" Borehole-	Grout	d Sur
4		CL- (Soft) CLAY (damp) Dark Brown	1	25	0.5		4" PVC Casing Grout	Ground Surface
8		NO RECOVERY		-	-		4	Ground Surface
10		CL- (Soft) CLAY (damp) Brown	1	5	0.1	1		
12		NO RECOVERY		-	-			
14		CL- (Soft) CLAY (damp) Brown	1	100	1.5			
16		NO RECOVERY		-	-	-		F
20		CL- (Soft) CLAY (damp) Brown	1	5	0.5	-		
22		NO RECOVERY		-	-			creen
24		CL- (Firm) CLAY (damp) Light Brown	1	100	4.1	-	Bentonite	≤ + 25.00' >
26		NO RECOVERY		-	-			- 25.00' bAC Screen
30	///////////////////////////////////////	CL- (Firm) CLAY (damp) Light Brown	1	5	1.5			
32 34		NO RECOVERY		-	-		Sand	
	Comp	letion Notes: EOB @ 66' bgs.	1	L		Legend: EOB bgs PHD HSA SSS	Post Hole Hollow St	ning ound Surface

Project No.: R070.00818.00A Project Name: Former J.C. Box Texaco Address: 400 East 2nd Street, Sheffield, AL Facility ID#: 11732-033-004341 Date Drilled: 10/28/2024 Logged By: Steve Hicks

Well Log RW-2

Well No.: RW-2 Drill Rig: CME-75 Drilling Method: PHD/ HSA Sampling Method: PHD/ SSS Drilling Contractor: Challenge Testing, LLC

	S	UBSURFACE PROFILE	S	AMPI	E	
Depth (feet)	Soil Type Graphic	Description and Comments	Sample Interval	% Recovery	PID (ppm)	Completion Details
36		CL- (Firm) CLAY (damp) Light Brown, abundant chert gravel	RW-2 34.0 - 36.0'	70	6.9	
38		NO RECOVERY		-	-	
40		CL- (Firm) CLAY (damp) Light Brown, moderate chert gravel		70	1.4	
42		NO RECOVERY		-	-	
44		CL- (Firm) CLAY (damp) Light Brown, moderate weathered chert gravel		60	0.6	
46		NO RECOVERY		-	-	
50		CL- (Soft) CLAY (damp) Light Brown, moderate weathered chert blocks	-	20	1,048.1	
52		NO RECOVERY		-	-	vei (50.3')
54		CL- (Soft) CLAY (moist) Light Brown, moderate weathered chert gravel, strong old petroleum odor]	30	32.6	STEVE HICK III
58		NO RECOVERY		-	-	
60		CL- (Soft) CLAY (wet) Light Brown, abundant chert gravel		40	15.1	Pproximate
62		NO RECOVERY		-	-	5-colored and
64		CL- (Soft) CLAY (wet) Light Brown, abundant weathered chert gravel		60	7.1	65.00'
66 linning						
	Comp	<i>letion Notes:</i> EOB @ 65' bgs.		L		Legend: EOB End of Boring bgs Below Ground Surface PHD Post Hole Digger HSA Hollow Stem Auger SSS Split Spoon Sampler Sheet: 2 of 2

A 10 M

Project No.: R070.00818.00A We Project Name: Former J.C. Box Texaco Address: 400 East 2nd Street, Sheffield, AL Facility ID#: 11732-033-004341 Date Drilled: 10/24/2024 Logged By: Steve Hicks

Well Log RW-3

Well No.: RW-3 Drill Rig: CME-75 Drilling Method: PHD/ HSA Sampling Method: PHD/ SSS Drilling Contractor: Challenge Testing, LLC

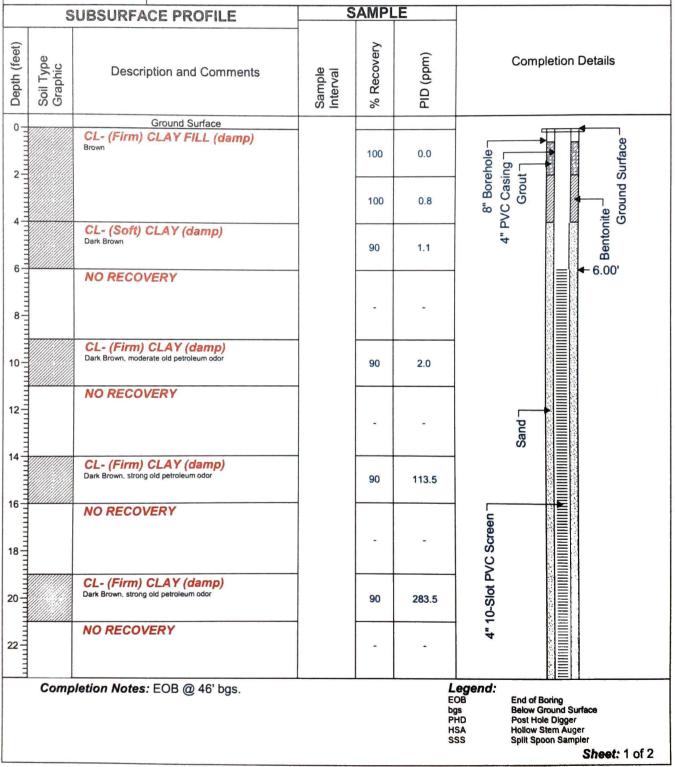
-	S	UBSURFACE PROFILE	S	AMPI	E		_			
Depth (feet)	Soil Type Graphic	Description and Comments	Sample Interval	% Recovery	PID (ppm)		Comp	letion Details		
0-		Ground Surface	-			_	-	,,,,,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
2		CL- (Loose) CLAY FILL (damp) Brown, moderate chert blocks		100	0.3	shole		urface		
4				100	0.2	8" Borehole	6 Grout	Ground Surface		
				100	0.9		4 7 >	υ		
8		NO RECOVERY		-	-		Bentonite	Ground Surface		
10		CL- (Firm) CLAY (damp) Brown	-	80	1.7		Bent	- 10.00'		
12		NO RECOVERY		-	-		Sand			
14		CL- (Firm) CLAY (damp) Brown, minor chert gravel		90	11.3					
16		NO RECOVERY	-	-	-	4" 10-Slot PVC Screen				
20		CL- (Firm) CLAY (damp) Brown, minor weathered chert gravel, moderate old petroleum odor	RW-3	20	1,080.0	Slot PV				
22		NO RECOVERY		-	-	4" 10-				
24		CL- (Firm) CLAY (damp) Brown, abundant chert gravel, moderate old petroleum odor		15	392					
	Comp	<i>letion Notes:</i> EOB @ 51' bgs.	1			Legend: EOB bgs PHD HSA SSS	Post Hol Hollow S	oring round Surface		

Project No.:R070.00818.00AWeProject Name:Former J.C. Box TexacoAddress:400 East 2nd Street, Sheffield, ALFacility ID#:11732-033-004341Date Drilled:10/24/2024Logged By:Steve Hicks

Well Log RW-3

Well No.: RW-3 Drill Rig: CME-75 Drilling Method: PHD/ HSA Sampling Method: PHD/ SSS Drilling Contractor: Challenge Testing, LLC

1


	S	UBSURFACE PROFILE	S	AMPL	E		
Depth (feet)	Soil Type Graphic	Description and Comments	Sample Interval	% Recovery	PID (ppm)		Completion Details
28		NO RECOVERY		-	-		
30		CL- (Firm) CLAY (damp) Brown, moderate chert gravel, strong old petroleum odor	RW-3 29.0 - 31.0'	15	287		2000 2000 2000 2000 2000 2000 2000 200
32		NO RECOVERY		-	-		Approximate Water Level (34.1')
34		CL- (Firm) CLAY (damp) Brown, moderate chert gravel, moderate old petroleum odor	1	50	266.6		34.1 ¹)
36		NO RECOVERY		-	-		
38		CL- (Soft) CLAY (damp) Brown, moderate chert gravel, moderate old petroleum odor	-	20	70.9	-	Approximate Water Level (34.1')-
42	4000000	NO RECOVERY					Approxit
44				ST	NE HICKS, P		
46				ALABA	M	TOCIST	
48				MALICE	LIC MIZ	LOROL VI	
50			2	as	SO ADATESS		50.00
52-							
	Comp	eletion Notes: EOB @ 51' bgs.			8 1 1	Legend: EOB Dgs PHD HSA BSS	End of Boring Below Ground Surface Post Hole Digger Hollow Stam Auger Split Spoon Sampler Sheet: 2 of 2

O PRO

Project No.: R070.00818.00A We Project Name: Former J.C. Box Texaco Address: 400 East 2nd Street, Sheffield, AL Facility ID#: 11732-033-004341 Date Drilled: 10/23/2024 Logged By: Steve Hicks

Well Log RW-4

Well No.: RW-4 Drill Rig: CME-75 Drilling Method: PHD/ HSA Sampling Method: PHD/ SSS Drilling Contractor: Challenge Testing, LLC

Project No.: R070.00818.00A Project Name: Former J.C. Box Texaco Address: 400 East 2nd Street, Sheffield, AL Facility ID#: 11732-033-004341 Date Drilled: 10/23/2024 Logged By: Steve Hicks

Well Log RW-4

Well No.: RW-4 Drill Rig: CME-75 Drilling Method: PHD/ HSA Sampling Method: PHD/ SSS Drilling Contractor: Challenge Testing, LLC

	S	UBSURFACE PROFILE	S	AMP	LE	
Depth (ft)	Soil Type Graphic	Description and Comments	Sample Interval	% Recovery	PID (ppm)	Completion Details
24		CL- (Firm) CLAY (damp) Dark Brown, abundant small chert gravel, strong old petroleum odor	RW-4	90	886.4	
26		NO RECOVERY	24.0 - 26.0'	-	-	Approximate Water Level (40.91*)
30		CL- (Soft) CLAY (damp) Dark Brown, abundant small chert gravel, strong old petroleum odor	-	5	278	
32		NO RECOVERY		-	-	£
34		CL- (Soft) CLAY (damp) Brown, abundant small chert gravel, moderate old petroleum odor	-	15	231.8	evel (40.9
36		NO RECOVERY		-	-	Approximate Water Level (40.91')
40		CL- (Soft) CLAY (damp) Light Brown, abundant chert gravel, strong old petroleum odor	RW-4 39.0 - 41.0'	20	850.4	Approxim
42 44 46		Refusal @ 46' - Rock	STEVE HIC	X	LEOTOCIST	
	Comp	letion Notes: EOB @ 46' bgs. 5-0	SALAB PROF	A SUOL	2	Legend: EOB End of Boring bgs Below Ground Surface PHD Post Hole Digger HSA Hollow Stem Auger SSS Split Spoon Sampler Sheet: 2 of 2

Appendix B

February 17, 2025

Ms. Suzanne Evans, PG PM Environmental 4050 Helton Drive, Suite 111 Florence, Alabama 35630

 RE: quantified High-Resolution Site Characterization Report and BOS 200+ Injection Proposal Former Gasoline Service Station 400 East 2nd Street Sheffield, Colbert County, Alabama 35660

Ms. Evans,

AST Environmental, Inc. (AST) appreciates the opportunity to report on the recently completed *quantitative* High Resolution Site Characterization (*q*HRSC) program and provide this proposal to address the remaining petroleum hydrocarbon mass at the Former Gasoline Service Station facility in Sheffield, Alabama. AST supported PM Environmental (PM) with completing the Remedial Design Characterization (RDC) sampling, the first major component of the qHRSC program, at the site on November 11th thru November 15th, 2024, and has prepared the remedial design based on the updated Quantitative Conceptual Site Model. The following are the Site-Specific Clean-up Levels (SSCLs) and remediation goals for the site:

- LNAPL Mitigation
- Soil Site-Specific Clean-Up Levels (SSCL) from 3-Phase Partitioning Model
- Groundwater Resource Protection Target Levels

The RDC sampling consisted of the completion of nine (9) soil borings (RDC-01 thru RDC-09). On November 11th thru 15th, 2024, AST staff mobilized to the site to support PM with completing the RDC. An Emlid Reach RS+ was used to survey the RDC boring locations' geospatial coordinates and the site map has been updated to show the approximate location of each boring as shown on Figure 1. Soil borings were advanced to depths ranging from 53' below ground surface (bgs) in RDC-07 to 67' bgs in RDC-03. RDC-05 could not be completed due to early refusal encountered multiple times at approximately 2' to 3' bgs. There was no supporting evidence that refusal was due to encountering bedrock in any of the soil borings. Soil boring logs were generated with concentration versus depth striplog plots and are included as Attachment A. Soil samples were collected using a Geoprobe® 3230DT with dual-tube sampling method. Samples were collected from every 2-foot interval with sufficient recovery extending to the total boring depth, soil samples were submitted for laboratory analysis.

Each RDC laboratory soil sample collected was packed into a 2-ounce glass container with minimal headspace and sealed with a Teflon-lined lid. Soil samples were immediately packed inside an ice-filled cooler and refrigeration was maintained prior to shipment via overnight courier to the Remediation Products, Inc. (RPI) Project Support Laboratory in Golden, CO. The soil samples were then analyzed for volatile organic compounds (VOCs) using EPA Method 8260b. The RPI analytical results are included as Attachment B and the soil results are summarized in Table 1.

The established Soil GRPs for this facility would leave considerable hydrocarbon mass in the subsurface, this residual mass can continue to serve as a long-term source for dissolved-phase concentrations in groundwater. To achieve the GRPs for groundwater (e.g. benzene 1.08 mg/L), a revised site-specific soil standard for individual constituents of concern (COCs) must be considered to be protective of groundwater over time. Using a 3-phase partitioning model provided by the State of Washington (https://app.leg.wa.gov/wac/default.aspx?cite=173-340-747), more stringent site-specific soil standards for the relevant COCs must be considered when evaluating petroleum impacts in saturated soil. AST is not suggesting that soil be remediated to this level, but rather mass balance calculations must consider soil concentrations that exceed this site-specific clean-up level (SSCL) when assessing/evaluating remedial design calculations. The calculated values for each COC using this 3-phase partitioning model are included in Attachment C.

Isoconcentration Maps showing the highest detection of a particular constituent at a specific sampling location were also generated to assist with the visualization of the horizontal extent of contaminants of concern in soil:

- Soil Benzene Figure 2
- Soil Total Xylene Figure 3
- Soil Naphthalene Figure 4
- Soil TVPH Figure 5

A cross section showing lithology and the distribution of contaminant mass was generated to assist with the visualization of the vertical extent of lithology and select contaminants of concern in soil:

- Cross section A-A' Benzene Figure 6
- Cross Section A-A' Total Xylene Figure 7
- Cross Section A-A' Naphthalene Figure 8
- Cross Section A-A' TVPH Figure 9

Existing monitoring wells MW-03, MW-04, and MW-05 were gauged, purged, and sampled on November 11th, 2024. Monitoring well MW-01 was gauged, but there was insufficient groundwater to purge and collect a sample for analysis. The gauging information is included as Table 2, a Groundwater Surface Elevation Contour Map using the November 2024 gauging data is included as Figure 10.

Each groundwater sample was poured into two (2) unpreserved 40-mL VOAs and two (2) hydrochloric acid preserved 40-mL VOAs with no headspace and sealed with a silicone septa-lined lid. Groundwater samples were immediately packed inside an ice-filled cooler and refrigeration was maintained prior to shipment via overnight courier to the Remediation Products, Inc. (RPI) Project Support Laboratory in Golden, CO. The groundwater samples were then analyzed for VOCs using EPA Method 8260b, Anions using EPA Method 300.1 Ion Chromatography, and Dissolved Gases using EPA Method RSK-175. The RPI analytical results are included as Attachment B and the groundwater results are summarized in Table 3.

Isoconcentration Maps showing selected analytes in groundwater are included as the following Figures:

Ms. Susanne Evans, PG February 17, 2025 Page 3

- Groundwater Benzene Figure 11
- Groundwater TVPH Figure 12

Interactive models showing key constituents of concern (benzene and TVPH) above the SSCL or C_{sat} in soil can be accessed and viewed at the following clickable weblinks:

- Benzene in Soil with 0.444 mg/kg Limit Threshold
- Total Xylene in Soil with 159.02 mg/kg Limit Threshold
- Naphthalene in Soil with 11 mg/kg Limit Threshold
- TVPH in Soil with 250 mg/kg Limit Threshold

One or more COC in saturated soil was detected above the SSCL for the facility in soil borings RDC-01 and RDC-04, see Table 1 for details of each soil boring and respective COCs exceeding their respective SSCLs. A TVPH concentration in unsaturated soil exceeds the residual saturation concentration (C_{sat}^{1}) threshold in soil borings RDC-01, RDC-02, and RDC-04. Benzene, naphthalene, and MTBE constituent concentrations were detected above the GRPs in groundwater from monitoring well MW-01. AST recommends shallow spot over-excavation and off-site disposal of petroleum impacts in unsaturated soil near RDC-01 and RDC-07, and insitu injection of BOS 200+[®] to mitigate dissolved petroleum hydrocarbons impacts that remain above the GRPs in MW-01 at the facility.

BOS 200+[®] INJECTION DESIGN

AST has provided an optimized design by enhancing BOS 200[®] to include supplemental nutrients and substates to help facilitate the biological treatment of the significant total mass within the treatment area. To mitigate the limitations of carbon adsorption alone, AST is proposing to add supplemental nutrients and substrates (yeast extract and food grade corn starch) to create conditions conducive to further accelerate microbial activity beyond what is normally seen with traditional BOS 200[®]. Supplemental sulfate (terminal electron acceptor) is also being added in two forms: 1) magnesium sulfate (Epsom salt) to supply a high concentration soluble form of sulfate during injection and 2) food grade gypsum to supply a slow-release low soluble form for sustained dosing after the injections are completed; soluble sulfate will support the long-term degradation of petroleum hydrocarbons.

The product comes as a fine-grained dry material which consists of carbon, calcium sulfate, nitrate, phosphate, and ammonia in a proprietary blend. BOS 200[®] is 77% by weight carbon and up to 19% gypsum. Gypsum is 79% by weight sulfate which translates to approximately 15% by weight sulfate in BOS 200[®]. The BOS 200[®] is mixed with water and a facultative blend of microbes (inoculation with aerobic and anaerobic microbes) to create a solids suspension. This is now an ideal environment for biological degradation, where hydrocarbons are adsorbed on to BOS 200[®] particles made up of:

- Electron Acceptors: oxygen, nitrate, ammonia, and sulfate (primary)
- Nutrients: phosphorus and nitrogen
- Aerobic and anaerobic blend of facultative microbes (over 35 species)

There is a lower limit of the amount of BOS 200[®] that can be installed and still be effective at a site. This amount is driven by several site features such as soil type, groundwater flux, and contaminant concentrations. The success in achieving cleanup goals is not just in the product installed, but the distribution

¹ The Interstate Technology Regulatory Council (ITRC) defines "C_{sat}" is a theoretical value, above which LNAPL is likely to exist in the soil pores.

of the product in subsurface. Distribution is controlled by the injection techniques used: i.e., vertical and horizontal spacing are a function of soil type, high pressure injection vs. low pressure injection, and top down vs. bottom up. For this site, given the soil type and contaminant mass, AST proposes to optimize the injectate distribution by 1) using top-down techniques, 2) using relatively high-pressure injections (enough pressure to provide localized soil lifting and propagation of BOS 200[®] from the injection tip), and 3) adjusting the horizontal and vertical injection spacing.

Given the soil types at this site, it is expected that the injection pressures will vary from 200 to 600 psig (measured at the discharge of the injection pump, the injection system pressure losses are approximately 100 psig for hoses, valves, and injection tips). In fine-grained sediments (clays and silts) there is typically a break pressure (soil lifting pressure) that is sustained momentarily and then the pressure drops off to a lower reading (propagation pressure). Coarse-grained sediments (sands and fine gravels) typically display a steady progression of pressure as the lithology near the injection tip is fluidized and turbulent flow is created. The discussion of the vertical and horizontal injection spacing is provided below for the injection area.

The unique properties of BOS 200[®] and the method of implementation provide a safe and predictable alternative to competing technologies used in the industry today. Installation of BOS 200[®] provides immediate removal of contaminant mass in groundwater while providing long term protection through continued adsorption and biodegradation, rebound effects are typically eliminated through successful dosing and installation. This is achieved without hazardous byproducts, radical subsurface chemistry changes, or volatilization, nor is there a need to overcome natural background constituents or properties prior to treating contaminant mass. Existing compliance points can be preserved during and after injection; if BOS 200[®] enters a monitoring well, redevelopment using a downhole pump to remove the accumulated solids can return the monitoring well to pre-injection conditions.

Daylighting (surfacing of injected material) is common at most injection sites due to any number of factors including (but not limited to): previous investigative and/or corrective action activities, current weather conditions (dry spell causing surface desiccation, wet period with elevated GW table, etc.), anthropogenic disturbances (buried utilities, constructed structures like building footers, basements, UST systems and piping, etc.), poor surface condition (deteriorated asphalt, cracks in concrete), and natural features like plants/trees and associated root systems. While minor in most cases, daylighting requires recognition, immediate action, and proper housekeeping as its occurrence can indicate some potential hazards or concerns during injection. These could include impacting utility corridors, injectate entering basements, and negative perception of an uninformed bystander.

To mitigate daylighting and its perceived hazards and/or concerns, detailed pressure logs and continuous monitoring of the immediate surroundings by field personnel is maintained throughout the injection project. Pressure logs maintained during injection are especially important as they can shed light on the type of soil where injection is being completed and whether injectate is simply bypassing to a previous depth or other preferential path. During injections, the operator of the injection system will monitor for sudden pressure and/or flow changes as these may indicate either fracture propagation or short-circuiting.

The methodology and approach for in-situ injection implemented by AST is designed for both the success in optimizing subsurface distribution of remedial treatment but also in minimizing daylighting and preventing impacts to buried utilities and/or structures. Daylighting and short-circuiting wastes product, if the product is not being installed correctly it cannot effectively remediate contaminants of concern. Injection grids are tightly spaced horizontally to provide adequate subsurface coverage and contaminant contact, but also minimize daylighting and frequency of contact with adjacent features of concern. Injection point locations can be adjusted for requested/required setback buffers from utilities, UST systems, structures, and

monitoring wells. Vertical distances between injection intervals are spaced in such a manner as to maintain borehole seal and prevent daylighting back up around the rod itself.

Injection points within the grid are completed at alternating vertical intervals (compared to the closest adjacent points) to provide both overlap and separation off-sets, but they are also completed in a staggered sequence of every other point in a row and skipping a row as work progresses. This process is used to minimize hydraulic loading and allowing enough time to discharge accumulated subsurface pressure in an area from hydraulic injection of fluids. Finally, allowing injection point back-pressure to stabilize before tooling removal and proper abandonment of completed injection points following tooling removal prevents daylighting once the "cork is removed from the bottle" and short-circuiting to adjacent injection points during subsequent borehole completion.

The horizontal extent of the proposed injection area is depicted on the attached Figure 13, the BOS 200+[®] injection design (see Attachment C) has been prepared for each area using the following approach:

- 1. Current laboratory analytical data from the RDC soil sampling was used to determine the vertical and horizontal extent of petroleum hydrocarbons impacts in each area.
- 2. Using the data for each area, contaminant mass loading on a unit basis (lbs. TVPH or benzene per ft³ of impacted media) was determined. The analytical data in the historical tables combined with horizontal and vertical dimensions between monitoring wells were used to develop contaminant mass loadings (lbs. TVPH or benzene per ft³ of impacted media) for each of the designated areas.
- 3. The contaminant mass loadings were then used to determine the BOS 200+[®] loadings (lbs. BOS 200+[®] installed per ft³ of impacted media) necessary to remediate a specific depth interval within a designated injection area.

The BOS 200+[®] slurries will be prepared using AST's trailer mounted mixing and injection system. AST utilizes a top-down injection technique to ensure effective distribution within the subsurface during in-situ injection. Injection is performed using one or two Wanner Engineering Hydracell D35 positive displacement diaphragm pumps capable of 35 to 70 gallons per minute (gpm) and up to 1,200 psig. The pumps are typically set at the upper threshold flow rate of 35 gpm (single pump) to 70 gpm (two pumps in parallel) to maximize fluid velocity at the injection tip during BOS 200[®] installation. This is critical to ensuring effective distribution of suspended slurries in fine-grained low permeability sediments. One and half inch (1.5″) or two and a quarter inch (2.25″) diameter Geoprobe[®] rods are advanced to the target intervals using direct-push from a Geoprobe[®] 7822DT, BOS 200[®] slurries are delivered through a 1.5″ or 2.25″ Geoprobe[®] injection tip with custom-oriented ports with number and port diameter on the horizontal plane specific to the site-specific geology of the facility.

AST will provide an injection summary table which details the metrics of the injection event, these details include:

- 1. The injection point location
- 2. The time each injection occurred
- 3. The pressure metrics used to support induced fracture emplacement has occurred
- 4. The pounds of BOS 200[®] and supplements injected at each interval, total amount per day, and total for the project
- 5. The vertical interval of each injection in feet below ground surface (bgs)
- 6. Any comments or observations by staff while performing the remedial injections

Ms. Susanne Evans, PG February 17, 2025 Page 6

It is important to note that the "Injection Pressure" column recorded in this summary table represents the sum of the internal system pressure plus formational pressure. The internal system pressure includes all losses due to fittings, hoses, valves, and drill tooling. A close approximation of the actual pressure seen at the injection tip outlet can be found by subtracting the system losses from the recorded value observed at the discharge end of the pump. For the components used during an injection event, the system losses are approximately 100-600 psi. This calculation is included under a separate column titled "Formation Pressure".

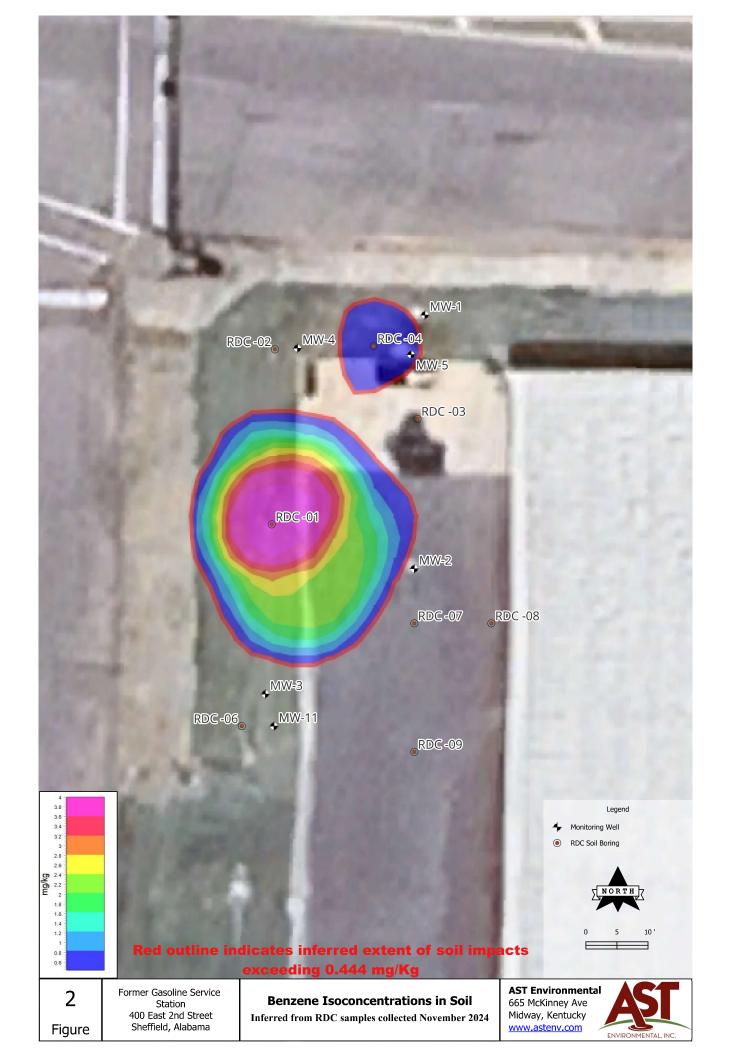
POST INJECTION SAMPLING

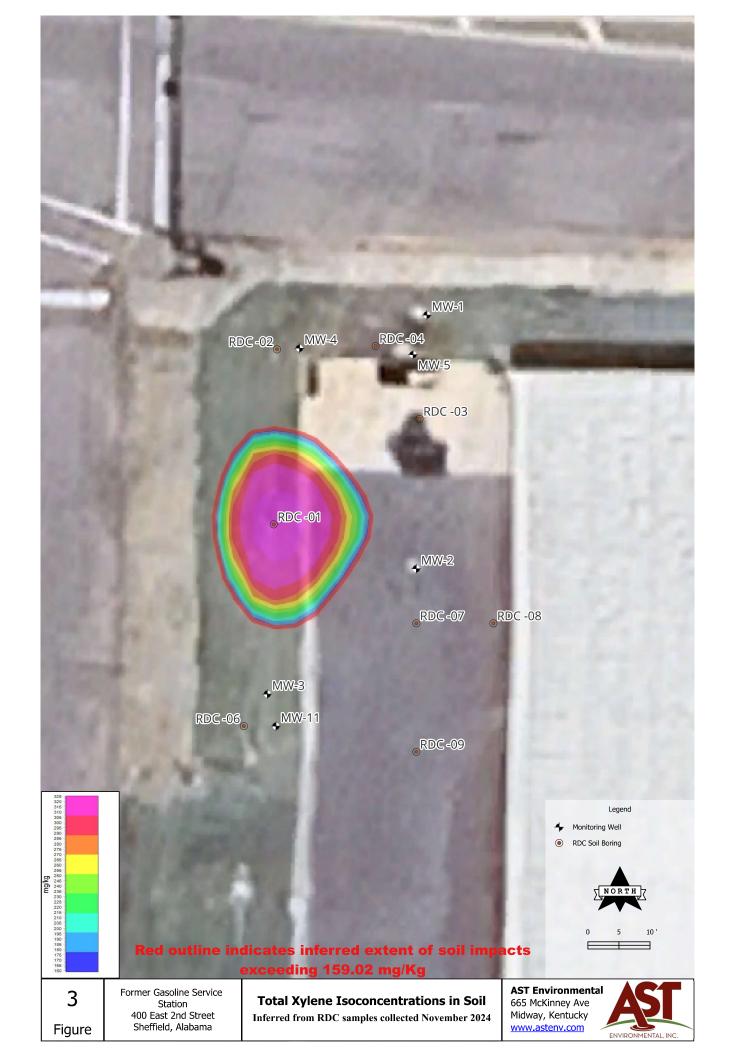
After the injections are completed, AST recommends performing progress groundwater sampling events at intervals of one-month post-injection and quarterly thereafter. The groundwater-monitoring events should include VOCs using EPA Method 8260b, Anions using EPA Method 300.1 Ion Chromatography, and Dissolved Gases using RSK 175; these analyses will be performed at Remediation Products Incorporated's (RPI) Project Support Laboratory in Golden, CO. Analyses performed by RPI are at no cost to the project.

DATA ANALYSIS AND REPORTING

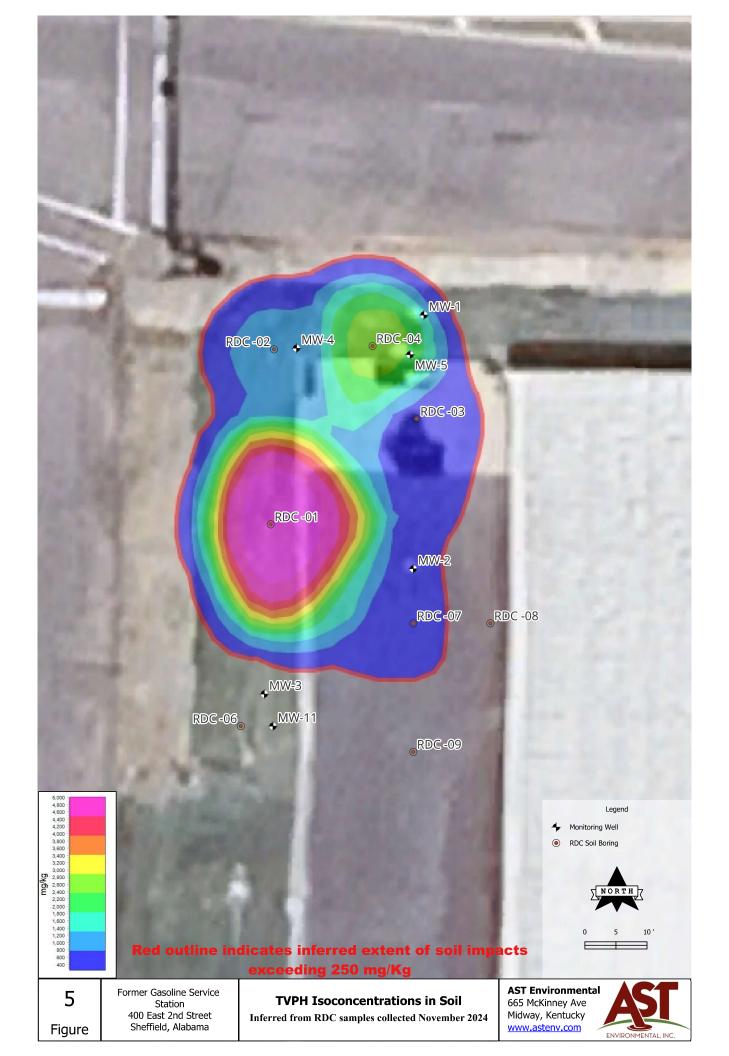
Once the injection work is complete, AST will prepare and submit a letter report summarizing the field activities to include: a chronology of events at the site, a figure depicting sampling and injection point locations, a data table summarizing the details of the injection event (point location ID, time, pressures, depths, mass injected in pounds, and any comments), photographs of the injection activities, soil and groundwater data generated, amount of BOS 200+^{*} injected, field observations, and recommendations for future effort.

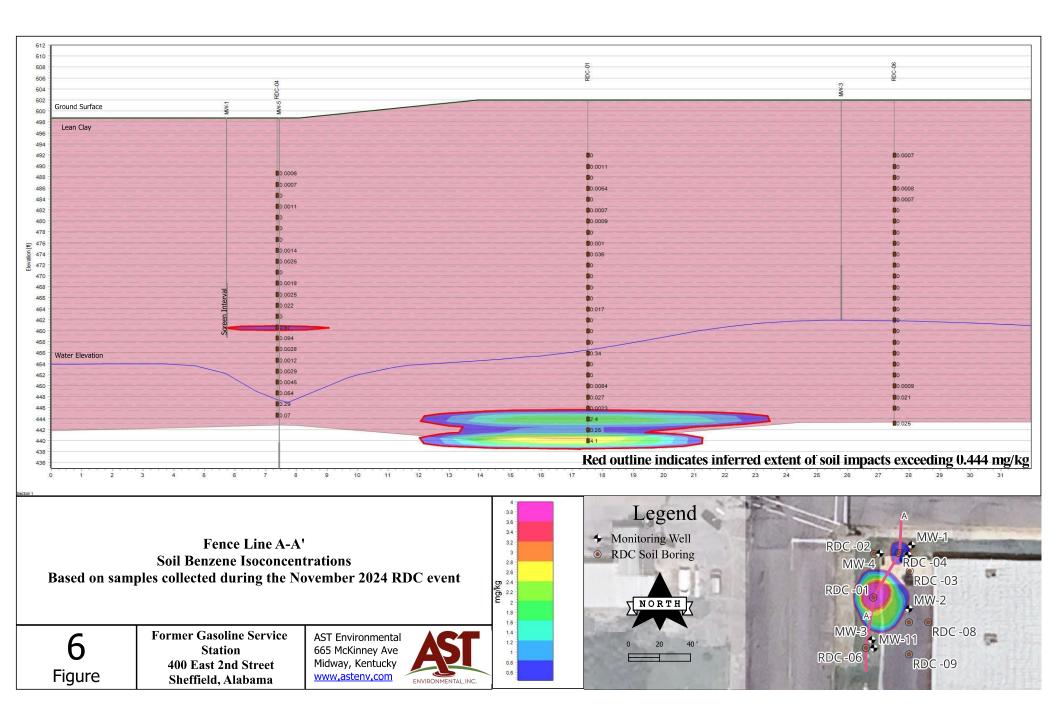

If you have any questions or wish to discuss the information provided herein, please feel free to call me at (859) 846-4900 or write via email at <u>bbrab@astenv.com</u>.

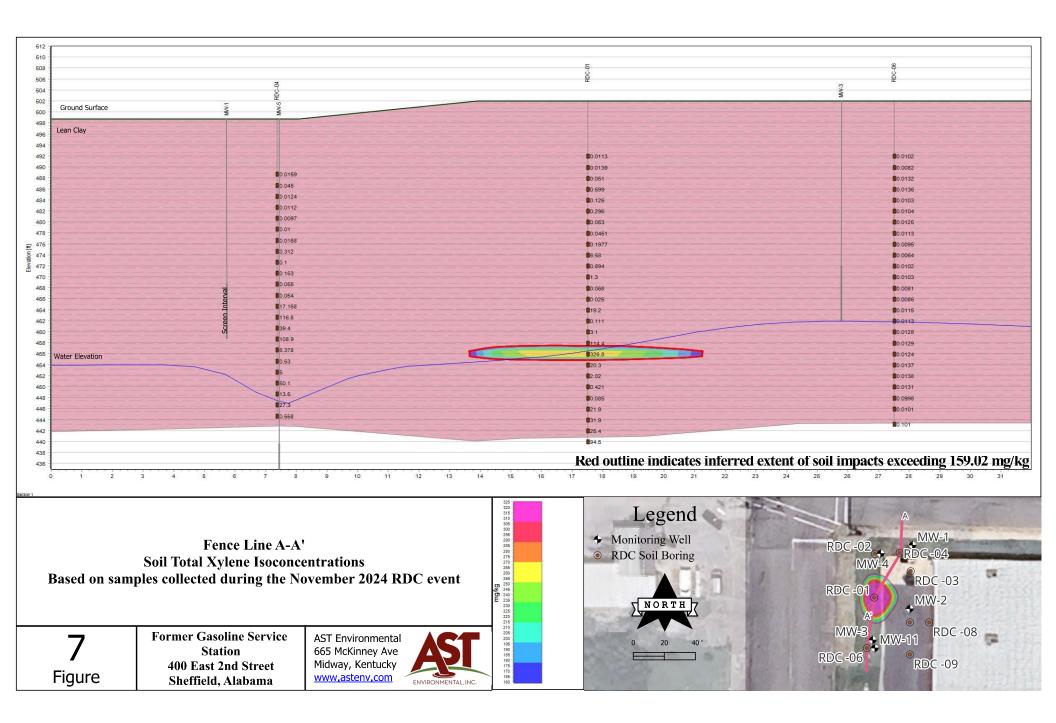

Sincerely,

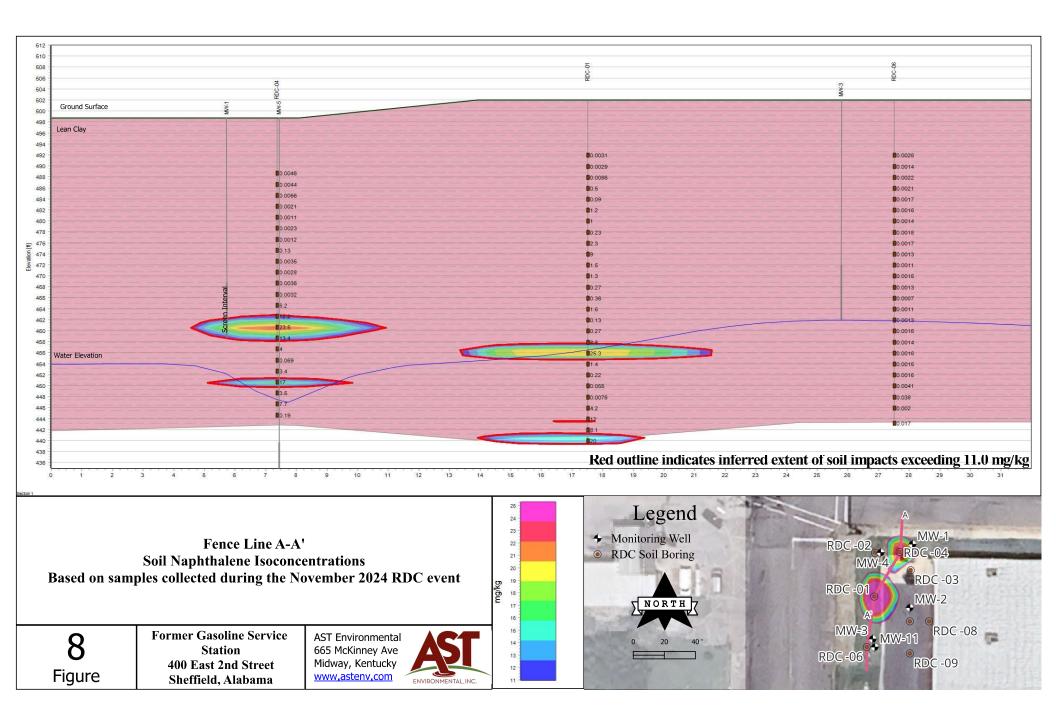

AST Environmental, Inc.

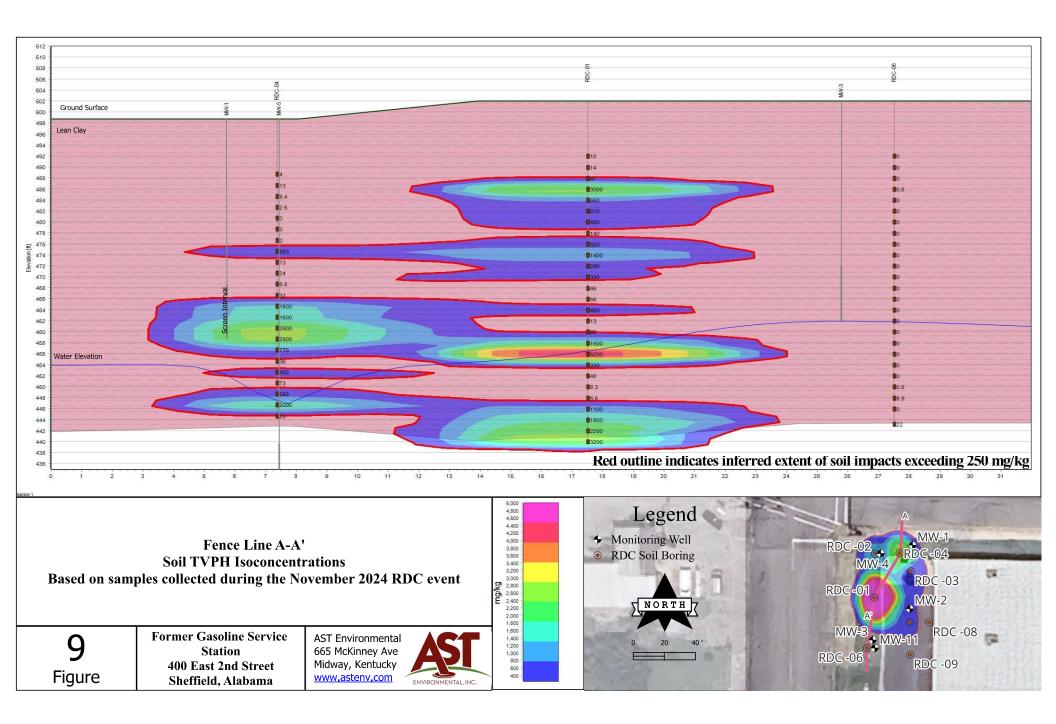
Bill Brab, C.P.G., P.G. Senior Project Manager

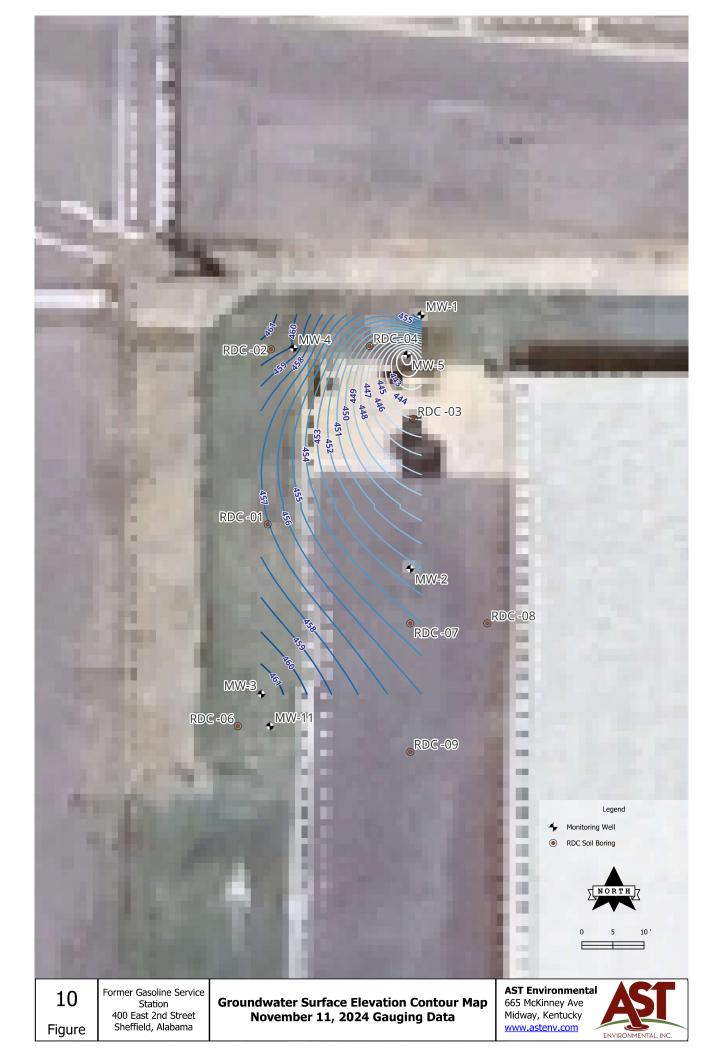

FIGURES

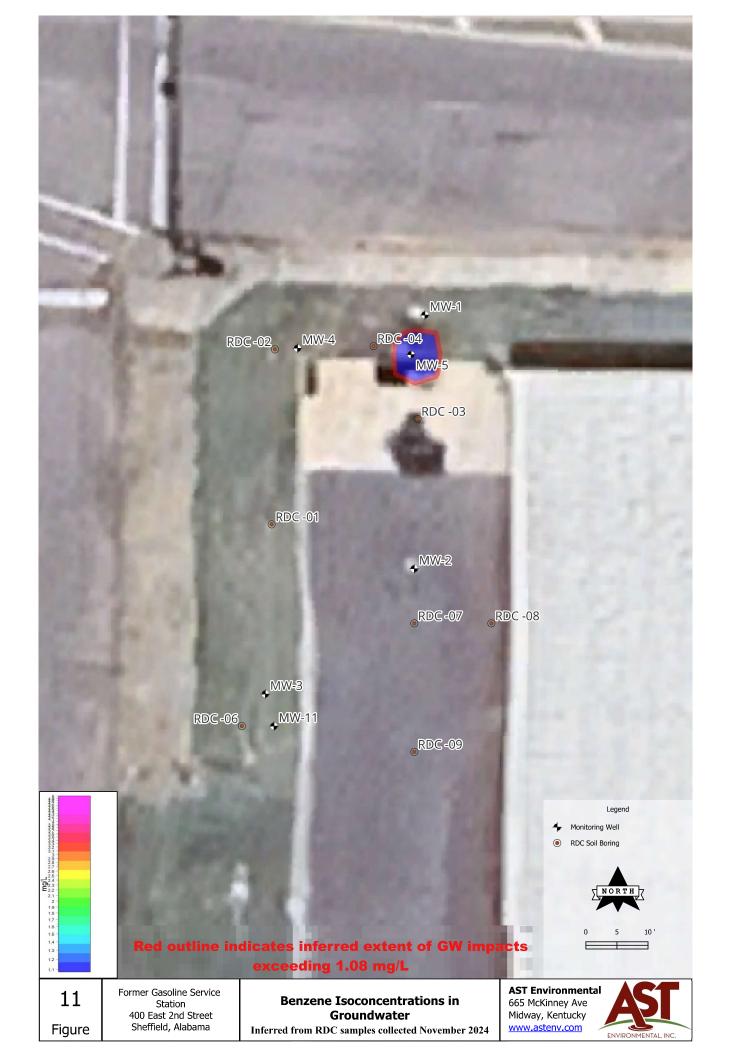


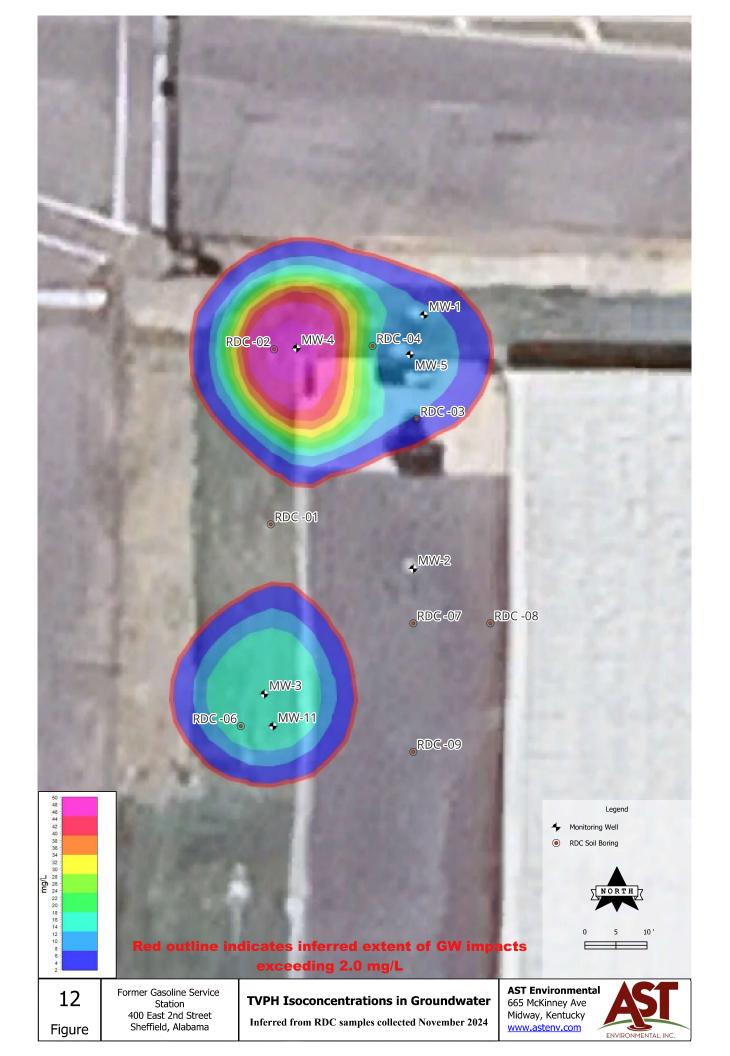


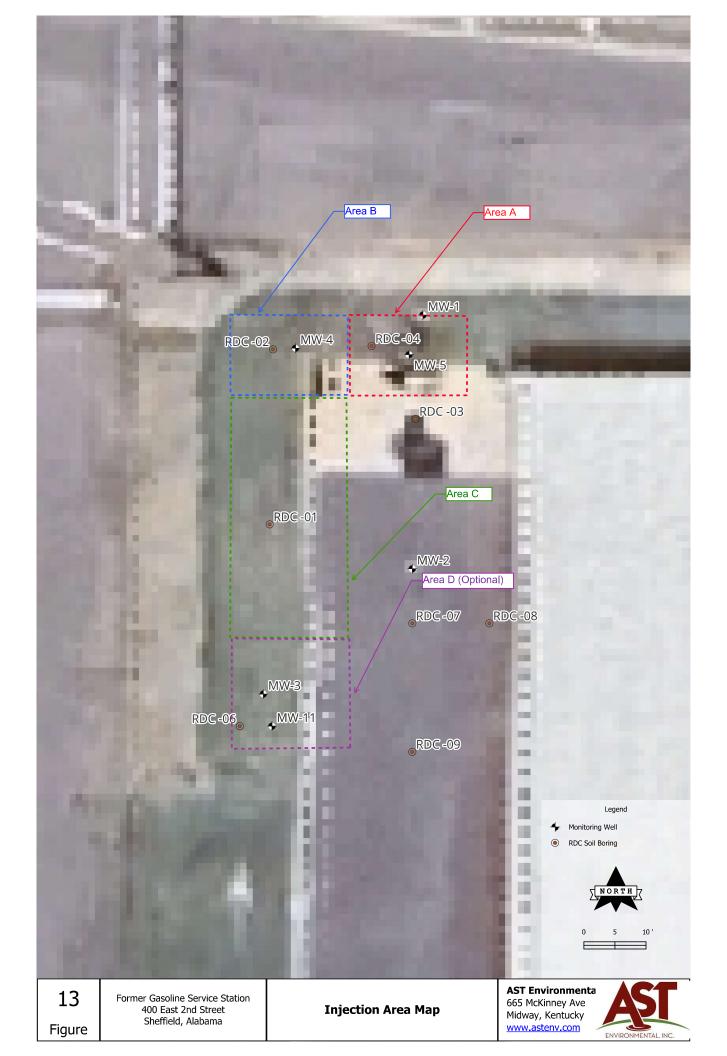












TABLES

Table 0 Applicable Clean-up Levels for Chemicals of Concern (COC)

Facility Name: Former Gas Sheffield, AL

Facility ID #: 11732-033-004341

Chemical of concern ¹	Site-Specific Soil Clean- Up Level (SSCL) 3- Phase Partitioning (ppm)	Maximum soil concentration from last comprehensive monitoring event (ppm) ²	Applicable Groundwater Resource Target Protection Level (ppm)	Maximum ground water concentration from last comprehensive monitoring event (ppm) ²
Benzene	0.444	4.1	1.08	1.1
Toluene	175.6	3	215	0.019
Ethylbenzene	104.9	81.1	151	0.96
Total Xylenes	159.02	326.8	175	0.9
MtBE	1.3	0.016	4.3	0.23
Naphthalene	11	25.3	4.3	0.25

			Chemical of concern (mg/Kg)									
Sample location	Sample date	Sample depth (ft)	Dimethyl Sulfide	MTBE	1,2-Dichloroethane	Benzene	Toluene	Ethylbenzene	Total Xylene	1,2,4-Trimethylbenzene	Naphthalene	тирн
	SSCL		n/a	1.3	n/a	0.4	175.6	105	159.0	n/a	11	n/a
RDC-01	11/12/2024	10	<0.0005	0.0009	<0.0005	<0.0005	0.0023	0.0025	0.0113	0.013	0.0031	10
RDC-01	11/12/2024	12	<0.0005	0.0007	<0.0005	0.0011	0.002	0.0027	0.0139	0.017	0.0029	14
RDC-01 RDC-01	11/12/2024	14 16	<0.0005 <0.0005	0.0014 <0.0005	<0.0005 <0.0005	<0.0005 0.0054	0.0059 0.04	0.0094 0.23	0.051 0.599	0.077 0.44	0.0086 0.5	47 3000
RDC-01 RDC-01	11/12/2024 11/12/2024	16	<0.0005 <0.01	<0.0005	<0.0005 <0.01	<0.0054 <0.01	0.04	0.23	0.599	0.44	0.5	650
RDC-01 RDC-01	11/12/2024	20	<0.001	<0.001	<0.001	0.0007	0.023	0.14	0.120	3.5	1.2	510
RDC-01	11/12/2024	20	<0.0005	<0.0005	<0.0005	0.0009	0.0081	0.42	0.053	0.18	1	460
RDC-01	11/12/2024	24	<0.01	<0.01	<0.01	<0.01	< 0.01	0.044	0.0451	0.15	0.23	140
RDC-01	11/13/2024	26	< 0.0005	<0.0005	<0.0005	0.001	0.0062	1.9	0.1977	2.4	2.3	520
RDC-01	11/13/2024	28	<0.01	<0.01	<0.01	0.036	0.19	14.3	6.58	22.7	9	1400
RDC-01	11/13/2024	30	<0.0005	<0.0005	<0.0005	<0.0005	0.0062	0.28	0.894	8.9	1.5	290
RDC-01	11/13/2024	32	<0.0005	<0.0005	0.004	<0.0005	0.007	0.66	1.3	8.1	1.3	330
RDC-01	11/13/2024	34	<0.0005	<0.0005	<0.0005	<0.0005	0.0042	0.033	0.068	1.1	0.27	45
RDC-01	11/13/2024	36	<0.0005	<0.0005	<0.0005	<0.0005	0.0065	<0.01	0.025	0.42	0.36	66
RDC-01	11/13/2024	38	<0.0005	<0.0005	<0.0005	0.017	0.016	4	19.2	16.8	1.6	480
RDC-01	11/13/2024	40	<0.0005	0.0016	<0.0005	<0.0005	0.0029	0.022	0.111	0.4	0.13	13
RDC-01	11/13/2024	42	<0.01	<0.01	<0.01	<0.01	0.018	0.72	3.1	2.4	0.27	82
RDC-01	11/13/2024	44	<0.05	<0.05	<0.05	<0.05	0.41	30.8	114.4	71.5	8.8	1600
RDC-01	11/13/2024	46	<0.05	<0.05	<0.05	0.34	2.5	81.1	326.8	235	25.3	5200
RDC-01 RDC-01	11/13/2024	48	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	0.11 <0.05	4.5	20.3	14.7	1.4 0.22	330
RDC-01 RDC-01	11/13/2024 11/13/2024	50 52	<0.05 <0.0005	<0.05 0.0015	<0.05 <0.0005	<0.05 0.0084	<0.05 0.0045	0.51 0.14	2.02 0.421	2.2 0.4	0.22	48 8.3
RDC-01	11/13/2024	54	<0.0005	0.0013	<0.0005	0.0034	0.0043	0.031	0.085	0.047	0.0076	5.6
RDC-01	11/13/2024	56	<0.0005	<0.0005	<0.0005	0.0027	0.0024	5.2	21.9	36.3	4.2	1100
RDC-01	11/13/2024	58	<0.05	<0.05	<0.05	2.4	0.66	28.8	31.9	55.3	12	1800
RDC-01	11/13/2024	60	<0.0005	<0.0005	<0.0005	0.25	0.11	13.7	25.4	40	8.1	2200
RDC-01	11/13/2024	62	<0.05	<0.05	<0.05	4.1	1.4	51.7	94.5	82.4	20	3200
RDC-02	11/11/2024	10	<0.0005	0.0008	<0.0005	0.0008	0.0009	0.0058	0.0213	0.031	0.02	0.6
RDC-02	11/11/2024	12	<0.0005	0.0011	<0.0005	0.0008	0.0013	0.0034	0.0118	0.011	0.0072	<0.5
RDC-02	11/11/2024	14	<0.0005	0.0013	<0.0005	0.0009	0.0017	0.0041	0.0131	0.013	0.0054	<0.5
RDC-02	11/11/2024	16	<0.0005	0.0008	<0.0005	0.0012	0.0017	0.0044	0.0161	0.019	0.0061	5.9
RDC-02	11/11/2024	18	<0.0005	0.0009	<0.0005	0.0011	0.0032	0.0081	0.0347	0.019	0.0088	38
RDC-02	11/11/2024	20	<0.0005	0.0006	<0.0005	0.0009	0.0021	0.0047	0.0232	0.014	0.0048	35
RDC-02	11/11/2024	22	<0.0005	0.0005	<0.0005	<0.0005	0.0015	0.0032	0.0159	0.017	0.0031	13
RDC-02	11/11/2024	24	<0.05	< 0.05	<0.05	<0.05	<0.05	0.52	1.1	2.5	1.2	870
RDC-02	11/13/2024	26 28	<0.0005	0.0007	<0.0005	0.0006	0.0015	0.0021	0.0199	0.015	0.0028	26 240
RDC-02 RDC-02	11/13/2024 11/13/2024	28 30	<0.0005 <0.0005	<0.0005 <0.0005	<0.0005 <0.0005	<0.0005 <0.0005	0.0039 0.0079	0.0091 0.19	0.0473 0.095	0.035 0.7	0.0039 0.049	240 320
RDC-02 RDC-02	11/13/2024	30 32	<0.0005	<0.0005	<0.0005	0.0005	0.0079	0.19	0.095	0.7	0.049	320 130
RDC-02 RDC-02	11/13/2024	32	<0.0003	<0.0003	<0.0003	<0.001	0.0027	0.013	0.459	6.1	0.56	510
RDC-02	11/13/2024	36	<0.001	0.0014	<0.001	<0.001	0.0033	0.006	0.0291	0.038	0.012	15
RDC-02	11/13/2024	38	<0.0005	<0.0005	<0.0005	<0.0005	0.0079	0.17	0.15	1	0.19	120
RDC-02	11/13/2024	40	<0.0005	<0.0005	<0.0005	<0.0005	0.0082	0.06	0.089	0.97	0.097	31
RDC-02	11/13/2024	42	<0.0005	0.0015	<0.0005	<0.0005	0.0037	0.0054	0.0242	0.047	0.016	4.8
RDC-02	11/13/2024	44	<0.0005	0.0014	<0.0005	0.0006	0.0027	0.0048	0.0144	0.024	0.011	<0.5
RDC-02	11/13/2024	46	<0.0005	0.0014	<0.0005	<0.0005	0.0012	0.0017	0.0067	0.0087	0.0025	9.6
RDC-02	11/13/2024	48	<0.0005	0.0022	<0.0005	0.0037	0.0032	0.06	0.0708	0.21	0.041	13
RDC-02	11/13/2024	50	<0.0005	0.0043	<0.0005	0.016	0.0063	0.023	0.1299	0.28	0.0088	41
RDC-02	11/13/2024	52	<0.0005	0.0016	<0.0005	<0.0005	0.0027	0.0014	0.0255	0.07	0.035	36
RDC-02	11/13/2024	54	<0.0005	0.0021	<0.0005	0.0011	0.0049	0.029	0.117	0.19	0.02	15
RDC-02	11/13/2024	56	< 0.0005	0.002	< 0.0005	0.0024	0.0027	0.0063	0.1388	0.2	0.0043	40
RDC-02	11/13/2024	58	<0.0005	0.0025	<0.0005	0.019	0.0071	0.01	0.07	0.035	0.0087	27

	ame: Former (ld, AL Facility ID #: 11732-033-004341 Chemical of concern (mg/Kg)									
Sample	Sample date	Sample depth (ft)	Dimethyl Sulfide	MTBE	1,2-Dichloroethane	Benzene	Toluene	Ethylbenzene	Total Xylene	1,2,4-Trimethylbenzene	Naphthalene	ТИРН
location	SSCL	(14)	n/a	1.3	n/a	0.4	⊢ 175.6	105	⊢ 159.0	n/a	<u> </u>	⊢ n/a
RDC-03	11/12/2024	10	<0.0005	0.0009	<0.0005	<0.0005	0.0016	0.0019	0.0072	0.0056	0.0018	<0.5
RDC-03 RDC-03	11/12/2024	10	<0.0005	0.0009	<0.0005	<0.0005	0.0016	0.0019	0.0072	0.0056	0.0018	<0.5 <0.5
RDC-03	11/12/2024	12	<0.0005	0.001	<0.0005	<0.0005	0.0010	0.0017	0.0097	0.0099	0.0001	<0.5 <0.5
RDC-03	11/12/2024	16	<0.0005	0.0014	<0.0005	<0.0005	0.0015	0.0011	0.0033	0.0036	<0.0005	<0.5
RDC-03	11/12/2024	18	<0.0005	0.0043	<0.0005	0.0008	0.0025	0.002	0.0098	0.0063	0.0012	0.6
RDC-03	11/12/2024	20	< 0.0005	0.0056	<0.0005	0.001	0.0027	0.003	0.0122	0.011	0.0036	0.5
RDC-03	11/12/2024	22	<0.0005	0.004	<0.0005	0.0007	0.0017	0.0028	0.0112	0.01	0.0032	<0.5
RDC-03	11/12/2024	24	<0.0005	0.0012	<0.0005	<0.0005	0.0021	0.0019	0.0111	0.0094	<0.0005	<0.5
RDC-03	11/14/2024	30	<0.0005	<0.0005	<0.0005	<0.0005	0.005	0.56	1	1	0.08	25
RDC-03	11/14/2024	32	<0.0005	<0.0005	<0.0005	<0.0005	0.014	0.039	0.106	0.13	0.058	560
RDC-03	11/14/2024	34	<0.0005	<0.0005	<0.0005	0.0014	0.018	0.78	0.0448	0.51	0.052	34
RDC-03	11/14/2024	36	<0.0005	<0.0005	<0.0005	0.0006	0.0025	0.061	0.0133	0.36	0.0078	7.1
RDC-03	11/14/2024	38	<0.0005	<0.0005	<0.0005	<0.0005	0.0039	0.076	0.0585	1.4	0.019	20
RDC-03	11/14/2024	40	<0.0005	<0.0005	<0.0005	<0.0005	0.0019	0.0059	0.0194	0.18	0.0048	12
RDC-03	11/14/2024	42	<0.0005	<0.0005	<0.0005	0.0026	0.013	1.6	3.36	9.6	1.1	360
RDC-03	11/14/2024	44	<0.0005	<0.0005	<0.0005	<0.0005	0.002	0.099	0.207	0.49	0.052	2.7
RDC-03	11/14/2024	46	<0.0005	<0.0005	<0.0005	<0.0005	0.0029	0.042	0.097	0.51	0.046	2.9
RDC-03	11/14/2024	48	<0.0005	<0.0005	<0.0005	0.0021	0.037	0.23	0.94	0.56	0.06	6.7
RDC-03	11/14/2024	50	<0.0005	<0.0005	<0.0005	0.017	0.18	5.7	15.5	26.2	2.6	560
RDC-03	11/14/2024	52	<0.0005	<0.0005	<0.0005	<0.0005	0.0039	0.2	0.8	0.96	0.079	7.5
RDC-03	11/14/2024	54	<0.0005	0.0048	<0.0005	0.0018	0.0053	0.0095	0.049	0.22	0.053	13
RDC-03	11/14/2024	56	<0.0005	<0.0005	<0.0005	0.019	0.039	0.72	3.2	4.2	0.56	220
RDC-03	11/14/2024	58	<0.0005	0.016	<0.0005	0.34	0.0078	0.16	0.426	0.2	0.03	1.2
RDC-03	11/14/2024	60 62	<0.0005	<0.0005	<0.0005	0.05	0.13	0.96	4.5	5.9	0.94	190 10 5
RDC-03 RDC-03	11/14/2024	62	<0.0005 <0.0005	0.0037 0.0051	<0.0005	0.0008	0.0013	0.0057	0.0252	0.017	0.0043	<0.5
RDC-03	11/14/2024	64		<0.0051	<0.0005 0.006	0.0006	0.0019 0.21	0.0023	0.011	0.0087	0.0019	<0.5
RDC-03	11/14/2024 11/14/2024	66 67	<0.0005 <0.0005	0.0003	0.008	0.036 0.0006	0.21	1.2 0.02	2.65 0.105	4.2 0.069	0.53 0.0097	160 0.8
RDC-04	11/12/2024	10	<0.0005	<0.0005	<0.0010	0.0006	0.0049	0.0034	0.0159	0.005	0.0046	4
RDC-04	11/12/2024	10	<0.0005	<0.0005	<0.0005	0.0007	0.0015	0.0034	0.045	0.12	0.0040	13
RDC-04	11/12/2024	12	<0.0005	<0.0005	<0.0005	<0.0007	0.0027	0.0011	0.043	0.024	0.0044	13 6.4
RDC-04	11/12/2024	14	<0.0005	<0.0005	<0.0005	0.0011	0.0011	0.0023	0.0124	0.024	0.0000	0.4 2.5
RDC-04	11/12/2024	18	<0.0005	0.0016	<0.0005	<0.00011	0.0015	0.0021	0.0097	0.007	0.0011	<0.5
RDC-04	11/12/2024	20	<0.0005	0.0015	<0.0005	<0.0005	0.0012	0.0018	0.01	0.013	0.0023	<0.5
RDC-04	11/12/2024	22	<0.0005	0.002	<0.0005	<0.0005	0.0024	0.0031	0.0168	0.014	0.0012	<0.5
RDC-04	11/12/2024	24	<0.0005	<0.0005	<0.0005	0.0014	0.022	0.1	0.312	0.18	0.13	580
RDC-04	11/13/2024	26	<0.0005	<0.0005	<0.0005	0.0026	0.0022	0.026	0.1	0.038	0.0035	13
RDC-04	11/13/2024	28	<0.0005	<0.0005	<0.0005	<0.0005	0.0033	0.0063	0.163	0.074	0.0028	24
RDC-04	11/13/2024	30	<0.0005	<0.0005	<0.0005	0.0018	0.0017	0.013	0.055	0.034	0.0036	6.8
RDC-04	11/13/2024	32	<0.0005	<0.0005	<0.0005	0.0025	0.011	0.028	0.054	0.013	0.0032	32
RDC-04	11/13/2024	34	<0.0005	<0.0005	<0.0005	0.022	0.029	17.6	17.168	47.8	6.2	1500
RDC-04	11/13/2024	36	<0.05	<0.05	<0.05	<0.05	0.22	21.7	116.8	68	12.2	1600
RDC-04	11/13/2024	38	<0.01	<0.01	<0.01	0.57	0.34	10.6	39.4	87.6	23.5	2600
RDC-04	11/13/2024	40	<0.0005	<0.0005	<0.0005	0.094	0.062	27.3	108.9	79.4	13.4	2600
RDC-04	11/13/2024	42	<0.0005	<0.0005	<0.0005	0.0028	0.017	5.7	6.378	27.9	4	770
RDC-04	11/13/2024	44	<0.0005	<0.0005	<0.0005	0.0012	0.015	0.2	0.53	0.32	0.069	36
RDC-04	11/13/2024	46	<0.0005	<0.0005	<0.0005	0.0029	0.031	0.87	5	13.1	3.4	400
RDC-04	11/13/2024	48	<0.0005	<0.0005	<0.0005	0.0045	0.03	8.6	50.1	88.7	17	73
RDC-04	11/13/2024	50	<0.0005	<0.0005	<0.0005	0.054	0.064	3.2	13.5	17	3.5	580
RDC-04	11/13/2024	52	<0.0005	<0.0005	<0.0005	0.29	0.15	12	27.3	53.2	7.7	2000
RDC-04	11/13/2024	54	<0.0005	<0.0005	<0.0005	0.07	0.018	0.49	0.558	0.52	0.19	20

	ame: Former (ld, AL Facility ID #: 11732-033-004341 Chemical of concern (mg/Kg)									
						Cile		incern (ing	/ "6/	-		
Sample location	Sample date	Sample depth (ft)	Dimethyl Sulfide	MTBE	1,2-Dichloroethane	Benzene	Toluene	Ethylbenzene	Total Xylene	1,2,4-Trimethylbenzene	Naphthalene	ТИРН
	SSCL		n/a	1.3	n/a	0.4	175.6	105	159.0	n/a	11	n/a
RDC-06	11/12/2024	10	<0.0005	0.0019	<0.0005	0.0007	0.0017	0.002	0.0102	0.013	0.0026	<0.5
RDC-06	11/12/2024	12	<0.0005	0.0011	<0.0005	<0.0005	0.0008	0.0009	0.0082	0.009	0.0014	<0.5
RDC-06	11/12/2024	14	<0.0005	0.0012	<0.0005	<0.0005	0.0013	0.0013	0.0132	0.015	0.0022	<0.5
RDC-06	11/12/2024	16	<0.0005	0.0008	<0.0005	0.0008	0.0016	0.0019	0.0136	0.021	0.0021	0.6
RDC-06	11/12/2024	18	<0.0005	0.0016	<0.0005	0.0007	0.0019	0.0022	0.0103	0.0085	0.0017	<0.5
RDC-06	11/12/2024	20	<0.0005	0.0016	<0.0005	<0.0005	0.0015	0.0013	0.0104	0.0099	0.0016	<0.5
RDC-06	11/12/2024	22	<0.0005	0.0014	<0.0005	<0.0005	0.0013	0.0014	0.0125	0.0086	0.0014	<0.5
RDC-06	11/12/2024	24	<0.0005	0.0014	<0.0005	<0.0005	0.0008	0.0009	0.0113	0.01	0.0018	<0.5
RDC-06	11/13/2024	26	<0.0005	0.0014	<0.0005	<0.0005	0.0017	0.0017	0.0095	0.0086	0.0017	<0.5
RDC-06	11/13/2024	28	<0.0005	0.0012	<0.0005	<0.0005	0.0016	0.0013	0.0064	0.0075	0.0013	<0.5
RDC-06	11/13/2024	30	<0.0005	0.0016	<0.0005	<0.0005	0.0009	0.0008	0.0102	0.01	0.0011	<0.5
RDC-06	11/13/2024	32	<0.0005	0.0016	<0.0005	<0.0005	0.0016	0.0019	0.0103	0.0077	0.0015	<0.5
RDC-06	11/13/2024	34	<0.0005	0.0018	<0.0005	<0.0005	0.0017	0.0015	0.0081	0.0083	0.0013	<0.5
RDC-06	11/13/2024	36	<0.0005	0.0006	<0.0005	<0.0005	0.0031	0.0015	0.0086	0.0062	0.0007	<0.5
RDC-06	11/13/2024	38	< 0.0005	<0.0005	<0.0005	< 0.0005	0.0025	0.002	0.0115	0.012	0.0011	<0.5
RDC-06	11/13/2024	40	< 0.0005	0.0009	<0.0005	< 0.0005	0.0033	0.0019	0.0113	0.012	0.0013	< 0.5
RDC-06	11/13/2024	42	< 0.0005	0.0013	<0.0005	<0.0005	0.0031	0.0024	0.0128	0.014	0.0016	<0.5
RDC-06	11/13/2024	44	< 0.0005	0.0014	<0.0005	<0.0005	0.0022	0.0017	0.0129	0.013	0.0014	<0.5
RDC-06	11/13/2024	46	<0.0005	0.0013	<0.0005	<0.0005	0.003	0.002	0.0124	0.013	0.0016	<0.5
RDC-06	11/13/2024	48	<0.0005	0.0014	<0.0005	<0.0005	0.0039	0.0026	0.0137	0.014	0.0015	<0.5
RDC-06	11/13/2024	50	< 0.0005	0.0015	<0.0005	< 0.0005	0.0022	0.0019	0.0138	0.017	0.0016	<0.5
RDC-06	11/13/2024	52	<0.0005	0.0012	<0.0005	0.0009	0.0021	0.0017	0.0131	0.019	0.0041	0.5
RDC-06	11/13/2024	54	<0.0005	<0.0005	<0.0005	0.021	0.0039	0.066	0.0998	0.15	0.038	8.9
RDC-06	11/13/2024	56	<0.0005	0.001	<0.0005	<0.0005	0.001	0.0011	0.0101	0.01	0.002	<0.5
RDC-06	11/13/2024	59	<0.0005	0.0011	<0.0005	0.025	0.0046	0.028	0.101	0.059	0.002	22
RDC-07	11/12/2024	10	< 0.0005	0.0007	<0.0005	< 0.0005	0.0024	0.0081	0.0296	0.022	0.012	<0.5
RDC-07	11/12/2024	10	<0.0005	<0.0005	<0.0005	<0.0005	0.0014	0.0037	0.0165	0.015	0.0029	<0.5
RDC-07	11/12/2024	14	<0.0005	<0.0005	<0.0005	<0.0005	0.0014	0.003	0.0136	0.01	0.0014	<0.5
RDC-07	11/12/2024	16	<0.0005	<0.0005	<0.0005	<0.0005	0.0010	0.0023	0.0104	0.001	0.00014	<0.5
RDC-07	11/12/2024	18	<0.0005	0.001	<0.0005	<0.0005	0.0011	0.0023	0.0099	0.008	0.0007	<0.5
RDC-07	11/12/2024	20	<0.0005	0.001	<0.0005	<0.0005	0.0010	0.0018	0.009	0.008	0.0005	<0.5
RDC-07	11/12/2024	20	<0.0005	0.001	<0.0005	0.001	0.0011	0.0018	0.0068	0.0076	0.0021	0.5
RDC-07	11/12/2024	24	<0.0005	0.0009	<0.0005	<0.0005	0.0016	0.0014	0.008	0.0055	0.00021	<0.5
RDC-07	11/12/2024	24	<0.0005	<0.0005	<0.0005	<0.0005	<0.0010	0.0010	0.0057	0.0055	<0.0005	<0.5
RDC-07	11/12/2024	20	<0.0005	0.0016	<0.0005	<0.0005	0.0013	0.0012	0.0037	0.0050	<0.0005	<0.5 <0.5
RDC-07	11/12/2024	30	<0.0005	0.0010	<0.0005	<0.0005	0.0013	0.0013	0.0078	0.0068	<0.0005	<0.5 <0.5
RDC-07	11/12/2024	30	<0.0005	0.0009	<0.0003	0.0011	0.0016	0.0010	0.0078	0.0088	0.0013	<0.5 <0.5
RDC-07	11/12/2024	32 34	<0.0005	0.0088	<0.0005	<0.00011	0.0038	0.001	0.0031	0.0035	<0.0013	<0.5 <0.5
RDC-07	11/12/2024	38	<0.0005	0.0014	<0.0005	<0.0005	0.0021	0.0011	0.0062	0.004	<0.0005	<0.5 <0.5
RDC-07	11/12/2024	- 38 - 40	<0.0005	0.0013	<0.0005	<0.0005	0.0023	0.0012	0.0082	0.0045	<0.0005	<0.5 <0.5
RDC-07 RDC-07	11/12/2024		<0.0005	0.0018	<0.0005	<0.0005	0.0027	0.0014	0.0074	0.0058	<0.0005	<0.5 <0.5
RDC-07 RDC-07		42	<0.0005									<0.5 <0.5
	11/12/2024	44		0.0018	<0.0005	<0.0005	0.0029	0.0014 0.0018	0.008	0.0059	<0.0005	
RDC-07 RDC-07	11/12/2024	46 48	<0.0005	0.0028	<0.0005	0.0006	0.0042		0.0101	0.0074	<0.0005	<0.5
	11/12/2024	48	<0.0005	0.0015	<0.0005	0.0012	0.0029	0.0013	0.0086	0.013	0.001	<0.5
RDC-07	11/12/2024	50 50	<0.0005	<0.0005	<0.0005	<0.0005	0.029	0.23	0.427	5.6	1.5	400
RDC-07	11/12/2024	52 52	<0.0005	0.0038	<0.0005	0.0007	0.0039	0.002	0.0108	0.062	0.088	24
RDC-07	11/12/2024	53	<0.0005	0.004	<0.0005	0.001	0.003	0.0012	0.006	0.0053	0.017	<0.5

	ame: Former (ld, AL Facility ID #: 11732-033-004341 Chemical of concern (mg/Kg)									
						Cile		incern (ing	/ "6/	-		
Sample location	Sample date	Sample depth (ft)	Dimethyl Sulfide	MTBE	1,2-Dichloroethane	Benzene	Toluene	Ethylbenzene	Total Xylene	1,2,4-Trimethylbenzene	Naphthalene	ТИРН
	SSCL		n/a	1.3	n/a	0.4	175.6	105	159.0	n/a	11	n/a
RDC-06	11/12/2024	10	<0.0005	0.0019	<0.0005	0.0007	0.0017	0.002	0.0102	0.013	0.0026	<0.5
RDC-06	11/12/2024	12	<0.0005	0.0011	<0.0005	<0.0005	0.0008	0.0009	0.0082	0.009	0.0014	<0.5
RDC-06	11/12/2024	14	<0.0005	0.0012	<0.0005	<0.0005	0.0013	0.0013	0.0132	0.015	0.0022	<0.5
RDC-06	11/12/2024	16	<0.0005	0.0008	<0.0005	0.0008	0.0016	0.0019	0.0136	0.021	0.0021	0.6
RDC-06	11/12/2024	18	<0.0005	0.0016	<0.0005	0.0007	0.0019	0.0022	0.0103	0.0085	0.0017	<0.5
RDC-06	11/12/2024	20	<0.0005	0.0016	<0.0005	<0.0005	0.0015	0.0013	0.0104	0.0099	0.0016	<0.5
RDC-06	11/12/2024	22	<0.0005	0.0014	<0.0005	<0.0005	0.0013	0.0014	0.0125	0.0086	0.0014	<0.5
RDC-06	11/12/2024	24	<0.0005	0.0014	<0.0005	<0.0005	0.0008	0.0009	0.0113	0.01	0.0018	<0.5
RDC-06	11/13/2024	26	<0.0005	0.0014	<0.0005	<0.0005	0.0017	0.0017	0.0095	0.0086	0.0017	<0.5
RDC-06	11/13/2024	28	<0.0005	0.0012	<0.0005	<0.0005	0.0016	0.0013	0.0064	0.0075	0.0013	<0.5
RDC-06	11/13/2024	30	<0.0005	0.0016	<0.0005	<0.0005	0.0009	0.0008	0.0102	0.01	0.0011	<0.5
RDC-06	11/13/2024	32	<0.0005	0.0016	<0.0005	<0.0005	0.0016	0.0019	0.0103	0.0077	0.0015	<0.5
RDC-06	11/13/2024	34	<0.0005	0.0018	<0.0005	<0.0005	0.0017	0.0015	0.0081	0.0083	0.0013	<0.5
RDC-06	11/13/2024	36	<0.0005	0.0006	<0.0005	<0.0005	0.0031	0.0015	0.0086	0.0062	0.0007	<0.5
RDC-06	11/13/2024	38	< 0.0005	<0.0005	<0.0005	< 0.0005	0.0025	0.002	0.0115	0.012	0.0011	<0.5
RDC-06	11/13/2024	40	< 0.0005	0.0009	<0.0005	< 0.0005	0.0033	0.0019	0.0113	0.012	0.0013	< 0.5
RDC-06	11/13/2024	42	< 0.0005	0.0013	<0.0005	<0.0005	0.0031	0.0024	0.0128	0.014	0.0016	<0.5
RDC-06	11/13/2024	44	< 0.0005	0.0014	<0.0005	<0.0005	0.0022	0.0017	0.0129	0.013	0.0014	<0.5
RDC-06	11/13/2024	46	<0.0005	0.0013	<0.0005	<0.0005	0.003	0.002	0.0124	0.013	0.0016	<0.5
RDC-06	11/13/2024	48	<0.0005	0.0014	<0.0005	<0.0005	0.0039	0.0026	0.0137	0.014	0.0015	<0.5
RDC-06	11/13/2024	50	< 0.0005	0.0015	<0.0005	< 0.0005	0.0022	0.0019	0.0138	0.017	0.0016	<0.5
RDC-06	11/13/2024	52	<0.0005	0.0012	<0.0005	0.0009	0.0021	0.0017	0.0131	0.019	0.0041	0.5
RDC-06	11/13/2024	54	<0.0005	<0.0005	<0.0005	0.021	0.0039	0.066	0.0998	0.15	0.038	8.9
RDC-06	11/13/2024	56	<0.0005	0.001	<0.0005	<0.0005	0.001	0.0011	0.0101	0.01	0.002	<0.5
RDC-06	11/13/2024	59	<0.0005	0.0011	<0.0005	0.025	0.0046	0.028	0.101	0.059	0.002	22
RDC-07	11/12/2024	10	< 0.0005	0.0007	<0.0005	<0.0005	0.0024	0.0081	0.0296	0.022	0.012	< 0.5
RDC-07	11/12/2024	10	<0.0005	<0.0005	<0.0005	<0.0005	0.0014	0.0037	0.0165	0.015	0.0029	<0.5
RDC-07	11/12/2024	14	<0.0005	<0.0005	<0.0005	<0.0005	0.0014	0.003	0.0136	0.01	0.0014	<0.5
RDC-07	11/12/2024	16	<0.0005	<0.0005	<0.0005	<0.0005	0.0010	0.0023	0.0104	0.001	0.00014	<0.5
RDC-07	11/12/2024	18	<0.0005	0.001	<0.0005	<0.0005	0.0011	0.0023	0.0099	0.008	0.0007	<0.5
RDC-07	11/12/2024	20	<0.0005	0.001	<0.0005	<0.0005	0.0010	0.0018	0.009	0.008	0.0005	<0.5
RDC-07	11/12/2024	20	<0.0005	0.001	<0.0005	0.001	0.0011	0.0018	0.0068	0.0076	0.0021	0.5
RDC-07	11/12/2024	24	<0.0005	0.0009	<0.0005	<0.0005	0.0016	0.0014	0.008	0.0055	0.00021	<0.5
RDC-07	11/12/2024	24	<0.0005	<0.0005	<0.0005	<0.0005	<0.0010	0.0010	0.0057	0.0055	<0.0005	<0.5 <0.5
RDC-07	11/12/2024	20	<0.0005	0.0016	<0.0005	<0.0005	0.0013	0.0012	0.0037	0.0050	<0.0005	<0.5 <0.5
RDC-07	11/12/2024	30	<0.0005	0.0010	<0.0005	<0.0005	0.0013	0.0013	0.0078	0.0068	<0.0005	<0.5 <0.5
RDC-07	11/12/2024	30	<0.0005	0.0009	<0.0003	0.0011	0.0016	0.0010	0.0078	0.0088	0.0013	<0.5 <0.5
RDC-07	11/12/2024	32 34	<0.0005	0.0088	<0.0005	<0.00011	0.0038	0.001	0.0031	0.0035	<0.0013	<0.5 <0.5
RDC-07	11/12/2024	38	<0.0005	0.0014	<0.0005	<0.0005	0.0021	0.0011	0.0062	0.004	<0.0005	<0.5 <0.5
RDC-07	11/12/2024	- 38 - 40	<0.0005	0.0013	<0.0005	<0.0005	0.0023	0.0012	0.0082	0.0045	<0.0005	<0.5 <0.5
RDC-07 RDC-07	11/12/2024		<0.0005	0.0018	<0.0005	<0.0005	0.0027	0.0014	0.0074	0.0058	<0.0005	<0.5 <0.5
RDC-07 RDC-07		42	<0.0005									<0.5 <0.5
	11/12/2024	44		0.0018	<0.0005	<0.0005	0.0029	0.0014 0.0018	0.008	0.0059	<0.0005	
RDC-07 RDC-07	11/12/2024	46 48	<0.0005	0.0028	<0.0005	0.0006	0.0042		0.0101	0.0074	<0.0005	<0.5
	11/12/2024	48	<0.0005	0.0015	<0.0005	0.0012	0.0029	0.0013	0.0086	0.013	0.001	<0.5
RDC-07	11/12/2024	50 50	<0.0005	<0.0005	<0.0005	<0.0005	0.029	0.23	0.427	5.6	1.5	400
RDC-07	11/12/2024	52 52	<0.0005	0.0038	<0.0005	0.0007	0.0039	0.002	0.0108	0.062	0.088	24
RDC-07	11/12/2024	53	<0.0005	0.004	<0.0005	0.001	0.003	0.0012	0.006	0.0053	0.017	<0.5

			Chemical of concern (mg/Kg)									
Sample	Sample date	Sample depth (ft)	Dimethyl Sulfide	MTBE	1,2-Dichloroethane	Benzene	Toluene	Ethylbenzene	Total Xylene	1,2,4-Trimethylbenzene	Naphthalene	ТИРН
location	SSCL	(14)	n/a	1.3	n/a	0.4	 175.6	105	159.0	n/a	<u> </u>	n/a
RDC-08	11/14/2024	10	<0.0005	0.0021	<0.0005	<0.0005	0.0016	0.0011	0.0057	0.0065	0.0018	<0.5
RDC-08	11/14/2024	10	<0.0005	0.0021	<0.0005	<0.0005	0.0010	0.0011	0.0037	0.0005	0.0018	<0.5 <0.5
RDC-08	11/14/2024	14	<0.0005	0.0016	<0.0005	<0.0005	0.0016	0.0011	0.0062	0.0075	0.0012	<0.5
RDC-08	11/14/2024	16	<0.0005	0.0013	<0.0005	<0.0005	0.0018	0.0011	0.0061	0.0074	0.0011	<0.5
RDC-08	11/14/2024	18	< 0.0005	0.0019	<0.0005	< 0.0005	0.0017	0.001	0.0056	0.0068	0.001	<0.5
RDC-08	11/14/2024	20	<0.0005	0.0023	<0.0005	<0.0005	0.0019	0.0012	0.0069	0.0092	0.0014	<0.5
RDC-08	11/14/2024	22	<0.0005	0.0029	<0.0005	<0.0005	0.0023	0.0013	0.0065	0.0072	0.001	<0.5
RDC-08	11/14/2024	24	<0.0005	0.0026	<0.0005	<0.0005	0.0024	0.0017	0.009	0.012	0.0014	<0.5
RDC-08	11/14/2024	26	<0.0005	0.0016	<0.0005	<0.0005	0.0039	0.0043	0.0167	0.0085	0.001	0.7
RDC-08	11/14/2024	28	<0.0005	0.0022	<0.0005	<0.0005	0.0024	0.0013	0.0068	0.0072	0.001	<0.5
RDC-08	11/14/2024	30	<0.0005	0.0017	<0.0005	<0.0005	0.0072	0.0064	0.029	0.011	0.0008	0.5
RDC-08	11/14/2024	32	<0.0005	0.0025	<0.0005	<0.0005	0.0021	0.0011	0.0062	0.0074	0.0012	<0.5
RDC-08	11/14/2024	34	<0.0005	0.0009	<0.0005	<0.0005	0.0021	0.001	0.0056	0.0057	0.001	<0.5
RDC-08	11/15/2024	36	<0.0005	0.0008	<0.0005	<0.0005	0.0022	0.0012	0.0058	0.0058	0.0009	<0.5
RDC-08	11/15/2024	38	<0.0005	0.0006	<0.0005	<0.0005	0.0016	0.0008	0.0042	0.0059	0.0012	<0.5
RDC-08	11/15/2024	40	<0.0005	0.0009	<0.0005	<0.0005	0.002	0.0011	0.0054	0.0064	0.001	<0.5
RDC-08	11/15/2024	42	<0.0005	0.001	<0.0005	<0.0005	0.0022	0.0011	0.0062	0.0074	0.0014	<0.5
RDC-08	11/15/2024	44	<0.0005	0.0009	<0.0005	<0.0005	0.0021	0.001	0.0052	0.0056	0.0008	<0.5
RDC-08 RDC-08	11/15/2024 11/15/2024	46 48	<0.0005 <0.0005	0.0011 0.001	<0.0005 <0.0005	<0.0005 <0.0005	0.0018 0.0024	0.001 0.0014	0.0055 0.0085	0.006 0.0083	0.0009 0.001	<0.5 <0.5
RDC-08	11/15/2024	48 50	<0.0005	0.001	<0.0005	<0.0005	0.0024	0.0014	0.0085	0.0083	0.001	<0.5 <0.5
RDC-08	11/15/2024	52	<0.0005	0.00013	<0.0005	<0.0005	0.0023	0.0001	0.0039	0.0002	0.0007	<0.5
RDC-08	11/15/2024	54	<0.0005	0.0009	<0.0005	<0.0005	0.0022	0.0025	0.0104	0.0096	0.0044	14
RDC-08	11/15/2024	56	<0.0005	0.0007	<0.0005	<0.0005	0.002	0.0011	0.0057	0.0069	0.0014	0.5
RDC-08	11/15/2024	58	< 0.0005	0.0008	<0.0005	<0.0005	0.0024	0.0017	0.0087	0.0083	0.0025	6.1
RDC-08	11/15/2024	59	<0.0005	0.0012	<0.0005	<0.0005	0.0026	0.0015	0.0093	0.007	0.0017	18
RDC-09	11/15/2024	10	<0.0005	0.0008	<0.0005	<0.0005	0.0013	0.0009	0.0052	0.0061	0.0009	<0.5
RDC-09	11/15/2024	12	<0.0005	0.0009	<0.0005	<0.0005	0.0015	0.0009	0.0061	0.018	0.0011	<0.5
RDC-09	11/15/2024	14	<0.0005	0.0008	<0.0005	<0.0005	0.0012	0.0007	0.0034	0.0045	0.0007	<0.5
RDC-09	11/15/2024	16	<0.0005	0.0009	<0.0005	<0.0005	0.0013	<0.0005	0.0025	0.0025	<0.0005	<0.5
RDC-09	11/15/2024	18	<0.0005	0.0007	<0.0005	<0.0005	0.0017	0.0006	0.0034	0.0037	0.0007	<0.5
RDC-09	11/15/2024	20	<0.0005	<0.0005	<0.0005	<0.0005	0.0012	<0.0005	0.0025	0.0031	<0.0005	<0.5
RDC-09	11/15/2024	22	<0.0005	0.0009	<0.0005	<0.0005	0.0012	0.0006	0.0038	0.0054	0.001	<0.5
RDC-09	11/15/2024	24	<0.0005	0.0008	<0.0005	<0.0005	0.0016	0.0006	0.0036	0.0044	0.001	<0.5
RDC-09	11/15/2024	26	<0.0005	0.001	<0.0005	<0.0005	0.0017	0.0007	0.0039	0.0054	0.0008	<0.5
RDC-09	11/15/2024	28	<0.0005	0.001	<0.0005	<0.0005	0.0015	<0.0005	0.0031	0.0041	0.0007	<0.5
RDC-09	11/15/2024	30 22	<0.0005	0.0009	<0.0005	<0.0005	0.0042	0.0013	0.0067	0.0047	0.0006	<0.5
RDC-09 RDC-09	11/15/2024	32	<0.0005	0.0011	<0.0005	<0.0005	0.0018	0.0009	0.0058	0.0062	0.001	<0.5
RDC-09 RDC-09	11/15/2024 11/15/2024	34 36	<0.0005 <0.0005	0.0009 0.001	<0.0005 <0.0005	<0.0005 <0.0005	0.0018 0.0017	0.0006 0.001	0.0041 0.0053	0.0042 0.0052	0.0008 0.0008	<0.5 <0.5
RDC-09 RDC-09	11/15/2024	38	<0.0005	0.001	<0.0005	<0.0005	0.0017	0.0001	0.0055	0.0052	0.0008	<0.5 <0.5
RDC-09 RDC-09	11/15/2024	40	<0.0005	0.0012	<0.0005	<0.0005	0.0024	0.0003	0.0033	0.0033	0.0001	<0.5 <0.5
RDC-09	11/15/2024	40	<0.0005	0.0009	<0.0005	<0.0005	0.0010	0.0007	0.0043	0.0043	0.0007	<0.5 <0.5
RDC-09	11/15/2024	44	<0.0005	0.0008	<0.0005	0.0005	0.0019	0.0006	0.0034	0.0037	0.0005	<0.5
RDC-09	11/15/2024	46	<0.0005	0.0009	<0.0005	<0.0005	0.0019	0.0006	0.0033	0.0032	0.0008	<0.5
RDC-09	11/15/2024	48	<0.0005	0.0013	<0.0005	<0.0005	0.0024	0.0008	0.0041	0.0036	0.0006	<0.5
RDC-09	11/15/2024	50	<0.0005	0.0007	<0.0005	< 0.0005	0.0024	0.0008	0.0044	0.0027	<0.0005	<0.5
RDC-09	11/15/2024	52	<0.0005	0.0011	<0.0005	<0.0005	0.0012	<0.0005	0.003	0.0036	0.001	<0.5
RDC-09	11/15/2024	54	<0.0005	0.0008	<0.0005	<0.0005	0.0024	0.0011	0.0057	0.0046	0.0006	<0.5
RDC-09	11/15/2024	56	<0.0005	0.0008	<0.0005	<0.0005	0.0007	0.0015	0.0078	0.0051	0.0007	<0.5
RDC-09	11/15/2024	58	<0.0005	0.001	<0.0005	<0.0005	0.0016	0.0027	0.0146	0.007	0.0017	38

Table 2 Groundwater Elevation Summary

Facility Name: Former Gas Sheffield, AL

Monitoring well number or sample location	Date	Top of casing elevation (ft MSL)	Top of screen elevation (ft MSL)	Total depth of well (ft)	Bottom screen elevation (ft MSL)	Depth to fluid (ft)	Depth to water (ft)	Product thickness (ft)	Water surface elevation (ft MSL)	Adjusted potentiometric surface elevation (ft MSL)	Potentiometric surface within screen interval? (Yes/No)
MW-1	11/11/24	498.69	468.69	40.00	458.69	39.94	39.94	0.00	458.75	458.75	Yes
MW-3	11/11/24	501.97	471.97	40.00	461.97	39.98	39.98	0.00	461.99	461.99	Yes
MW-4	11/11/24	498.69	468.69	40.00	458.69	38.78	38.78	0.00	459.91	459.91	Yes
MW-5	11/11/24	498.69	439.69	64.00	434.69	58.75	58.75	0.00	439.94	439.94	No

Facility ID #: 11732-033-004341

Table 3Groundwater Analytical Results

Facility Name: Former Gas Sheffield, AL

Facility ID #: 11732-033-004341

		Chemical of Concern (mg/L)									
Sample location	Sample date	Dimethyl Sulfide	MTBE	1,2-Dichloroethane	Benzene	Toluene	Ethylbenzene	Total Xylene	1,2,4-Trimethylbenzene	Naphthalene	ТИРН
GRPs		n/a	4.3	n/a	1.08	215.0	151.0	175.0	n/a	4.3	n/a
MW-3	11/11/2024	<0.005	<0.005	<0.005	0.0051	0.0095	0.96	0.887	3.4	0.24	17
MW-4	11/11/2024	<0.005	<0.005	<0.005	0.017	0.019	0.58	0.756	2.4	0.25	51
MW-5	11/11/2024	<0.005	0.23	0.0077	1.1	0.011	0.16	0.298	0.34	0.046	8.4

Table 3Groundwater Analytical Results

Facility Name: Former Gas Sheffield, AL

Facility ID #: 11732-033-004341

							А	nions (mg/	L)					
Sample location	Sample date	Lactate	Acetate	Propionate	Formate / Isobutyrate	Butyrate	Pyruvate	Chloride	Nitrite	Succinate	Nitrate	Sulfate	Phosphate	Sulfide
MW-3	11/11/2024	<2	<2	<2	<4	<2	<2	7	<2	<10	<2	<2	NA	<2
MW-4	11/11/2024	<2	<2	<2	<4	<2	<2	7.9	<2	<10	<2	<2	NA	<2
MW-5	11/11/2024	<2	<2	<2	<4	<2	<2	16	<2	<10	<2	<2	NA	<2

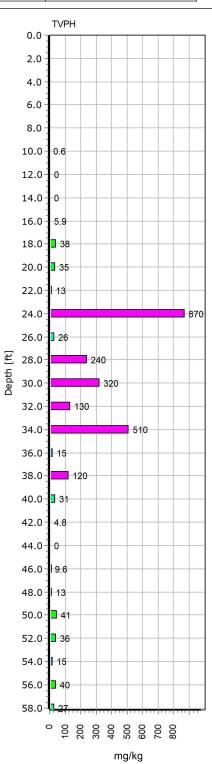
Table 3Groundwater Analytical Results

Facility Name: Former Gas Sheffield, AL

Facility ID #: 11732-033-004341

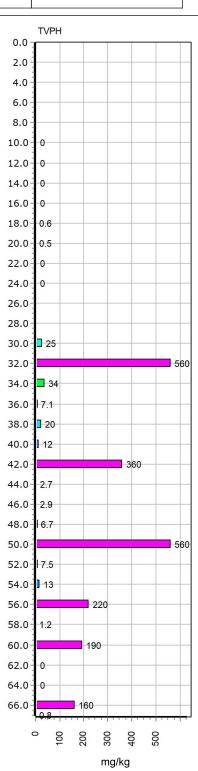
								Dissol	ved Gases (mg/L)						
Sample location	Sample date	Methane	Ethane	Ethylene	Propane	Propylene	lsobutane	n-Butane	Acetylene	t-2-Butene	1-Butene	lsobutylene	cis-2-Butene	1,3-Butadiene	Methyl Acetylene	Carbon Dioxide
MW-3	11/11/2024	3.7	<0.002	<0.002	<0.002	<0.002	<0.002	0.013	<0.002	<0.002	<0.002	<0.002	0.3	0.0021	<0.002	150
MW-4	11/11/2024	2.4	0.003	<0.002	<0.002	<0.002	<0.002	0.0095	<0.002	<0.002	<0.002	<0.002	0.055	0.005	<0.002	87
MW-5	11/11/2024	3.2	0.0099	<0.002	<0.002	<0.002	0.007	0.039	<0.002	<0.002	<0.002	<0.002	0.13	0.0078	<0.002	42

ATTACHMENT A Soil Boring Logs


PM - Former Service Station		RDC-01	AST
Project Name	Drilling Company	Date Started	
PM-Frmr Gas Sheffield	Hawkston	2024-11-11	ENVIRONMENTAL, INC.
Project Number	Drilling Method	Date Finished	665 McKinney Ave
5152489	Direct Push	2024-11-13	Midway, KY 40347
Project Location	Drilling Equipment	Total Depth	Screen Interval
400 East 2nd Street, Sheffield, AL	Geoprobe 3230	62.00	
Project Client	Sampling Method	Depth To Water	Casing
PM Environmental	Dual Tube		
Project Manager	Field Operator		
Bill Brab	Ben Borth		

0.0	Interval	Sample	PID	Lithology	Silby condy along brown down coff as a day
1.0	100				Silty sandy clay, brown, damp, soft, no odor
2.0	100				
3.0					
4.0					
5.0				CL	CLAY, red, soft, damp, medium plasticity, no odor
6.0	100			A TRANSPORT	CLAI, red, sort, damp, mediam plasticity, no odor
7.0					
8.0					
9.0					
10.0		RDC-01_10	0.0	CL	CLAY, red, soft, damp, medium plasticity, few chert
11.0	100				fragments
12.0		RDC-01 12	0.0		
13.0					
14.0		RDC-01_14	0.0	CL.	CLAY, red, some sand, soft, damp, soft, slight odor
15.0				CL	CLAY, yellow-red, damp, soft, thin layers weathered
16.0	100	RDC-01 16	0.0		chert intermixed throughout, brachiopod in one chert
17.0	100				lens
18.0	1	RDC-01_18	0.0	Notobole Coloniolo Ne observator and	
19.0				-	
20.0		RDC-01_20	0.0	CL	Conducilly CLAV vollow and down on the
21.0	100			Subjection Street	Sandy silty CLAY, yellow-red, damp, soft, odor, weathered chert lens at 21' and 24'
22.0	100	RDC-01 22	0.0		
23.0					
24.0		RDC-01 24	0.0		***************************************
25.0					
26.0	100	RDC-01 26	29.0	CF	Silty CLAY, yellow-red, damp, stiff, slight odor
27.0	100			-	
28.0		RDC-01 28	685.0		
29.0				-	
30.0		RDC-01_30	132.0	ionene manane	
31.0	100				Silty CLAY, yellow-red, damp, stiff, odor, chert lens
32.0	100	RDC-01_32	80.8		~31', 33', 34'
33.0			00.0		
34.0		RDC-01 34	35.2		
35.0		KDC-01_34	33.2		
36.0		RDC-01 36	1260.0	CL	Silty CLAY, yellow-red, damp, soft, odor, chert
37.0	100	RDC-01_30	1200.0		fragments intermixed, gravelly chert
38.0		RDC-01 38	360.0		
		KDC-01_30	500.0		
39.0			120.0		
40.0		RDC-01_40	136.0	CL	Silty CLAY, brownish red, gravelly chert, damp, soft,
41.0	100	PDC 01 (2)	765.0		strong odor, wet at 40'
42.0		RDC-01_42	765.0		***************************************
43.0			1200 0		
44.0		RDC-01_44	1322.0		
45.0			1050 5	CL	CLAY, red, soft, wet, free product, strong odor
46.0	100	< <u>RDC-01_46</u>	1350.0	CHARGE CONTRACTOR	
47.0			1053	KONCHEN MENDERIC	
48.0		RDC-01_48	1320.0		
49.0					
50.0		RDC-01_50	1320.0	CL.	CLAY, red, soft, damp, no odor
51.0					
52.0	200000000000000000000000000000000000000	RDC-01_52	176.2		
53.0-					
54.0		RDC-01_54	7.6		
55.0				CL	Silty CLAY, red, soft, wet, black stains, odor
56.0	100	RDC-01_56	221.0		
57.0					
58.0		RDC-01_58	385.0	NAME AND ADDRESS OF TAXABLE PARTY OF TAX	
59.0		******		-	
60.0		RDC-01_60	270.0	CL	Cilby CLAV rod coft wat adap Defined @ CO
61.0	100			and an and a second	Silty CLAY, red, soft, wet, odor. Refusal @ 62'.
	100	RDC-01 62		Station and an and a state of the state of t	

0.0	Benzene	TotalXylene	Naphthalene	TVPH
1.0	-			
2.0				
3.0 4.0	-			
5.0	-			
6.0	-			
7.0				
8.0	-			
9.0	-			
10.0 11.0	-	0.0113	0.0031	10
	0.0011	0.0139	0.0029	14
13.0				
14.0	0	0.051	0.0086	47
15.0	-			
	0.0054	0.599	0.5	3000
17.0 18.0		0.126	0.09	650
19.0		0.120	0.00	
	0.0007	0.296	l 1.2	510
21.0				
	0.0009	0.053	1	460
23.0 24.0	-	0.0451	0.23	1.140
24.0	-	0.0451	0.23	140
	0.001	0.1977	2.3	520
27.0				
	0.036	6.58	9	1400
29.0				
30.0 31.0 32.0	C	0.894	1.5	290
31.0 32.0	-	1.3	1.3	330
33.0	-		. 1.0	
34.0	0	0.068	0.27	45
35.0	-			
36.0	-	0.025	0.36	66
37.0 38.0	0.017] 19.2	1.6	480
39.0	-	. 10.2		
40.0	-	0.111	0.13	13
41.0	-			
42.0	-	3.1	0.27	82
43.0				1600
44.0 45.0	-	114.4	8.8	1600
	0.34	326.	8 25.3	5200
47.0				
48.0	-] 20.3	1.4	330
49.0				
50.0	-	2.02	0.22	48
51.0 52.0	0.0084	0.421	0.055	8.3
53.0	-	0.121	0.000	0.0
	0.027	0.085	0.0076	5.6
55.0				
	0.0023	21.9	4.2	1100
57.0		31.0		1900
58.0 59.0		31.9	12	1800
	0.25	25.4	8.1	2200
61.0				
62.0		94,5	- 20	3200
	0 0	0 100 200	0 20	0 2,000 4,000
		5 4		0 2,000 4,000


PM - Former Service Stati	on	Borehole RDC-02	AST
Project Name	Drilling Company	Date Started	
PM-Frmr Gas Sheffield	Hawkston	2024-11-11	ENVIRONMENTAL, INC.
Project Number	Drilling Method	Date Finished	665 McKinney Ave
5152489	Direct Push	2024-11-13	Midway, KY 40347
Project Location	Drilling Equipment	Total Depth	Screen Interval
400 East 2nd Street, Sheffield, AL	Geoprobe 3230	60.00	
Project Client	Sampling Method	Depth To Water	Casing
PM Environmental	Dual Tube		
Project Manager	Field Operator		
Bill Brab	Ben Borth		

	0.0-	Interval	Sample	PID	Lithology	
	2.0	30			ML	Clayey SILT, gravelly, damp, no odor
	4.0					
	6.0				CL · ·	CLAY, red, soft, damp, no odor
	8.0	100				
	3			0.0		
	10.0	100	RDC-02_10	0.0	CL	CLAY, red, soft, damp, no odor, few chert fragments
	12.0			0.0		
	14.0-		< RDC-02 14	0.0		
	16.0-	100	< RDC-02_16	0.0	-	
	18.0-		RDC-02_18	64.8	CL	CLAY, yellow/red, stiff, damp, odor, few gray mottles
	20.0-	100	RDC-02_20	253.0	CL	CLAY, yellow/red, soft, damp, strong odor, some
	22.0	100	RDC-02_22	253.0	- 19 - 219103-007 - 60	black stains at 24'
	24.0		RDC-02_24	253.0		
	26.0	100	RDC-02_26	68.0		CLAY, red, gravelly chert, more chert than clay, damp, stiff, odor
Depth [ft]	28.0		RDC-02_28	145.0	-	
Dept	30.0		RDC-02_30	172.0	CL	CLAY, yellowish red, damp, soft, odor, few chert
	32.0	100	RDC-02_32	57.0	-	pieces
	34.0		RDC-02_34	268.0	-	
	36.0	100	RDC-02 36	65.0	CL	CLAY, yellowish red, with chert fragments, damp, soft, odor
	38.0		RDC-02_38	961.0	-	
	40.0		RDC-02_40	68.0	CL	CLAY, red, stiff, wet at 40', chert lens at 42'
	42.0	100	RDC-02_42	219.0		(6"), 43' (2"), 44.5' (3")
	44.0		RDC-02_44	13.1		
	46.0	100	RDC-02 46	2.9	CL.	Gravelly CLAY, yellowish red, wet, soft, odor
	48.0	100	RDC-02 48	6.8	CL	CLAY, red, damp, stiff, odor, few chert
	50.0		RDC-02_50	9.7	GL	fragments CLAY, yellow-brown, wet, stiff, lots of limestone
	52.0	100	RDC-02_52	16.1		CLAT, yellow-blown, wet, suit, lots of innestone
	54.0		RDC-02_54	8.2	-	
	56.0-	100	RDC-02_56	172.0	CL	CLAY, red, gravelly, wet, soft, odor. Refusal @
	58.0-	100	RDC-02_58			58'.
	10					

PM - Former Service St	ation	RDC-03	AST
Project Name	Drilling Company	Date Started	
PM-Frmr Gas Sheffield	Hawkston	2024-11-12	ENVIRONMENTAL, INC.
Project Number	Drilling Method	Date Finished	665 McKinney Ave
5152489	Direct Push	2024-11-14	Midway, KY 40347
Project Location	Drilling Equipment	Total Depth	Screen Interval
400 East 2nd Street, Sheffield, AL	Geoprobe 3230	67.00	
Project Client	Sampling Method	Depth To Water	Casing
PM Environmental	Dual Tube		
Project Manager	Field Operator		
Bill Brab	Ben Borth		

	0.0-	Interval	Sample	PID	Lithology		0.0
	2.0	100			NL	Not logged	2.0
	4.0						4.0
	6.0				CL	CLAY, brownish red, damp, stiff, no odor	
		100					6.0
	8.0						8.0
	10.0	100	RDC-03_10				10.0
	12.0	100	RDC-03 12				12.0
	14.0		RDC-03 14				14.0
	16.0-	100	RDC-03_16				16.0
	18.0		RDC-03_18				18.0
	20.0		RDC-03_20		CL	Silty CLAY, brownish red, damp, stiff, no odor,	20.0
	22.0	100	RDC-03_22	4.8		chert fragments ~24'	22.0
	24.0		RDC-03_24	0.8	NL	Na Daaayaa	24.0
	26.0	10				No Recovery	26.0
	28.0						28.0
	30.0	-	RDC-03_30	18.2	CL	Clay, reddish brown, damp, soft, odor, chert	30.0
[[]	32.0	100	RDC-03_32	325.0	or and the second s	layer ~34'	₽ 32.0
Depth [ft]	34.0		RDC-03_34	82.9			[1] 32.0 Hd 34.0
Δ	36.0	100	RDC-03 36	25.0	CH	CLAY, red, damp, soft, high plasticity, odor	ص _{36.0}
	38.0		RDC-03 38	38.0			38.0
	40.0		RDC-03 40	100.0	CL	CLAY, red, damp, soft, odor	40.0
	42.0	50	RDC-03 42	127.0			42.0
	44.0		RDC-03_44	38.0			44.0
	46.0	100	RDC-03_46	22.0	СН	CLAY, red, soft, wet ~45', high plasticity, damp 47'-50', odor	46.0
	48.0	100	RDC-03_48	29.0			48.0
	50.0		RDC-03_50	0.0	СН	CLAY, red, soft, wet, high plasticity, odor	50.0
	52.0	100	RDC-03_52	0.0			52.0
	54.0		RDC-03_54	0.0	CL	CLAY, yellow-red, damp, with chert, odor	54.0
	56.0	100	RDC-03_56	285.0	CL	CLAY, yellow-red, damp, soft, odor, with chert fragments	56.0
	58.0	100	RDC-03_58	72.0			58.0
	60.0		RDC-03_60	38.0	CL	CLAY, yellow-red, damp, soft, no odor, few	60.0
	62.0	100	RDC-03_62	2.3		weathered chert fragments at 65'	62.0
	64.0		RDC-03_64				64.0
	66.0	100	RDC-03 66 RDC-03 67	1.2	CL	CLAY, red, damp, soft, no odor. Refusal @ 67'	66.0
			KDC-03_6/	× 0.0	,		

PM - Former Service St	ation	Borehole RDC-04	AST
Project Name	Drilling Company	Date Started	
PM-Frmr Gas Sheffield	Hawkston	2024-11-12	ENVIRONMENTAL, INC.
Project Number	Drilling Method	Date Finished	665 McKinney Ave
5152489	Direct Push	2024-11-13	Midway, KY 40347
Project Location	Drilling Equipment	Total Depth	Screen Interval
400 East 2nd Street, Sheffield, AL	Geoprobe 3230	54.00	
Project Client	Sampling Method	Depth To Water	Casing
PM Environmental	Dual Tube		
Project Manager	Field Operator		
Bill Brab	Ben Borth		

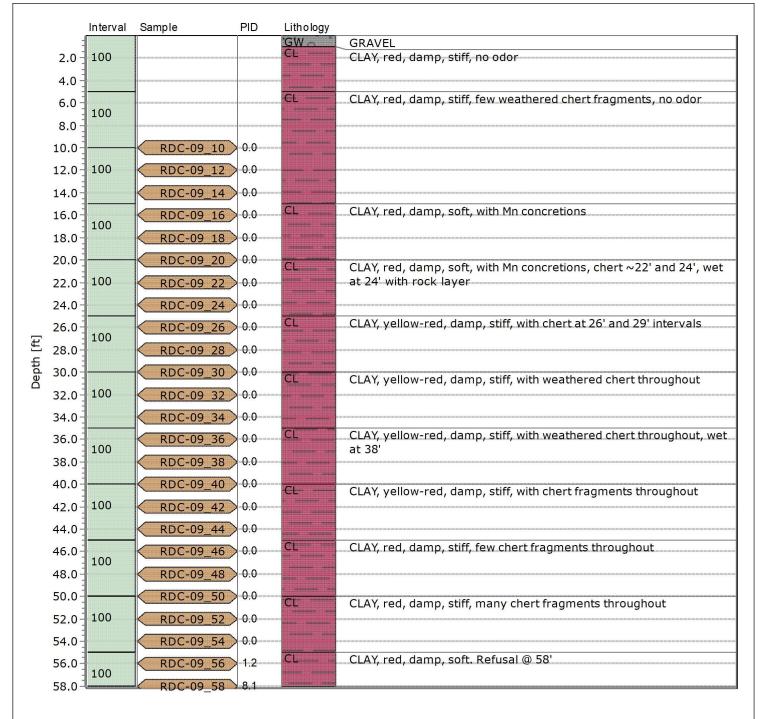
0.0	Interval	Sample PII	D Lithology	
1.0	100		INL	Not logged
2.0	100			
3.0				
4.0				
5.0			CL	Clay, red, damp, soft, no odor
6.0	100			
7.0			ANNAN AN	
8.0				
9.0				
10.0		RDC-04 10 1.	5	City CLAV by which and down onft block stains old
11.0	100			Silty CLAY, brownish red, damp, soft, black stains, old gas odor
12.0		RDC-04_12 20).2	
13.0			ander derer	
14.0		RDC-04_14 3.	a	
		KDC-04_14 0.		
15.0			CL	Silty CLAY, red, damp, stiff, weathered chert lens at
16.0	100	RDC-04_16 3.	2	~17' and 19'
17.0				
18.0		RDC-04_18 4.	7	
19.0			and the second s	
20.0		RDC-04 20 19	8.0	Silty CLAY, yellow-red, damp, soft, odor
21.0	100			Sity CLAT, yenow-red, damp, solt, odor
22.0		RDC-04 22 10	0.0	
23.0				
24.0		RDC-04 24 25	6.0	-
		RDC-04 24 20	0.0	
25.0			CL	Silty CLAY, yellow-red, damp, stiff, odor, small 1" sand
₽ 26.0	100	RDC-04_26 15	6.0	seam ~28', few chert fragments
11 27.0 28.0			ananan disk. Sisisikiki	
ළ 28.0-		RDC-04 28 12	.4.0	***************************************
29.0				
30.0		RDC-04_30 21	.0	CLAY, yellow-red, damp, stiff, odor, rock fragments
31.0	100			~34'
32.0		RDC-04 32 31	7.0	
33.0				**
34.0		RDC-04_34 38	2.0	
35.0			CL	CLAY, yellow-red, many gravel fragments, damp, stiff,
36.0	100	RDC-04_36 44	4.0	odor, slight glisten of product, wet at 40'
37.0				
38.0		RDC-04_38 37	0.0	
39.0				
40.0		RDC-04_40 11	6.0 CL	Silty CLAY, yellow-red, damp, stiff, odor, few rock
41.0	100		e contener	fragments
42.0		RDC-04_42 67	7.0	
43.0				
44.0		RDC-04_44 12	3.0	
			101.0 1010100 10	
45.0			CL	Gravelly CLAY, yellow-red, damp, stiff, odor
46.0	100	RDC-04_46 38	5.0	
47.0				
48.0		RDC-04_48 36	60.0	
49.0				
50.0		RDC-04_50 24	1.0	Crowelly CLAY vellow red dome shift stor. Potrool @
51.0	100		CL	Gravelly CLAY, yellow-red, damp, stiff, odor. Refusal @ 54'.
52.0	100	RDC-04_52 17	8.0	
52.0		NDC 04_32 11		
53.0				

0.0 1.0 2.0 3.0 4.0 5.0			
2.0 3.0 4.0 5.0			
3.0 4.0 5.0			
4.0 5.0			
5.0			
6.0			
7.0			
8.0			
9.0			
10.0	0.0006	0.0046	4
11.0			
12.0	0.0007	0.0044	13
13.0			
14.0	0	0.0066	6.4
15.0			
	0.0011	0.0021	2.5
17.0			
18.0		0.0011	0
19.0		0.0011	
20.0		0.0023	
14	0	0.0023	0
21.0		0.0010	
22.0	0	0.0012	0
23.0			
	0.0014	0.13	580
25.0			
26.0	0.0026	0.0035	13
26.0 27.0 28.0			
28.0	0	0.0028	24
29.0			
30.0	0.0018	0.0036	6.8
31.0			
32.0	0.0025	0.0032	32
33.0			
34.0	0.022	6.2	1500
35.0			
36.0	0	12.2	1600
37.0			
38.0	0.5	7 23.	5 2600
39.0			
40.0	0.094	13.4	2600
41.0			
	0.0028	4	770
43.0			
44 0	0.0012	0.069	36
		0.009	
45.0		- 24	400
	0.0029	3.4	400
47.0			72
	0.0045	17	73
49.0			
10	0.054	3.5	580
51.0			
52.0		7.7	2000
53.0			
54.0	noz	0.19	
	0.2 0.3 0.3 4.0	5 15 20 20	0 500 1,000 1,500 2,000

PM - Former Service St	ation	Borehole RDC-06	AST
Project Name	Drilling Company	Date Started	
PM-Frmr Gas Sheffield	Hawkston	2024-11-12	ENVIRONMENTAL, INC.
Project Number	Drilling Method	Date Finished	665 McKinney Ave
5152489	Direct Push	2024-11-13	Midway, KY 40347
Project Location	Drilling Equipment	Total Depth	Screen Interval
400 East 2nd Street, Sheffield, AL	Geoprobe 3230	58.80	
Project Client	Sampling Method	Depth To Water	Casing
PM Environmental	Dual Tube		
Project Manager	Field Operator		
Bill Brab	Ben Borth		

	0.0 -	Interval	Sample	PID	Lithology	
	2.0	100			CL	Silty CLAY, brownish red, damp, soft, no odor
	4.0					
	6.0				CL	CLAY, red, damp, stiff, moderate plasticity, no odor
	8.0	100				
	10.0		RDC-06 10	212.0		
	12.0	100	RDC-06 10	186.0	100000000000000000000000000000000000000	
	12.0	100	RDC-06 12 RDC-06 14	152.0		
	-			23.1	CL	CLAY, red, damp, soft, moderate plasticity, with chert lens at 19.5',
	16.0	100	RDC-06_16			wet zone at chert
	18.0		RDC-06_18	9.2		
	20.0	100	RDC-06_20	25.6	CL	Sandy silty CLAY, yellow-red, damp, stiff, moderate plasticity, wet
	22.0	100	RDC-06_22	9.7		interval with chert at 24'
	24.0		RDC-06_24	3.6	CL	Silty CLAY, yellowish red, gravelly chert with Mn concretions, damp,
T	26.0	100	RDC-06_26	233.0	- CL	stiff
h [ft]	28.0		RDC-06_28	368.0		
Depth	30.0		RDC-06 30	121.0	CL	Silty CLAY, yellowish red, gravelly chert, damp, small wet zone at
	32.0	100	RDC-06 32	192.0	an mana	- 32', may be from above
	34.0		RDC-06_34	78.1	<u>_</u>	
	36.0	100	RDC-06_36	12.1	CL	Silty CLAY, yellowish red, soft, wet ~36', no odor
	38.0		RDC-06_38	6.2		*****
	40.0		RDC-06_40	0.0	CL	Silty CLAY, yellowish red, damp, soft, gravelly chert throughout, no
	42.0	100	RDC-06_42	0.0		odor
	44.0		RDC-06_44	0.0		
	46.0	100	RDC-06_46	0.0		
	48.0		RDC-06_48	0.0	-	
	50.0		RDC-06_50	0.4		
	52.0	100	RDC-06_52	6.2		
	54.0		RDC-06_54	0.0	CH	CLAY, red, damp, stiff, no odor, high plasticity
	56.0	100	RDC-06_56	0.0	CH	CLAY, red, wet, soft, high plasticity, few chert fragments. Refusal at 58.8'.
	58.0		RDC-06_58.8	0.0		

PM - Former Service Sta	ition	Borehole RDC-07	AST
Project Name	Drilling Company	Date Started	
PM-Frmr Gas Sheffield	Hawkston	2024-11-12	ENVIRONMENTAL. INC.
Project Number	Drilling Method	Date Finished	665 McKinney Ave
5152489	Direct Push	2024-11-12	Midway, KY 40347
Project Location	Drilling Equipment	Total Depth	Screen Interval
400 East 2nd Street, Sheffield, AL	Geoprobe 3230	53.00	
Project Client	Sampling Method	Depth To Water	Casing
PM Environmental	Dual Tube		
Project Manager	Field Operator		
Bill Brab	Ben Borth		


0.0 ¬	Interval	Sample	PID	Litholog		0.	TVPH	
-				NL	Not Logged		-	
1.0	100			- Charles Inc.		1.	-	
2.0						2.		
3.0						3.		
4.0					~~~	4.	-	
5.0				CL	CLAY, red, damp, stiff, no odor	5.		
6.0	100					6.	0	
7.0					****	7.	0 =	
8.0						8.	0	
9.0				-		9.	0	
10.0		RDC-07_10	0.0			10.	0 0	
11.0	100					11.	0	
12.0	100	RDC-07 12	0.0			12.	0 0	
13.0						13.		
14.0		RDC-07 14	0.0	automation		14.		
15.0				electricite		15.		
16.0		RDC-07_16	0.0	• •		15.		
	100							
17.0						17.		
18.0		RDC-07_18	0.0	CL	Silty sandy CLAY, red, damp, stiff, weathered	18.	-	
19.0					chert lens ~17' and 19'	19.		
20.0		RDC-07_20	0.0	CL	Silty CLAY, yellow-red, damp, stiff, chert	20.	-	
21.0	100				fragments intermixed	21.	0	
22.0	100	RDC-07_22	0.0			22.	0 0.5	
23.0					***	23.	0	
24.0		RDC-07 24	0.0		f	24.	0 0	
25.0								
26.0		RDC-07_26				± _ 26.		
27.0	100	ZU	0.0	ananan inna		[1] 25. 26. 27. 27. 28.		
-		DDC 07 39	200			d 27. d 28.	-	
28.0		RDC-07_28	0.0					
29.0						29.		
30.0		RDC-07_30	0.0	CL	Silty CLAY, red, damp, stiff, no odor, with chert	30.	-	
31.0	100				fragments	31.		
32.0		RDC-07_32	0.0			32.	0 0	
33.0						33.	0	
34.0		RDC-07_34	0.0			34.	0 0	
35.0				<u></u>		35.	0	
36.0	100	RDC-07 36	0.0	CL	Gravelly silty CLAY, red, damp, stiff, no odor	36.	-	
37.0	100					37.	· .	
38.0		RDC-07_38	0.0	-		38.	-	
39.0			-			39.		
40.0		RDC-07 40	100	-		40.		
		KDC-07 40	0.0	CL	Silty CLAY, red, wet, soft, no odor		-	
41.0	100		200	CL	Gravelly silty CLAY, yellow-red, damp, stiff, no	41.	-	
42.0		RDC-07_42	0.0		odor	42.		
43.0				-		43.	-	
44.0		RDC-07 44	0.0				0 0	
45.0				CL	Silty CLAY, yellow-red, gravelly chert, soft,	45.		
46.0	100	RDC-07_46	1.0		damp to wet, slight odor at 50'		0 0	
47.0	100					47.	0	
48.0		RDC-07 48	1.0			48.		
49.0						49.	-	
50.0		RDC-07_50	106.5	-		50.		
			100.0	CL	Silty CLAY, yellow-red, gravelly chert, odor,	51.		
51.0	100		100 4		damp, stiff. Refusal @ 53'			
52.0		RDC-07_52 RDC-07_53	100.4			52.	0 24	

mg/kg

PM - Former Service St	ation	Borehole RDC-08	AST
Project Name	Drilling Company	Date Started	
PM-Frmr Gas Sheffield	Hawkston	2024-11-14	ENVIRONMENTAL, INC.
Project Number	Drilling Method	Date Finished	665 McKinney Ave
5152489	Direct Push	2024-11-15	Midway, KY 40347
Project Location	Drilling Equipment	Total Depth	Screen Interval
400 East 2nd Street, Sheffield, AL	Geoprobe 3230	59.00	
Project Client	Sampling Method	Depth To Water	Casing
PM Environmental	Dual Tube		
Project Manager	Field Operator		
Bill Brab	Ben Borth		

	Interval	Sample	PID	Lithology	
2.0-	100			NL	Not Logged
4.0					
6.0				CL	CLAY, red, damp, soft, no odor, few weathered chert fragments at
8.0	100			-	9'-10'
10.0		RDC-08_10	-1.3	CL	CLAY, red, damp, stiff, no odor
12.0	100	RDC-08_12	0.0		
14.0	1	RDC-08_14	0.1	-	
16.0	100	RDC-08_16	0.0	CL	CLAY, yellowish red, damp, stiff, no odor, weathered chert lens ~17' and 19'
18.0-	100	RDC-08_18	0.0		
20.0		RDC-08_20	0.0	CL	CLAY, brownish red, damp, stiff, weathered chert mixed throughout
22.0	100	RDC-08_22	0.0		
24.0		RDC-08_24	0.0		
26.0	100	RDC-08_26	0.0		
분 28.0-	100	RDC-08_28	0.0		
-0.05 De		RDC-08_30	0.0	CL	Cherty CLAY, red, damp, soft, no odor
<u>م</u> 32.0-	100	RDC-08_32	0.0		
34.0	-	RDC-08 34	0.0		******
36.0	100	RDC-08_36	0.0	CL	CLAY, red, soft, weathered chert throughout, wet at 38'
38.0-		RDC-08_38	0.0		******
40.0	1	RDC-08_40	0.0	CL	CLAY, red, damp, stiff, weathered chert throughout, no odor
42.0	100	RDC-08_42	0.0	-	******
44.0-		RDC-08_44	0.0		
46.0-	100	RDC-08_46	0.0	CL	CLAY, red, damp, stiff
48.0-		RDC-08_48	0.0		
50.0-		RDC-08_50	0.0	<u>GC * *</u> CL	Weathered CHERT, some clay, damp, stiff, no odor CLAY with weathered chert, yellow-red, damp, stiff, slight odor at 55'
52.0-	100	RDC-08_52	0.0		
54.0-		RDC-08_54	0.7		
56.0-	100	RDC-08_56	0.4		CLAY, yellow-red, many weathered chert, wet, soft, slight odor. Refusal @ 59'
58.0-		RDC-08_58 RDC-08_59	8.6 5.2		

PM - Former Service St	ation	Borehole RDC-09	AST
Project Name	Drilling Company	Date Started	
PM-Frmr Gas Sheffield	Hawkston	2024-11-15	ENVIRONMENTAL, INC.
Project Number	Drilling Method	Date Finished	665 McKinney Ave
5152489	Direct Push	2024-11-15	Midway, KY 40347
Project Location	Drilling Equipment	Total Depth	Screen Interval
400 East 2nd Street, Sheffield, AL	Geoprobe 3230	58.00	
Project Client	Sampling Method	Depth To Water	Casing
PM Environmental	Dual Tube		
Project Manager	Field Operator		
Bill Brab	Ben Borth		

ATTACHMENT B RPI Laboratory Analytical Report

Sample ID. No. Date Sampled Sample Depth	RDC-01 11/12/2024 10	Reporting Limit	Units Flaos	RDC-01 11/12/2024 12	Reporting Limit	Units Flags	RDC-01 11/12/2024 14	Reporting Limit	Units i	RDC-01 11/12/202 16 Flags	4 Reporting Limit	Units	Flags	RDC-01 11/12/2024 18	Reporting Limit	Units Flags	RDC-01 11/12/2024 20	Reporting Limit	Units Flags	RDC-01 11/12/2024 22	Reporting Limit	Units Flags
Dimethyl Sulfide MTBE 1,2-Dichloroethane Benzene Toluene Ethylbenzene m/p-Xylene o-Xylene 1,24-Trimethylbenzene Naphthalene	ND 0.9 ND 2.3 2.5 8.3 3 13 3.1	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	ND 0.7 ND 1.1 2 2.7 11 2.9 17 2.9	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	ND 1.4 ND 5.9 9.4 38 13 77 8.6	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	ND ND 5,4 40 230 530 69 440 500	0.5 0.5 0.5 0.5 50 50 50 50 50 50 50	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg		ND ND ND 23 140 110 16 81 90	10 10 10 10 10 10 10 10 10 10	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	ND ND 0.7 9.8 420 230 66 3500 1200	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 50 50	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	ND ND 0.9 8.1 430 42 11 180 1000	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 50 50	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg
түрн	10	0.5	mg/Kg	14	0.5	mg/Kg	47	0.5	mg/Kg	E 3000	50	mg/Kg	Е	650	100	mg/Kg	510	50	mg/Kg	460	50	mg/Kg
% Surrogate Recovery 1,2-Dichloroethane-d4 d8-Toluene p-Bromofluorobenzene	91 107 116			89 111 130			89 184 104			96 111 137				93 118 131			91 243 19			92 101 97		
Sample ID. No. Date Sampled Sample Depth	RDC-01 11/12/2024 24	Reporting Limit	Units Flags	RDC-01 11/13/2024 26	Reporting Limit		RDC-01 11/13/2024 28	Reporting Limit	11-14-	RDC-01 11/13/202 30 Flags	4 Reporting Limit		Flags	RDC-01 11/13/2024 32	Reporting Limit	Units Flags	RDC-01 11/13/2024 34	Reporting Limit	Units Flags	RDC-01 11/13/2024 36	Reporting Limit	linita Elema
Dimethyl Sulfide MTBE 1,2-Dichloroethane Benzene Toluene Ethylbenzene m/p-Xylene o-Xylene 1,2,4-Timethylbenzene Naphthalene	ND ND ND 44 37 8.1 150 230	10 10 10 10 10 10 10 10 10 10	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	ND ND 1 6.2 1900 190 7.7 2400 2300	0.5 0.5 0.5 0.5 0.5 50 0.5 0.5 0.5 50 50 50	Units Flags ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	ND ND 36 190 14300 6400 180 22700 9000	10 10 10 10 10 100 10 10 100 100	Units F ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	FRAGS ND ND ND 6.2 280 850 44 8900 1500	0.5 0.5 0.5 0.5 50 50 0.5 50 0.5 50 50	Units ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	riags	ND 4 ND 7 660 1100 200 8100 1300	0.5 0.5 0.5 0.5 0.5 0.5 10 10 10 10	Units Flags ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	ND ND ND 4.2 33 56 12 1100 270	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	ND ND 6.5 ND 25 ND 420 360	0.5 0.5 0.5 0.5 10 10 10 10 10	Units Flags ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg
TVPH	140	10	mg/Kg	520	50	mg/Kg	1400	100	mg/Kg	290	50	mg/Kg		330	10	mg/Kg	45	10	mg/Kg	66	10	mg/Kg
% Surrogate Recovery 1,2-Dichloroethane-d4 d8-Toluene p-Bromofluorobenzene	78 99 115			93 93 96			94 97 97			95 91 122				76 167 118			73 182 139			85 178 151		
Sample ID. No. Date Sampled Sample Depth	RDC-01 11/13/2024 38	Reporting		RDC-01 11/13/2024 40	Reporting		RDC-01 11/13/2024 42	Reporting		RDC-01 11/13/202 44	Reporting			RDC-01 11/13/2024 46	Reporting		RDC-01 11/13/2024 48	Reporting		RDC-01 11/13/2024 50	Reporting	
Dimethyl Sulfide MTBE 1,2-Dichloroethane Benzene Toluene Ethylbenzene m/p-Xylene c-Xylene 1,2-4-Trimethylbenzene Naphthalene TVPH	ND ND 17 16 4000 15900 3300 16800 16800 1600	Limit 0.5 0.5 0.5 0.5 50 50 50 50 50 50	Units Flags ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	ND 1.6 ND 2.9 22 89 22 400 130	Limit 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	Units Flags ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg mg/Kg	ND ND ND 18 720 2500 600 2400 270 82	Limit 10 10 10 10 10 10 10 10 10 10	Units F ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	Flags ND ND 410 30800 88300 26100 71500 8800 1600	Limit 50 50 50 50 50 50 50 50 50 50 50	Units ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	Flags E E	ND ND 340 2500 81100 247000 79800 235000 25300 5200	Limit 50 50 50 50 50 500 500 500 500 500 500	Units Flags ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg E ug/Kg ug/Kg ug/Kg mg/Kg	ND ND ND 110 4500 15500 4800 14700 1400 330	Limit 50 50 50 50 50 50 50 50 50 50	Units Flags ug/Kg ug/Kg ug/Kg ug/Kg	ND ND ND 510 1600 420 2200 220 48	Limit 50 50 50 50 50 50 50 50 50 50 50	Units Flags ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg
% Surrogate Recovery 1,2-Dichloroethane-d4 d8-Toluene p-Bromofluorobenzene	99 94 97			80 105 108			87 102 105			89 110 120				95 111 144			86 99 108			87 100 103		

Sample ID. No. Date Sampled Sample Depth	RDC-01 11/13/2024 52	Reporting		RDC-01 11/13/2024 54	Reporting		RDC-01 11/13/2024 56	Reporting		RDC-01 11/13/2024 58	Reporting		RDC-01 11/13/2024 60	Reporting		RDC-0 11/13/20 62					
		Limit	Units F l ags		Limit	Units F l ags		Limit	Units F l ags		Limit	Units Flags		Limit	Units F	ags	Limit	Units F l ag	6		
Dimethyl Sulfide MTBE 1,2-Dichloroethane Benzene Toluene Ethytbenzene m/p-Xytene o-Xytene 1,2,4-Trimethytbenzene Naphthalene	ND 1.5 ND 8.4 4.5 140 340 81 400 55	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	ND 2 ND 27 2.4 31 67 18 47 7.6	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	ND ND 2,3 46 5200 18000 3900 36300 4200	0.5 0.5 0.5 0.5 50 50 50 50 50 50	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	ND ND 2400 660 28800 30700 1200 55300 12000	50 50 50 50 50 50 50 50 50 50	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	ND ND 250 110 13700 21800 3600 40000 8100	0.5 0.5 0.5 0.5 50 50 50 50 50 50	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	ND ND 4100 51700 80000 14500 82400 20000	50 50 50 50 50 50 50 50 50 50 50	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg			
турн	8.3	0.5	mg/Kg	5.6	0.5	mg/Kg	1100	50	mg/Kg	1800	50	mg/Kg	2200	50	mg/Kg	3200	50	mg/Kg E			
% Surrogate Recovery 1,2-Dichloroethane-d4 d8-Toluene p-Bromofluorobenzene	84 100 103			84 105 102			98 104 101			90 115 131			103 111 114			95 115 158					
Sample ID, No. Date Sampled Sample Depth	RDC-02 11/11/2024 10	Reporting		RDC - 02 11/11/2024 12	Reporting		RDC-02 11/11/2024 14	Reporting		RDC-02 11/11/2024 16	Reporting		RDC-02 11/11/2024 18	Reporting		RDC-0: 11/11/20 20	24 Reporting		RDC-02 11/11/2024 22	Reporting	linita Eleca
		Limit	Units Flags		Limit	Units F l ags		Limit	Units F l ags		Limit	Units Flags		Limit		ags	Limit	Units F l ag		Limit	Units Flags
Dimethyl Sulfide MTBE 1,2-Dichloroethane Benzene Toluene Ethylbenzene m(p-Xylene -Xylene 1,2,4-Trimethylbenzene Naphthalene	ND 0.8 ND 0.8 0.9 5.8 17 4.3 31 20	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	ND 1.1 ND 0.8 1.3 3.4 8.9 2.9 11 7.2	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	ND 1.3 ND 0.9 1.7 4.1 9.8 3.3 13 5.4	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	ND 0.8 ND 1.2 1.7 4.4 12 4.1 19 6.1	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	ND 0.9 ND 1.1 3.2 8.1 27 7.7 19 8.8	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	ND 0.6 ND 0.9 2.1 4.7 19 4.2 14 4.8	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	ND 0.5 ND 1.5 3.2 13 2.9 17 3.1	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg
турн	0.6	0.5	mg/Kg	ND	0.5	mg/Kg	ND	0.5	mg/Kg	5.9	0.5	mg/Kg	38	0.5	mg/Kg	E 35	0.5	mg/Kg E	13	0.5	mg/Kg
% Surrogate Recovery 1,2-Dichloroethane-d4 d8-Toluene p-Bromofluorobenzene	84 96 95			81 93 92			85 96 94			86 106 109			80 138 285			87 137 268			87 137 146		
Sample ID. No. Date Sampled Sample Depth	RDC-02 11/11/2024 24	Reporting		RDC-02 11/13/2024 26	Reporting		RDC-02 11/13/2024 28	Reporting		RDC-02 11/13/2024 30	Reporting		RDC-02 11/13/2024 32	Reporting		RDC-0: 11/13/20 34	24 Reporting		RDC-02 11/13/2024 36	Reporting	
		Limit	Units Flags		Limit	Units Flags		Limit	Units F l ags		Limit	Units Flags		Limit	Units F	ags	Limit	Units Flag	5	Limit	Units Flags
Dimethyl Sulfide MTBE 1,2-Dichloroethane Benzene Toluene Ethylsenzene m/p-Xylene o-Xylene 1,2,4-Trimethylbenzene Naphthalene	ND ND ND 520 980 120 2500 1200	50 50 50 50 50 50 50 50 50 50	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	ND 0.7 ND 0.6 1.5 2.1 16 3.9 15 2.8	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	ND ND ND 3.9 9.1 38 9.3 35 3.9	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	ND ND ND 7.9 190 80 15 700 49	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	ND ND 1 2.7 13 39 7.8 85 6.6	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	ND ND ND 100 820 400 59 6100 560	10 10 10 10 10 10 10 10 10 10	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	ND 1.4 ND 3.3 6 22 7.1 38 12	$\begin{array}{c} 0.5\\ 0.5\\ 0.5\\ 0.5\\ 0.5\\ 0.5\\ 0.5\\ 0.5\\$	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg
TVPH	870	50	mg/Kg	26	0.5	mg/Kg E	240	10	mg/Kg	320	25	mg/Kg	130	10	mg/Kg	510	10	mg/Kg E	15	0.5	mg/Kg
% Surrogate Recovery 1,2-Dichloroethane-d4 d8-Toluene p-Bromofluorobenzene	87 56 73			87 162 209			90 201 154			84 276 150			83 190 134			91 136 163			80 124 123		

Sample ID. No. Date Sampled Sample Depth	RDC-02 11/13/2024 38	Reporting		RDC-02 11/13/2024 40	Reporting		RDC-02 11/13/2024 42	Reporting			RDC-02 11/13/2024 44	Reporting			RDC-02 11/13/2024 46	Reporting		RDC-02 11/13/2024 48	Reporting		RDC-02 11/13/2024 50	Reporting		
		Limit	Units Flag	6	Limit	Units Flags	6	Limit	Units	Flags		Limit	Units	Flags		Limit	Units F l ag	5	Limit	Units Flags		Limit	Units F	ags
Dimethyl Sulfide MTBE 1,2-Dichloroethane Benzene Toluene Ethyloenzene m/p-Xylene o-Xylene 1,2,4-Trimethylbenzene Naphthalene	ND ND ND 7.9 170 130 20 1000 190	0.5 0.5 0.5 0.5 0.5 0.5 0.5 25 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	ND ND ND 8.2 60 73 16 970 97	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	ND 1.5 ND 3.7 5.4 18 6.2 47 16	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg		ND 1.4 ND 2.7 4.8 11 3.4 24 11	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg		ND 1.4 ND 1.2 1.7 5 1.7 8.7 2.5	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	ND 2.2 ND 3.7 3.2 60 64 6.8 210 41	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	ND 4.3 ND 16 6.3 23 120 9.9 280 8.8	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	
турн	120	25	mg/Kg	31	0.5	mg/Kg E	4.8	0.5	mg/Kg		ND	0.5	mg/Kg		9.6	0.5	mg/Kg	13	0.5	mg/Kg	41	0.5	mg/Kg	Е
% Surrogate Recovery 1,2-Dichloroethane-d4 d8-Toluene p-Bromofluorobenzene	89 299 341			80 142 159			84 105 105				84 94 93				82 121 118			88 116 116			83 172 171			
Sample ID. No. Date Sampled Sample Depth	RDC-02 11/13/2024 52	Reporting Limit	Units F l ag	RDC-02 11/13/2024 54	Reporting Limit	Units F l age	RDC-02 11/13/2024 56	Reporting Limit	Units	Flags	RDC-02 11/13/2024 58	Reporting Limit	Units	Flags										
Dimethyl Sulfide MTBE 1,2-Dichloroethane Benzene Toluene Ethyloenzene m/p-Xylene o-Xylene 1,2,4-Trimethyloenzene Naphthalene	ND 1.6 ND 2.7 1.4 16 9.5 70 35	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	ND 2.1 ND 1.1 4.9 29 100 17 190 20	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	ND 2 ND 2.4 2.7 6.3 130 8.8 200 4.3	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg		ND 2.5 ND 19 7.1 10 60 10 35 8.7	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg											
TVPH	36	0.5	mg/Kg E	15	0.5	mg/Kg	40	0.5	mg/Kg	Е	27	0.5	mg/Kg	Е										
% Surrogate Recovery 1,2-Dichloroethane-d4 d&Toluene p-Bromofluorobenzene	82 166 163			82 123 124			91 185 170				84 142 141													
Sample ID. No. Date Sampled Sample Depth	RDC-03 11/12/2024 10	Reporting Limit	Units F l ag:	RDC-03 11/12/2024 12	Reporting Limit	Units Flags	RDC-03 11/12/2024 14	Reporting Limit	Units	Flags	RDC-03 11/12/2024 16	Reporting Limit	Units	Elage	RDC-03 11/12/2024 18	Reporting Limit	Units Flag	RDC-03 11/12/2024 20	Reporting Limit	Units Flags	RDC-03 11/12/2024 22	Reporting Limit	Units FI	lage
Dimethyl Sulfide MTBE 1,2-Dichloroethane Benzene Ethybenzene mip-Xytene o-Xytene 1,2,4-Trimethybenzene Naphthalene	ND 0.9 ND 1.6 1.9 4.1 3.1 5.6 1.8	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	ND 1 ND 1.6 1.7 6.9 2.8 9.9 1	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	ND 1.4 ND 1.9 2.1 6.5 3.4 9.9 0.9	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	. 1093	ND 1.3 ND 1 1.1 1.8 2.6 3.6 ND	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg		ND 4.3 ND 0.8 2.5 2 7.6 2.2 6.3 1.2	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	ND 5.6 ND 1 2.7 3 10 2.2 11 3.6	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	ND 4 ND 0.7 1.7 2.8 9.2 2 10 3.2	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	~30
TVPH	ND	0.5	mg/Kg	ND	0.5	mg/Kg	ND	0.5	mg/Kg		ND	0.5	mg/Kg		0.6	0.5	mg/Kg	0.5	0.5	mg/Kg	ND	0.5	mg/Kg	
% Surrogate Recovery 1,2-Dichloroethane-d4 d&-Toluene p-Bromofluorobenzene	90 102 106			93 101 102			88 101 101				91 101 102				88 91 88			93 90 74			97 77 86			

	Sample ID. No.	RDC-03			RDC-03			RDC-03				RDC-03				RDC-03			RDC-03			RDC-03		
0	Date Sampled	11/12/2024			11/14/2024			11/14/2024				11/14/2024				11/14/2024			11/14/2024			11/14/2024		
5	Sample Depth	24	Reporting		30	Reporting		32	Reporting			34	Reporting			36	Reporting		38	Reporting		40	Reporting	
N	Dimethyl Sulfide MTBE	ND 1.2	Limit 0.5 0.5	Units Flags ug/Kg ug/Kg	ND ND	Limit 0.5 0.5	Units Flags ug/Kg ug/Kg	ND ND	Limit 0.5 0.5	ug/Kg ug/Kg	Flags	ND ND	Limit 0.5 0.5	ug/Kg ug/Kg	Flags	ND ND	Limit 0.5 0.5	Units Flags ug/Kg ug/Kg	ND ND	Limit 0.5 0.5	Units Flags ug/Kg ug/Kg	ND ND	Limit 0.5 0.5	Units Flags ug/Kg ug/Kg
E T E	1,2-Dichloroethane Benzene Toluene Ethylbenzene m/p-Xylene	ND ND 2.1 1.9 7.9	0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	ND ND 5 560 890	0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg E	ND ND 14 39 82	0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg		ND 1.4 18 780 37	0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	E	ND 0.6 2.5 61 11	0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	ND ND 3.9 76 52	0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	ND ND 1.9 5.9 15	0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg
1 N	o-Xylene 1,2,4-Trimethylbenzene Naphthalene	3.2 9.4 ND	0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg	110 1000 80	0.5 0.5 0.5	ug/Kg ug/Kg E ug/Kg	24 130 58	0.5 10 10	ug/Kg ug/Kg ug/Kg		7.8 510 52	0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg		2.3 360 7.8	0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg	6.5 1400 19	0.5 0.5 0.5	ug/Kg ug/Kg E ug/Kg	4.4 180 4.8	0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg
	TVPH	ND	0.5	mg/Kg	25	0.5	mg/Kg E	560	10	mg/Kg	Е	34	0.5	mg/Kg	Е	7.1	0.5	mg/Kg	20	0.5	mg/Kg	12	0.5	mg/Kg
1 c	% Surrogate Recovery 1,2-Dichloroethane-d4 d8-Toluene p-Bromofluorobenzene	92 100 102			96 103 114			45 116 319				131 118 241				109 95 118			91 93 153			108 88 136		
0	Sample ID. No. Date Sampled Sample Depth	RDC-03 11/14/2024 42	Reporting		RDC-03 11/14/2024 44	Reporting		RDC-03 11/14/2024 46	Reporting			RDC-03 11/14/2024 48	Reporting			RDC-03 11/14/2024 50	Reporting		RDC-03 11/14/2024 52	Reporting		RDC-03 11/14/2024 54	Reporting	
			Limit	Units F l ags		Limit	Units F l ags		Limit	Units	Flags		Limit	Units	Flags		Limit	Units Flags		Limit	Units Flags		Limit	Units Flags
N 1	Dimethyl Sulfide MTBE 1,2-Dichloroethane Benzene	ND ND ND 2.6	0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg	ND ND ND ND	0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg	ND ND ND ND	0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg		ND ND ND 2.1	0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg		ND ND ND 17	0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg	ND ND ND ND	0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg	ND 4.8 ND 1.8	0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg
T	Toluene Ethylbenzene	13 1600	0.5 25	ug/Kg ug/Kg	2 99	0.5 0.5	ug/Kg ug/Kg	2.9 42	0.5	ug/Kg ug/Kg		37 230	0.5	ug/Kg ug/Kg		180 5700	0.5 50	ug/Kg ug/Kg	3.9 200	0.5	ug/Kg ug/Kg	5.3 9.5	0.5	ug/Kg ug/Kg
c 1	m/p-Xylene p-Xylene 1,2,4-Trimethylbenzene Naphthalene	2900 460 9600 1100	25 25 25 25	ug/Kg ug/Kg ug/Kg ug/Kg	170 37 490 52	0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg	74 23 510 46	0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg		690 250 560 60	0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg	E	12400 3100 26200 2600	50 50 50 50	ug/Kg ug/Kg ug/Kg ug/Kg	620 180 960 79	0.5 0.5 0.5 0.5	ug/Kg E ug/Kg ug/Kg E ug/Kg	38 11 220 53	0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg
	TVPH	360	25	mg/Kg	2.7	0.5	mg/Kg	2.9	0.5	mg/Kg		6.7	0.5	mg/Kg		560	50	mg/Kg	7.5	0.5	mg/Kg	13	0.5	mg/Kg
	% Surrogate Recovery																							
c	1,2-Dichloroethane-d4 d8-Toluene p-Bromofluorobenzene	93 102 101			113 77 120			107 91 111				84 91 84				106 104 93			108 91 138			92 116 93		
0	Sample ID. No. Date Sampled Sample Depth	RDC-03 11/14/2024 56			RDC-03 11/14/2024 58			RDC-03 11/14/2024 60				RDC-03 11/14/2024 62				RDC-03 11/14/2024 64			RDC-03 11/14/2024 66			RDC-03 11/14/2024 67		
			Reporting Limit	Units F l ags		Reporting Limit	Units F l ags		Reporting Limit	Units	Flags		Reporting Limit	Units	Flags		Reporting Limit	Units F l ags		Reporting Limit	Units F l ags		Reporting Limit	Units Flags
N	Dimethyl Sulfide MTBE 1,2-Dichloroethane	ND ND ND	0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg	ND 16 ND	0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg	ND ND ND	0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg		ND 3.7 ND	0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg		ND 5.1 ND	0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg	ND ND 6	0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg	ND 4.7 1.8	0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg
T	Benzene Toluene	19 39	0.5 0.5	ug/Kg ug/Kg	340 7.8	0.5 0.5	ug/Kg ug/Kg	50 130	0.5 0.5	ug/Kg ug/Kg		0.8 1.3	0.5 0.5	ug/Kg ug/Kg		0.6 1.9	0.5 0.5	ug/Kg ug/Kg	36 210	0.5 0.5	ug/Kg ug/Kg	0.6 4.3	0.5 0.5	ug/Kg ug/Kg
n	Ethylbenzene m/p-Xylene	720 2500	10 10 10	ug/Kg ug/Kg	160 370	0.5	ug/Kg ug/Kg	960 3400	25 25	ug/Kg ug/Kg		5.7 19	0.5	ug/Kg ug/Kg		2.3 8 3	0.5 0.5 0.5	ug/Kg ug/Kg	1200 2000	0.5 10 10	ug/Kg E ug/Kg	20 80	0.5 0.5 0.5	ug/Kg ug/Kg
1	o-Xylene 1,2,4-Trimethylbenzene Naphthalene	700 4200 560	10 10 10	ug/Kg ug/Kg ug/Kg	56 200 30	0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg	1100 5900 940	25 25 25	ug/Kg ug/Kg ug/Kg		6.2 17 4.3	0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg		3 8.7 1.9	0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg	650 4200 530	10 10 10	ug/Kg ug/Kg ug/Kg	25 69 9.7	0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg
T	TVPH	220	10	mg/Kg	1.2	0.5	mg/Kg	190	25	mg/Kg		ND	0.5	mg/Kg		ND	0.5	mg/Kg	160	10	mg/Kg	0.8	0.5	mg/Kg
1 c	% Surrogate Recovery 1,2-Dichloroethane-d4 d8-Toluene	108 92			116 71			95 92				113 74				108 84			106 107			109 85		
þ	p-Bromofluorobenzene	125			105			102				112				104			109			110		

Sample ID. No.	RDC-04			RDC-04			RDC-04				RDC-04				RDC-04				RDC-04			RDC-04			
Date Sampled Sample Depth	11/12/2024 10	Reporting		11/12/2024 12	Reporting		11/12/2024 14	Reporting			11/12/2024 16	Reporting			11/12/2024 18	Reporting		11	/12/2024 20	Reporting		11/12/202 22	4 Reporting		
		Limit	Units Flags		Limit	Units F l ags		Limit	Units	Flags		Limit	Units	Flags		Limit	Units Fl	ags		Limit	Units F l a		Limit	Units F	lags
Dimethyl Suffide MTBE 1,2-Dichforoethane Benzene Toluene Ethylsenzene m/p-Xylene o-Xylene 1,2,4-Trimethylsenzene Naphthalene	ND ND 0.6 1.9 3.4 12 3.9 24 4.6	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	ND ND 0.7 2.7 11 35 10 120 4.4	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	ND ND ND 1.1 2.5 9.8 2.6 24 6.6	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg		ND ND 1.1 1.5 2.1 8.6 2.6 14 2.1	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg		ND 1.6 ND 1.6 1.7 6.8 2.9 7 1.1	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg		ND 15 ND 12 18 72 28 13 23	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	ND 2 ND 2.4 3.1 12 4.8 14 1.2	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	
түрн	4	0.5	mg/Kg	13	0.5	mg/Kg	6.4	0.5	mg/Kg		2.5	0.5	mg/Kg		ND	0.5	mg/Kg		ND	0.5	mg/Kg	ND	0.5	mg/Kg	
% Surrogate Recovery 1,2-Dichloroethane-d4 d8-Toluene p-Bromofluorobenzene	86 92 85			84 65 124			87 84 85				88 89 87				90 100 104				89 100 102			88 101 104			
Sample ID. No. Date Sampled Sample Depth	RDC-04 11/12/2024 24	Reporting Limit	Lipita Elogo	RDC-04 11/13/2024 26	Reporting Limit	Unita Elega	RDC-04 11/13/2024 28	Reporting Limit	Unito	Flore	RDC-04 11/13/2024 30	Reporting Limit	Unito	Flore	RDC-04 11/13/2024 32	Reporting Limit	Unita El	1'	RDC-04 1/13/2024 34	Reporting Limit	Unite Ele	RDC-04 11/13/202 36	4 Reporting Limit	Units F	1000
			Units Flags		0.5	Units Flags			Units	Flags			Units	⊢lags				ags			Units Fla				ags
Dimethyl Sulfide MTBE 1.2-Dichloroethane Benzene Toluene Ethylbenzene m/p-Xylene o-Xylene 1.2,4-Trimethylbenzene Naphthalene	ND ND 1.4 22 100 250 62 180 130	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 10 10	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	ND ND 2.6 2.2 26 77 23 38 3.5	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	ND ND ND 3.3 6.3 140 23 74 2.8	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg		ND ND 1.8 1.7 13 44 11 34 3.6	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg		ND ND 2.5 11 28 40 14 13 3.2	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg		ND ND 22 29 17600 17100 68 47800 6200	0.5 0.5 0.5 0.5 25 25 25 25 25 25	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	ND ND 220 21700 85500 31300 68000 12200	50 50 50 50 50 50 50 50 50 50 50	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	E
турн	580	10	mg/Kg E	13	0.5	mg/Kg	24	0.5	mg/Kg	Е	6.8	0.5	mg/Kg		32	0.5	mg/Kg	E	1500	25	mg/Kg E	1600	50	mg/Kg	
% Surrogate Recovery 1,2-Dichloroethane-d4 d8-Toluene p-Bromofluorobenzene	88 95 129			92 76 137			107 79 177				93 77 107				109 75 173				87 95 124			85 102 114			
Sample ID. No. Date Sampled Sample Depth	RDC-04 11/13/2024 38	Reporting		RDC-04 11/13/2024 40	Reporting		RDC-04 11/13/2024 42	Reporting			RDC-04 11/13/2024 44	Reporting			RDC-04 11/13/2024 46	Reporting			RDC-04 1/13/2024 48	Reporting		RDC-04 11/13/202 50			
		Limit	Units F l ags		Limit	Units F l ags		Limit	Units	Flags		Limit	Units	Flags		Limit	Units Fl	ags		Limit	Units F l a	gs	Limit	Units F	lags
Dimethyl Suffide MTBE 1,2-Dichforoethane Benzene Toluene Ethyloenzene m/p-Xylene -Xylene 1,2,4-Trimethylbenzene Naphthalene	ND ND 570 340 10600 38900 500 87600 23500	10 10 10 10 100 100 100 100 100	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	ND ND 94 62 27300 96400 12500 79400 13400	0.5 0.5 0.5 0.5 50 50 50 50 50 50	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg E ug/Kg E ug/Kg E ug/Kg	ND ND 2.8 17 5700 6300 78 27900 4000	0.5 0.5 0.5 0.5 25 25 25 25 25 25 25	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg		ND ND 1.2 15 200 430 100 320 69	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg		ND ND 2.9 31 870 4400 600 13100 3400	0.5 0.5 0.5 0.5 25 25 25 25 25 25 25	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg		ND ND 4.5 30 8600 43000 7100 88700 17000	0.5 0.5 0.5 0.5 50 50 50 50 50 50	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	ND ND 54 64 3200 11800 1700 17000 3500	0.5 0.5 0.5 0.5 25 25 25 25 25 25 25	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	
түрн	2600	100	mg/Kg	2600	50	mg/Kg	770	25	mg/Kg		36	0.5	mg/Kg	Е	400	25	mg/Kg		73	50	mg/Kg	580	25	mg/Kg	
% Surrogate Recovery 1,2-Dichloroethane-d4 d8-Toluene p-Bromofluorobenzene	91 95 100			86 106 110			92 94 112				120 116 287				92 90 111				92 98 106			91 99 104			

Sheffield, AL

Sample ID. No.	RDC-04				RDC-04			
Date Sampled	11/13/2024				11/13/2024			
Sample Depth	52				54			
		Reporting				Reporting		
		Limit	Units	Flags		Limit	Units	Flags
Dimethyl Sulfide	ND	0.5	ug/Kg		ND	0.5	ug/Kg	
MTBE	ND	0.5	ug/Kg		ND	0.5	ug/Kg	
1,2-Dichloroethane	ND	0.5	ug/Kg		ND	0.5	ug/Kg	
Benzene	290	0.5	ug/Kg		70	0.5	ug/Kg	
Toluene	150	0.5	ug/Kg		18	0.5	ug/Kg	
Ethylbenzene	12000	25	ug/Kg		490	0.5	ug/Kg	
m/p-Xylene	24800	25	ug/Kg		530	0.5	ug/Kg	
o-Xylene	2500	25	ug/Kg		28	0.5	ug/Kg	
1,2,4-Trimethylbenzene	53200	25	ug/Kg	E	520	0.5	ug/Kg	
Naphthalene	7700	25	ug/Kg		190	0.5	ug/Kg	
TVPH	2000	25	mg/Kg		20	0.5	mg/Kg	
% Surrogate Recovery					LIS			
1,2-Dichloroethane-d4	93				110			
d8-Toluene	123				124			
p-Bromofluorobenzene	122				246			

Sample ID. No. Date Sampled Sample Depth	RDC-06 11/12/2024 10			RDC-06 11/12/2024 12			RDC-06 11/12/2024 14			RD0 11/12 1	2024			RDC-06 11/12/2024 18				RDC-06 11/12/2024 20				RDC-06 11/12/2024 22			
		Reporting Limit	Units F l ags		Reporting Limit	Units F l age	3	Reporting Limit	Units	Flags		orting mit L	Jnits F l ags		Reporting Limit	Units	Flags		Reporting Limit	Units	Flags		Reporting Limit	Units Flag	js
Dimethyl Sulfide	ND	0.5	ug/Kg	ND	0.5	ug/Kg	ND	0.5	ug/Kg	N			g/Kg	ND	0.5	ug/Kg		ND	0.5	ug/Kg		ND	0.5	ug/Kg	
MTBE	1.9	0.5	ug/Kg	1.1	0.5	ug/Kg	1.2	0.5	ug/Kg	0			g/Kg	1.6	0.5	ug/Kg		1.6	0.5	ug/Kg		1.4	0.5	ug/Kg	
1,2-Dichloroethane	ND	0.5	ug/Kg	ND	0.5	ug/Kg	ND	0.5	ug/Kg	N			g/Kg	ND	0.5	ug/Kg		ND	0.5	ug/Kg		ND	0.5	ug/Kg	
Benzene Toluene	0.7 1.7	0.5 0.5	ug/Kg ug/Kg	ND 0.8	0.5 0.5	ug/Kg ug/Kg	ND 1.3	0.5 0.5	ug/Kg ug/Kg	0			g/Kg g/Kg	0.7 1.9	0.5 0.5	ug/Kg ug/Kg		ND 1.5	0.5 0.5	ug/Kg ug/Kg		ND 1.3	0.5 0.5	ug/Kg ug/Kg	
Ethylbenzene	2	0.5	ug/Kg ug/Kg	0.8	0.5	ug/Kg ug/Kg	1.3	0.5	ug/Kg ug/Kg	1			ig/Kg	2.2	0.5	ug/Kg ug/Kg		1.3	0.5	ug/Kg ug/Kg		1.3	0.5	ug/Kg	
m/p-Xylene	7.5	0.5	ug/Kg	6.7	0.5	ug/Kg	9.6	0.5	ug/Kg	1			g/Kg	7.5	0.5	ug/Kg		7.4	0.5	ug/Kg		9.2	0.5	ug/Kg	
o-Xylene	2.7	0.5	ug/Kg	1.5	0.5	ug/Kg	3.6	0.5	ug/Kg	3			g/Kg	2.8	0.5	ug/Kg		3	0.5	ug/Kg		3.3	0.5	ug/Kg	
1,2,4-Trimethylbenzene	13	0.5	ug/Kg	9	0.5	ug/Kg	15	0.5	ug/Kg	2			g/Kg	8.5	0.5	ug/Kg		9.9	0.5	ug/Kg		8.6	0.5	ug/Kg	
Naphthalene	2.6	0.5	ug/Kg	1.4	0.5	ug/Kg	2.2	0.5	ug/Kg	2	1 0	1.5 u	g/Kg	1.7	0.5	ug/Kg		1.6	0.5	ug/Kg		1.4	0.5	ug/Kg	
TVPH	ND	0.5	mg/Kg	ND	0.5	mg/Kg	ND	0.5	mg/Kg	0	6 0	1.5 m	ng/Kg	ND	0.5	mg/Kg		ND	0.5	mg/Kg		ND	0.5	mg/Kg	
% Surrogate Recovery																									
1,2-Dichloroethane-d4	81			85			87			8	i			90				93				88			
d8-Toluene	95			95			95			9				96				97				96			
p-Bromofluorobenzene	96			91			89			g	5			87				86				88			
Sample ID. No.	RDC-06			RDC-06			RDC-06			RD				RDC-06				RDC-06				RDC-06			
Date Sampled	11/12/2024			11/13/2024			11/13/2024			11/13	2024			11/13/2024				11/13/2024				11/13/2024			
		Reporting			Reporting			Reporting			2024)	orting			Reporting				Reporting				Reporting		
Date Sampled	11/12/2024	Reporting Limit	Units F l ags	11/13/2024	Reporting Limit	Units F l age	11/13/2024 28	Reporting Limit	Units	11/13	2024) Repo	orting mit L	Jnits F l ags	11/13/2024	Reporting Limit	Units	Flags	11/13/2024	Reporting Limit	Units	Flags	11/13/2024	Reporting Limit	Units Flag	IS
Date Sampled	11/12/2024		Units F l ags ug/Kg	11/13/2024		Units F l ags ug/Kg	11/13/2024 28	Limit 0.5	Units ug/Kg	11/13 3	2024) Repo	mit (Jnits F l ags g/Kg	11/13/2024	Limit	Units ug/Kg		11/13/2024	Limit 0.5	Units ug/Kg		11/13/2024	Limit 0.5	Units Flag ug/Kg	15
Date Sampled Sample Depth Dimethyl Sulfide MTBE	11/12/2024 24 ND 1.4	Limit 0.5 0.5	ug/Kg ug/Kg	11/13/2024 26 ND 1.4	Limit 0.5 0.5	ug/Kg ug/Kg	11/13/2024 28 ND 1.2	Limit 0.5 0.5	ug/Kg ug/Kg	11/13 3 Flags N 1	2024) Lir) 0 5 0	mit L 1.5 u 1.5 u	g/Kg g/Kg	11/13/2024 32 ND 1.6	Limit 0.5 0.5	ug/Kg ug/Kg		11/13/2024 34 ND 1.8	Limit 0.5 0.5	ug/Kg ug/Kg		11/13/2024 36 ND 0.6	Limit 0.5 0.5	ug/Kg ug/Kg	ıs
Date Sampled Sample Depth Dimethyl Sulfide MTBE 1,2-Dichloroethane	11/12/2024 24 ND 1.4 ND	Limit 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg	11/13/2024 26 ND 1.4 ND	Limit 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg	11/13/2024 28 ND 1.2 ND	Limit 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg	11/13 3 Flags N 1 N	2024) Lir 0 0 3 0 0 0	mit L 1.5 u 1.5 u 1.5 u	g/Kg g/Kg g/Kg	11/13/2024 32 ND 1.6 ND	Limit 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg		11/13/2024 34 ND 1.8 ND	Limit 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg		11/13/2024 36 ND 0.6 ND	Limit 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg	la
Date Sampled Sample Depth Dimethyl Sulfide MTBE 1,2-Dichloroethane Benzene	11/12/2024 24 ND 1.4 ND ND	Limit 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg	11/13/2024 26 ND 1.4 ND ND	Limit 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg	11/13/2024 28 ND 1.2 ND ND	Limit 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg	11/13 3 Flags N 1 N N	2024) Lir 0 0 5 0 0 0 0 0	mit L 1.5 u 1.5 u 1.5 u 1.5 u	g/Kg g/Kg g/Kg g/Kg	11/13/2024 32 ND 1.6 ND ND	Limit 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg		11/13/2024 34 ND 1.8 ND ND	Limit 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg		11/13/2024 36 ND 0.6 ND ND	Limit 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg	js
Date Sampled Sample Depth Dimethyl Sulfide MTBE 1,2-Dichloroethane Benzene Toluene	11/12/2024 24 ND 1.4 ND ND 0.8	Limit 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	11/13/2024 26 ND 1.4 ND ND 1.7	Limit 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	11/13/2024 28 ND 1.2 ND ND 1.6	Limit 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	11/13 3 Flags N 1 N N 0	2024) Repo Lir 0 0 5 0 0 0 0 0 0 0 0 0	mit L 1.5 u 1.5 u 1.5 u 1.5 u	g/Kg g/Kg g/Kg g/Kg g/Kg	11/13/2024 32 ND 1.6 ND ND 1.6	Limit 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg		11/13/2024 34 ND 1.8 ND ND 1.7	Limit 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg		11/13/2024 36 ND 0.6 ND ND 3.1	Limit 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	js
Date Sampled Sample Depth Dimethyl Sulfide MTBE 1,2-Dichforcethane Benzene Toluene Ethybenzene	11/12/2024 24 ND 1.4 ND 0.8 0.9	Limit 0.5 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	11/13/2024 26 ND 1.4 ND 1.7 1.7	Limit 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	11/13/2024 28 ND 1.2 ND ND 1.6 1.3	Limit 0.5 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	11/13 3 Flags N 1 N 0 0 0 0	2024) Repo Lir 0 0 6 0 0 0 0 0 0 0 3 0	mit (1.5 u 1.5 u 1.5 u 1.5 u 1.5 u	g/Kg g/Kg g/Kg g/Kg g/Kg g/Kg	11/13/2024 32 ND 1.6 ND 1.6 1.6 1.9	Limit 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg		11/13/2024 34 ND 1.8 ND ND 1.7 1.5	Limit 0.5 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg		11/13/2024 36 ND 0.6 ND 3.1 1.5	Limit 0.5 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	js
Date Sampled Sample Depth Dimethyl Sulfide MTBE 1.2-Dichloroethane Benzene Toluene Ethytbenzene mj~Xytene	11/12/2024 24 ND 1.4 ND 0.8 0.9 8.5	Limit 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	11/13/2024 26 ND 1.4 ND 1.7 1.7 6.9	Limit 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	11/13/2024 28 ND 1.2 ND ND 1.6 1.3 4.5	Limit 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	11/13 3 Flags 1 N N 0 7 7	2024 Repo Lir 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0	mit U 1.5 u 1.5 u 1.5 u 1.5 u 1.5 u 1.5 u	g/Kg g/Kg g/Kg g/Kg g/Kg g/Kg g/Kg	11/13/2024 32 1.6 ND 1.6 ND 1.6 1.9 7.5	Limit 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg		11/13/2024 34 ND 1.8 ND ND 1.7 1.5 6	Limit 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg		11/13/2024 36 ND 0.6 ND 3.1 1.5 6.5	Limit 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	js
Date Sampled Sample Depth Dimethyl Sulfide MTBE 1,2-Dichforcethane Benzene Toluene Ethybenzene	11/12/2024 24 ND 1.4 ND 0.8 0.9	Limit 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	11/13/2024 26 ND 1.4 ND 1.7 1.7	Limit 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	11/13/2024 28 ND 1.2 ND ND 1.6 1.3	Limit 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	11/13 3 Flags N 1 N 0 0 0 0	2024) Repo Lir 0 0 5 0 0 0 0 0 0 0 3 0 5 0 7 0	mit U 15 u 15 u 15 u 15 u 15 u 15 u 15 u	g/Kg g/Kg g/Kg g/Kg g/Kg g/Kg	11/13/2024 32 ND 1.6 ND 1.6 1.6 1.9	Limit 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg		11/13/2024 34 ND 1.8 ND ND 1.7 1.5	Limit 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg		11/13/2024 36 ND 0.6 ND 3.1 1.5	Limit 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	js
Date Sampled Sample Depth Dimethyl Sulfide MTBE 1,2-Dichtoroethane Benzene Toluene Ethylbenzene mip-Xylene o-Xylene	11/12/2024 24 ND 1.4 ND 0.8 0.9 8.5 2.8	Limit 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	11/13/2024 26 ND 1.4 ND 1.7 1.7 6.9 2.6	Limit 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	11/13/2024 28 ND 1.2 ND 1.6 1.3 4.5 1.9	Limit 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	11/13 3 Flags N 1 N 0 0 7 2	2024 Repo Lir 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0	mit U 1.5 U 1.5 U 1.5 U 1.5 U 1.5 U 1.5 U 1.5 U	g/Kg g/Kg g/Kg g/Kg g/Kg g/Kg g/Kg g/Kg	11/13/2024 32 ND 1.6 ND 1.6 1.9 7.5 2.8	Limit 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg		11/13/2024 34 ND 1.8 ND 1.7 1.5 6 2.1	Limit 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg		11/13/2024 36 ND 0.6 ND 3.1 1.5 6.5 2.1	Limit 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	js
Date Sampled Sample Depth Dimethyl Sulfide MTBE 1,2-Dichloroethane Benzene Toluene Ethylbenzene m/p-Xylene o-Xylene 1,2-4-Trimethylbenzene	11/12/2024 24 ND 1.4 ND 0.8 0.9 8.5 2.8 10	Limit 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	11/13/2024 26 ND 1.4 ND 1.7 1.7 6.9 2.6 8.6	Limit 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	11/13/2024 28 ND 1.2 ND 1.6 1.3 4.5 1.9 7.5	Limit 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	11/13 3 Flags N 1 N N 0 0 7 2 2 1	2024 Repo Lir 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0	mit U 1.5 u 1.5 u 1.5 u 1.5 u 1.5 u 1.5 u 1.5 u 1.5 u	g/Kg g/Kg g/Kg g/Kg g/Kg g/Kg g/Kg g/Kg	11/13/2024 32 ND 1.6 ND 1.6 1.9 7.5 2.8 7.7	Limit 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg		11/13/2024 34 ND 1.8 ND 1.7 1.5 6 2.1 8.3	Limit 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg		11/13/2024 36 ND 0.6 ND 3.1 1.5 6.5 2.1 6.2	Limit 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	js
Date Sampled Sample Depth Dimethyl Sulfide MTBE 1.2-Dichloroethane Benzene Toluene Ethytbenzene m/p-Xylene o-Xylene 1.2.4-Trimethybenzene Naphthalene TVPH % Surrogate Recovery	11/1/2/2024 24 ND 1.4 ND 0.8 0.9 8.5 2.8 10 1.8 ND	Limit 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	ND 11/13/2024 26 ND 1.4 ND 1.7 1.7 6.9 2.6 8.6 1.7 ND	Limit 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	11/13/2024 28 5 ND 1.2 ND 1.6 1.3 4.5 1.9 7.5 1.3 ND	Limit 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	11/13 3 Flags N 1 N N 0 0 0 7 7 2 1 1 1 1	2024 Repc Lir 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0	mit U 1.5 u 1.5 u 1.5 u 1.5 u 1.5 u 1.5 u 1.5 u 1.5 u	g/Kg g/Kg g/Kg g/Kg g/Kg g/Kg g/Kg g/Kg	ND 1.6 ND 1.6 ND 1.6 1.9 7.5 2.8 7.7 1.5 ND	Limit 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg		11/13/2024 34 ND 1.8 ND 1.7 1.5 6 2.1 8.3 1.3 ND	Limit 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg		11/13/2024 36 ND 0.6 ND ND 3.1 1.5 6.5 2.1 6.2 0.7 ND	Limit 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	js
Date Sampled Sample Depth Dimethyl Sulfide MTBE 1.2-Dichloroethane Benzene Toluene Ethytbenzene m/p-Xylene o-Xylene 0-Xylene 0-Xylene Naphthalene TVPH % Surrogate Recovery 1.2-Dichloroethane-d4	11/1/2/2024 24 ND 1,4 ND ND 0,8 8,5 2,8 10 1,8 ND 90	Limit 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	11/13/2024 26 ND 1,4 ND 1,7 1,7 6,9 2,6 8,6 1,7 ND 90	Limit 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	11/13/2024 28 ND 1.2 ND 1.6 1.3 4.5 1.9 7.5 1.3 ND 90	Limit 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	11/13 3 Flags N 1 N 0 0 0 7 2 1 1 1 1 1 8 9 9	2024 Repc Lir 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	mit U 1.5 u 1.5 u 1.5 u 1.5 u 1.5 u 1.5 u 1.5 u 1.5 u	g/Kg g/Kg g/Kg g/Kg g/Kg g/Kg g/Kg g/Kg	11/13/2024 32 ND 1.6 ND 1.6 1.9 7.5 2.8 7.7 1.5 ND 88	Limit 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg		11/13/2024 34 ND 1.8 ND 1.7 1.5 6 2.1 8.3 1.3 ND 95	Limit 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg		11/13/2024 36 ND ND ND 3.1 1.5 6.5 2.1 6.5 2.1 6.2 0.7 ND 90	Limit 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	js
Date Sampled Sample Depth Dimethyl Sulfide MTBE 1,2-Dichloroethane Benzene Toluene Ethydbenzene mj>Xylene -Xylene 1,2-4-Trinethydbenzene Naphthalene TVPH % Surrogate Recovery 1,2-Dichloroethane-44 db-Toluene	11/1/2/2024 24 ND 1.4 ND 0.8 0.9 8.5 2.8 10 1.8 ND 90 95	Limit 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	11/13/2024 26 ND 1.4 ND 1.7 1.7 6.9 2.6 8.6 1.7 ND 90 96	Limit 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	11/13/2024 28 5 ND 1.2 ND 1.6 1.3 4.5 1.9 7.5 1.3 ND 7.5 1.3 ND 90 95	Limit 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	11/13 3 Flags N 1 1 N 0 0 7 7 1 1 1 1 8 9 8 9 8 9 8	2024 Rept Lir 0 0 0 3 0 0 0 0 0 3 0 5 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0	mit U 1.5 u 1.5 u 1.5 u 1.5 u 1.5 u 1.5 u 1.5 u 1.5 u	g/Kg g/Kg g/Kg g/Kg g/Kg g/Kg g/Kg g/Kg	11/13/2024 32 ND 1.6 ND 1.6 1.9 7.5 2.8 7.7 1.5 ND 88 94	Limit 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg		11/13/2024 34 ND 1.8 ND ND 1.7 1.5 6 2.1 8.3 1.3 ND 95 97	Limit 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg		11/13/2024 36 ND 0,6 ND 3,1 1,5 6,5 2,1 6,5 2,1 6,5 2,1 6,5 0,7 ND 90 95	Limit 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	js
Date Sampled Sample Depth Dimethyl Sulfide MTBE 1.2-Dichloroethane Benzene Toluene Ethytbenzene m/p-Xylene o-Xylene 0-Xylene 0-Xylene Naphthalene TVPH % Surrogate Recovery 1.2-Dichloroethane-d4	11/1/2/2024 24 ND 1,4 ND ND 0,8 8,5 2,8 10 1,8 ND 90	Limit 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	11/13/2024 26 ND 1,4 ND 1,7 1,7 6,9 2,6 8,6 1,7 ND 90	Limit 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	11/13/2024 28 ND 1.2 ND 1.6 1.3 4.5 1.9 7.5 1.3 ND 90	Limit 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	11/13 3 Flags N 1 N 0 0 0 7 2 1 1 1 1 1 8 9 9	2024 Rept Lir 0 0 0 3 0 0 0 0 0 3 0 5 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0	mit U 1.5 u 1.5 u 1.5 u 1.5 u 1.5 u 1.5 u 1.5 u 1.5 u	g/Kg g/Kg g/Kg g/Kg g/Kg g/Kg g/Kg g/Kg	11/13/2024 32 ND 1.6 ND 1.6 1.9 7.5 2.8 7.7 1.5 ND 88	Limit 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg		11/13/2024 34 ND 1.8 ND 1.7 1.5 6 2.1 8.3 1.3 ND 95	Limit 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg		11/13/2024 36 ND ND ND 3.1 1.5 6.5 2.1 6.5 2.1 6.2 0.7 ND 90	Limit 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	je

Sample ID. No.	RDC-06			RDC-06			RDC-06				RDC-06				RDC-06			RDC-06			RDC-06		
Date Sampled Sample Depth	11/13/2024 38			11/13/2024 40			11/13/2024 42			1	11/13/2024 44				11/13/2024 46			11/13/2024 48			11/13/2024 50		
		Reporting Limit	Units Flags		Reporting Limit	Units F l ags		Reporting Limit	Units F	Flags		Reporting Limit	Units F I	ags		Reporting Limit	Units F l ags		Reporting Limit	Units Flags		Reporting Limit	Units Flags
Dimethyl Sulfide MTBE 1,2-Dichloroethane Benzene Toluene Ethybenzene mip-Xylene o-Xylene 1,2,4-Trimethybenzene Naphthalene	ND ND ND 2.5 2 8.5 3 12 1.1	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	ND 0.9 ND 3.3 1.9 8.3 3 12 1.3	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	ND 1.3 ND 3.1 2.4 9.1 3.7 14 1.6	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg		ND 1.4 ND 2.2 1.7 9.2 3.7 13 1.4	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg		ND 1.3 ND 3 2 8.9 3.5 13 1.6	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	ND 1.4 ND 3.9 2.6 10 3.7 14 1.5	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	ND 1.5 ND 2.2 1.9 9.8 4 17 1.6	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg
TVPH	ND	0.5	mg/Kg	ND	0.5	mg/Kg	ND	0.5	mg/Kg		ND	0.5	mg/Kg		ND	0.5	mg/Kg	ND	0.5	mg/Kg	ND	0.5	mg/Kg
% Surrogate Recovery 1,2-Dichloroethane-d4 d8-Toluene p-Bromofluorobenzene	92 96 89			93 97 88			90 96 89				94 98 88				92 97 90			91 94 87			87 93 87		
Sample ID. No. Date Sampled Sample Depth	RDC-06 11/13/2024 52	Reporting Limit	Units F l ags	RDC-06 11/13/2024 54	Reporting Limit	Units F l ags	RDC-06 11/13/2024 56	Reporting Limit	Units F	1 Flags	RDC-06 11/13/2024 58.8	Reporting Limit	Units F I	ags									
Dimethyl Sulfide MTBE 1,2-Dichloroethane Benzene Toluene Ethylbenzene m/p-Xylene o-Xylene 1,2,4-Trimethylbenzene Naphthalene	ND 1.2 ND 2.1 1.7 9.8 3.3 19 4.1	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	ND ND 21 3.9 66 95 4.8 150 38	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	ND 1 ND 1 1.1 7.5 2.6 10 2	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg		ND 1.1 ND 25 4.6 28 84 17 59 17	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg										
ТVРН	0.5	0.5	mg/Kg	8.9	0.5	mg/Kg	ND	0.5	mg/Kg		22	0.5	mg/Kg										
% Surrogate Recovery 1,2-Dichloroethane-d4 d&Toluene p-Bromofluorobenzene	94 98 86			92 111 93			93 95 88				90 128 113												
Sample ID. No. Date Sampled Sample Depth	RDC-07 11/12/2024 10	Reporting Limit	Units F l ags	RDC-07 11/12/2024 12	Reporting Limit	Units F l ags	RDC-07 11/12/2024 14	Reporting Limit	Units F	Flags	RDC-07 11/12/2024 16	Reporting Limit	Units FI	ane	RDC-07 11/12/2024 18	Reporting Limit	Units Flags	RDC-07 11/12/2024 20	Reporting Limit	Units F l ags	RDC-07 11/12/2024 22	Reporting Limit	Units F l ags
Dimethyl Sulfide MTBE 1,2-Dichloroethane Benzene Ethylbenzene m(p-Xylene o-Xylene 0-Xylene 1,2,4-Trimethylbenzene Naphthalene	ND 0.7 ND 2.4 8.1 25 4.6 22 12	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	ND ND ND 1.4 3.7 13 3.5 15 2.9	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	ND ND ND 1.6 3 11 2.6 10 1.4	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	39	ND ND ND 1.1 2.3 8.3 2.1 8.5 0.9	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ND 1 ND 1.6 2.1 7.8 2.1 8 0.7	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	ND 1 ND 1.1 1.8 7.1 1.9 8 0.5	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	ND 4.7 ND 1 3.1 1.4 4.8 2 7.6 2.1	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg
TVPH	ND	0.5	mg/Kg	ND	0.5	mg/Kg	ND	0.5	mg/Kg		ND	0.5	mg/Kg		ND	0.5	mg/Kg	ND	0.5	mg/Kg	0.5	0.5	mg/Kg
% Surrogate Recovery 1,2-Dichloroethane-d4 d&Toluene p-Bromofluorobenzene	99 84 112			97 82 103			95 82 83				95 83 105				92 82 101			91 81 103			88 90 88		

Sample ID. No.	RDC	.07				RDC-07				RDC-07				RDC-07			RDC-0	7		RDC-07			RDC-07			
Date Sampled Sample Depth	11/12/2	2024				11/12/2024 26				11/12/2024 28				11/12/2024 30			11/12/20 32			11/12/2024 34			11/12/2024 38			
			Reporting Limit	Units	Flags		Reporting Limit		Flags		Reporting Limit	Units	Flags		Reporting Limit	Units F l ags	i	Repor Lim	Units Flags		Reporting Limit	Units Flags		Reporting Limit	Units	Flags
Dimethyl Sulfide MTBE 1,2-Dichloroethane Benzene Toluene Ethylbenzene m/p-Xylene o-Xylene 1,2,4-Trimethylbenzene Naphthalene	NE 0.9 NE 1.6 1.6 6.1 5.5 5.5		0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg		ND ND ND ND 1.2 4.6 1.1 5.6 ND	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg		ND 1.6 ND 1.3 1.5 5.7 1.9 6.1 ND	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg		ND 0.9 ND 1.6 1.6 5.8 2 6.8 ND	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	ND 6.6 ND 1.1 3.6 1 3.7 1.4 3.5 1.3	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	ND 1.4 ND 2.1 1.1 4.4 1.6 4 ND	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	ND 1.3 ND 2.5 1.2 4.5 1.7 4.5 ND	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	
TVPH	NE		0.5	mg/Kg		ND	0.5	mg/Kg		ND	0.5	mg/Kg		ND	0.5	mg/Kg	ND	0.5	mg/Kg	ND	0.5	mg/Kg	ND	0.5	mg/Kg	
% Surrogate Recovery 1,2-Dichloroethane-d4 d8-Toluene p-Bromofluorobenzene	82 87 109					89 82 99				90 82 100				90 85 103			101 87 75			91 96 102			89 95 102			
Sample ID. No. Date Sampled Sample Depth	RDC- 11/12/3 40	2024	Reporting Limit	Units		RDC-07 11/12/2024 42	Reporting Limit	Units F	, Flags	RDC-07 11/12/2024 44	Reporting Limit	Units		RDC-07 11/12/2024 46	Reporting Limit	Units Flags	RDC-0 11/12/20 48		Units Flags	RDC-07 11/12/2024 50	Reporting Limit	Units Flags	RDC-07 11/12/2024 52	Reporting Limit	Units	Flags
Dimethyl Sulfide MTBE 1,2-Dichloroethane Benzene Toluene Ethylbenzene mip-Xylene o-Xylene 1,2,4-Trimethylbenzene Naphthalene	NE 1.8 NE 2.7 1.4 5.5 1.9 5.6 NE		0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg		ND 1.7 ND 2.2 1.1 7 2.7 7.3 ND	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg		ND 1.8 ND 2.9 1.4 5.7 2.3 5.9 ND	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg		ND 2.8 ND 0.6 4.2 1.8 7.2 2.9 7.4 ND	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	ND 1.5 ND 1.2 2.9 1.3 6.5 2.1 13 13	3.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	ND ND ND 29 230 410 17 5600 1500	0.5 0.5 0.5 0.5 10 10 10 10 10	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	ND 3.8 ND 0.7 3.9 2 8 2.8 62 88	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	
TVPH	NE		0.5	mg/Kg		ND	0.5	mg/Kg		ND	0.5	mg/Kg		ND	0.5	mg/Kg	ND	0.5	mg/Kg	400	10	mg/Kg	24	0.5	mg/Kg	Е
% Surrogate Recovery 1,2-Dichloroethane-d4 d8-Toluene p-Bromofluorobenzene	90 96 100					89 97 101				89 98 101				86 99 103			87 99 104			119 147 350			86 119 107			
Sample ID. No. Date Sampled Sample Depth	RDC- 11/12/3 53	2024	Reporting Limit	Units	Flags																					
Dimethyl Sulfide MTBE 1,2-Dichloroethane Benzene Toluene Ethybbenzene m/p-Xylene c-Xylene 1,2,4-Trimethybbenzene Naphthalene	NE 4 NE 1 3 1.2 4.4 1.6 5.3 17		0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg																						
TVPH % Surrogate Recovery 1,2-Dichloroethane-d4 d8-Toluene p-Bromofluorobenzene	98 88 85		0.5	mg/Kg																						

Sample ID. No. Date Sampled Sample Depth	RDC-08 11/14/2024 10			RDC-08 11/14/2024 12			RDC-08 11/14/2024 14			RDC-08 11/14/2024 16			RDC-08 11/14/2024 18			RDC-08 11/14/2024 20			RDC-08 11/14/2024 22		
		Reporting Limit	Units F l ags		Reporting Limit	Units F l ags		Reporting Limit	Units F	ags	Reporting Limit	Units F l ags		Reporting Limit	Units F l ags		Reporting Limit	Units Flags		Reporting Limit	Units Flags
Dimethyl Sulfide MTBE 1,2-Dichloroethane Benzene Toluene Ethylbenzene m/p-Xylene o-Xylene 1,2,4-Trimethylbenzene Naphthalene	ND 2.1 ND 1.6 1.1 4.1 1.6 6.5 1.8	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	ND 2 ND 2.7 2.1 8.5 3.5 16 1.8	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	ND 1.6 ND 1.6 1.1 4.4 1.8 7.5 1.2	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	ND 1.3 ND 1.8 1.1 4.3 1.8 7.4 1.1	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	ND 1.9 ND 1.7 1 3.8 1.8 6.8 1	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	ND 2,3 ND 1.9 4.6 2.3 9.2 1.4	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	ND 2,9 ND 2,3 1,3 4,5 2 7,2 1	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg
TVPH	ND	0.5	mg/Kg	ND	0.5	mg/Kg	ND	0.5	mg/Kg	ND	0.5	mg/Kg	ND	0.5	mg/Kg	ND	0.5	mg/Kg	ND	0.5	mg/Kg
% Surrogate Recovery 1,2-Dichloroethane-d4 d8-Toluene p-Bromofluorobenzene	91 94 89			95 96 87			89 97 88			90 94 76			95 97 89			94 96 90			92 97 84		
Sample ID. No. Date Sampled Sample Depth	RDC-08 11/14/2024 24	Reporting Limit		RDC-08 11/14/2024 26	Reporting Limit		RDC-08 11/14/2024 28	Reporting Limit	Unite - 51	RDC-08 11/14/2024 30	Reporting Limit		RDC-08 11/14/2024 32	Reporting		RDC-08 11/14/2024 34	Reporting Limit		RDC-08 11/15/2024 36	Reporting Limit	Unite Flags
Dimethyl Sulfide MTBE 1,2-Dichloroethane Benzene Toluene Ethylbenzene m/p-Xylene o-Xylene 1,2,4-Trimethylbenzene Naphthalene	ND 2.6 ND 2.4 1.7 6.3 2.7 12 1.4	Limit 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	Units Flags ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	ND 1.6 ND 3.9 4.3 13 3.7 8.5 1	Limit 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	Units Flags ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	ND 2.2 ND 2.4 1.3 4.6 2.2 7.2 7.2 1	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	Units FI ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	ags ND 1.7 ND ND 7.2 6.4 22 7 11 0.8	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	Units Flags ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	ND 2.5 ND 2.1 1.1 4.2 2 7.4 1.2	Limit 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	Units Flags ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	ND 0.9 ND 2.1 1 3.9 1.7 5.7 1	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	Units Flags ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	ND 0.8 ND 2.2 1.2 4 1.8 5.8 0.9	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	Units Flags ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg
TVPH	ND	0.5	mg/Kg	0.7	0.5	mg/Kg	ND	0.5	mg/Kg	0.5	0.5	mg/Kg	ND	0.5	mg/Kg	ND	0.5	mg/Kg	ND	0.5	mg/Kg
% Surrogate Recovery 1,2-Dichloroethane-d4 d&Toluene p-Bromofluorobenzene	94 95 87			91 100 85			89 97 86			92 100 83			90 95 87			94 95 85			88 96 86		
Sample ID. No. Date Sampled Sample Depth	RDC-08 11/15/2024 38	Reporting Limit	Units F l ags	RDC-08 11/15/2024 40	Reporting Limit	Units F l ags	RDC-08 11/15/2024 42	Reporting Limit	Units FI	RDC-08 11/15/2024 44 ags	Reporting Limit	Units F l ags	RDC-08 11/15/2024 46	Reporting Limit	Units F l ags	RDC-08 11/15/2024 48	Reporting Limit	Units Flags	RDC-08 11/15/2024 50	Reporting Limit	Units F l ags
Dimethyl Sulfide MTBE 1,2-Dichloroethane Benzene Benzene Ethylbenzene mip-Xylene o-Xylene 1,2,4-Trimethylbenzene Naphthalene	ND 0.6 ND 1.6 0.8 3 1.2 5.9 1.2	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	ND 0.9 ND 2 1.1 3.9 1.5 6.4 1	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	ND 1 ND 2.2 1.1 4.3 1.9 7.4 1.4	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	ND 0.9 ND 2.1 1 3.6 1.6 5.6 0.8	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	ND 1.1 ND 1.8 1 3.8 1.7 6 0.9	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	ND 1 ND 2.4 1.4 6 2.5 8.3 1	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	ND 1.3 ND 2.3 1 3.9 2 6.2 1	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg
TVPH	ND	0.5	mg/Kg	ND	0.5	mg/Kg	ND	0.5	mg/Kg	ND	0.5	mg/Kg	ND	0.5	mg/Kg	ND	0.5	mg/Kg	ND	0.5	mg/Kg
% Surrogate Recovery 1,2-Dichloroethane-d4 d8-Toluene p-Bromofluorobenzene	91 95 86			90 75 94			94 97 86			87 95 86			89 96 85			86 96 88			84 95 88		

		RDC-08 11/15/2024			RDC-08 11/15/2024			RDC-08 11/15/2024			RDC-08 11/15/2024			RDC-08 11/15/2024								
:	Sample Depth	52	Reporting Limit	Units F l aç	54 IS	Reporting Limit	Units F l ags	56	Reporting Limit	Units F l ag	58	Reporting Limit	Units F l ags	59	Reporting Limit	Units F l ags						
	Dimethyl Sulfide MTBE Banzene Toluene Ethylbenzene m/p-Xylene o-Xylene 1,2,4-Trimethylbenzene Naphthalene	ND 0.9 ND 2 0.8 2.8 1.1 4.2 0.7	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	ND 0.9 ND 2.2 2.5 7.9 2.5 9.6 4.4	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	ND 0.7 ND 2 1.1 3.8 1.9 6.9 1.4	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	ND 0.8 ND 2.4 1.7 6.5 2.2 8.3 2.5	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	ND 1.2 ND 2.6 1.5 7.2 2.1 7 1.7	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg						
	TVPH	ND	0.5	mg/Kg	14	0.5	mg/Kg	0.5	0.5	mg/Kg	6.1	0.5	mg/Kg	18	0.5	mg/Kg						
	% Surrogate Recovery 1,2-Dichloroethane-d4 d8-Toluene p-Bromofluorobenzene	91 96 83			90 114 122			85 93 91			92 110 98			93 124 123								
	Sample ID. No. Date Sampled Sample Depth	RDC-09 11/15/2024 10	Reporting Limit	Units F l ag	RDC-09 11/15/2024 12 s	Reporting Limit	Units F l ags	RDC-09 11/15/2024 14	Reporting Limit	Units Flag	RDC-09 11/15/2024 16	Reporting Limit	Units Flags	RDC-09 11/15/2024 18	Reporting Limit	Units Flags	RDC-09 11/15/2024 20	Reporting Limit	Units F l ags	RDC-09 11/15/2024 22	Reporting Limit	Units Flags
	Dimethyl Sulfide MTBE 1,2-Dichloroethane Benzene Toluene Ethylbenzene mj>Xylene o-Xylene 1,2,4-Trimethylbenzene Naphthalene	ND 0.8 ND 1.3 0.9 3.6 1.6 6.1 0.9	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	ND 0.9 ND 1.5 0.9 4.6 1.5 18 1.1	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	ND 0.8 ND 1.2 0.7 2.3 1.1 4.5 0.7	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	ND 0.9 ND 1.3 ND 1.8 0.7 2.5 ND	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	ND 0.7 ND 1.7 0.6 2.4 1 3.7 0.7	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	ND ND ND 1.2 ND 1.8 0.7 3.1 ND	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	ND 0.9 ND 1.2 0.6 2.7 1.1 5.4 1	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg
	TVPH	ND	0.5	mg/Kg	ND	0.5	mg/Kg	ND	0.5	mg/Kg	ND	0.5	mg/Kg	ND	0.5	mg/Kg	ND	0.5	mg/Kg	ND	0.5	mg/Kg
	% Surrogate Recovery 1,2-Dichloroethane-d4 d8-Toluene p-Bromofluorobenzene	90 92 90			93 95 87			91 98 84			97 95 85			93 96 86			97 88 90			92 96 88		
	Sample ID. No. Date Sampled Sample Depth	RDC-09 11/15/2024 24	Reporting Limit	Units F l aç	RDC-09 11/15/2024 26	Reporting Limit	Units F l ags	RDC-09 11/15/2024 28	Reporting Limit	Units Flag	RDC-09 11/15/2024 30	Reporting Limit	Units F l ags	RDC-09 11/15/2024 32	Reporting Limit	Units Flags	RDC-09 11/15/2024 34	Reporting Limit	Units F l ags	RDC-09 11/15/2024 36	Reporting Limit	Units Flags
	Dimethyl Sulfide MTBE 1.2-Dichloroethane Benzene Toluene Ethylbenzene m/p-Xylene o-Xylene 1.2,4-Trimethylbenzene Naphthalene	ND 0.8 ND 1.6 0.6 2.6 1 4.4 1	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	ND 1 ND 1.7 0.7 2.8 1.1 5.4 0.8	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	ND 1 ND 1.5 ND 2.2 0.9 4.1 0.7	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	ND 0.9 ND 4.2 1.3 4.9 1.8 4.7 0.6	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	ND 1.1 ND 1.8 0.9 4 1.8 6.2 1	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	ND 0.9 ND 1.8 0.6 2.8 1.3 4.2 0.8	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	ND 1 ND 1.7 1 3.8 1.5 5.2 0.8	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg
	TVPH	ND	0.5	mg/Kg	ND	0.5	mg/Kg	ND	0.5	mg/Kg	ND	0.5	mg/Kg	ND	0.5	mg/Kg	ND	0.5	mg/Kg	ND	0.5	mg/Kg
	% Surrogate Recovery 1,2-Dichloroethane-d4 d&Toluene p-Bromofluorobenzene	91 96 88			95 98 77			93 96 75			92 91 90			92 94 88			91 97 85			89 96 86		

Sample ID. No. Date Sampled Sample Depth	RDC-09 11/15/2024 38	Reporting Limit	Units	Flags	RDC-09 11/15/2024 40	Reporting Limit	Units	Flags	RDC-09 11/15/2024 42	Reporting Limit	Units	Flags	RDC-09 11/15/2024 44	Reporting Limit	Units	Flags	RDC-09 11/15/2024 46	Reporting Limit	Units	Flags	RDC-09 11/15/2024 48	Reporting Limit	Units	Flags	RDC-09 11/15/2024 50	Reporting Limit	Units	Flags
Dimethyl Sutfide MTBE 1.2-Dichloroethane Benzene Toluene Ethylbenzene m/p-Xylene o-Xylene 1.2,4-Trimethylbenzene Naphthalene	ND 1.2 ND 2.4 0.9 4 1.5 5.9 1.1	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg		ND 1 ND 1.8 0.7 3.1 1.2 4.3 0.7	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg		ND 0.9 ND 2.1 0.8 3 1.3 4.3 0.8	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg		ND 0.8 ND 0.5 1.9 0.6 2.5 0.9 3.7 0.5	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg		ND 0.9 ND 1.9 0.6 2.3 1 3.2 0.8	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg		ND 1.3 ND 2.4 0.8 2.9 1.2 3.6 0.6	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg		ND 0.7 ND 2.4 0.8 3.2 1.2 2.7 ND	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	
TVPH % Surrogate Recovery 1,2-Dichloroethane-d4 d8-Toluene p-Bromofluorobenzene	ND 89 97 82	0.5	mg/Kg		ND 94 96 83	0.5	mg/Kg		ND 90 96 87	0.5	mg/Kg		ND 90 93 90	0.5	mg/Kg		ND 87 95 81	0.5	mg/Kg		ND 98 96 77	0.5	mg/Kg		ND 91 95 83	0.5	mg/Kg	
Sample ID. No. Date Sampled Sample Depth	RDC-09 11/15/2024 52	Reporting Limit	Units	Flags	RDC-09 11/15/2024 54	Reporting Limit	Units	Flags	RDC-09 11/15/2024 56	Reporting Limit	Units	Flags	RDC-09 11/15/2024 58	Reporting Limit	Units	Flags												
Dimethyl Sulfide MTBE 1,2-Dichloroethane Benzene Toluene Ethylbenzene m/p-Xylene o-Xylene 1,2,4-Trimethylbenzene Naphthalene	ND 1.1 ND 1.2 ND 2.1 0.9 3.6 1	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg		ND 0.8 ND 2.4 1.1 4.2 1.5 4.6 0.6	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg		ND 0.8 ND 0.7 1.5 5.8 2 5.1 0.7	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg		ND 1 ND 1.6 2.7 12 2.6 7 1.7	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg													
TVPH % Surrogate Recovery 1,2-Dichloroethane-d4 d8-Toluene p-Bromofluorobenzene	ND 90 96 87	0.5	mg/Kg		ND 95 97 85	0.5	mg/Kg		ND 93 99 85	0.5	mg/Kg		38 92 167 162	0.5	mg/Kg	Е												

RPI Groundwater Laboratory Analytical Report Former Gasoline Service Station

Sheffield, AL

Sample ID. No. Date Sampled	MW-3 11/11/2024				MW-4 11/11/2024				MW-5 11/11/2024			
Sample Depth		Reporting				Reporting				Reporting		
		Limit	Units	Flags		Limit	Units	Flags		Limit	Units	Flags
		Linit	Onita	r lags		Linin	Onita	r lags		Linit	Offits	r lags
Dimethyl Sulfide	ND	5	ug/L		ND	5	ug/L		ND	5	ug/L	
МТВЕ	ND	5	ug/L		ND	5	ug/L		230	5	ug/L	
1,2-Dichloroethane	ND	5	ug/L		ND	5	ug/L		7.7	5	ug/L	
Benzene	5.1	5	ug/L		17	5	ug/L		1100	5	ug/L	
Toluene	9.5	5	ug/L		19	5	ug/L		11	5	ug/L	
Ethylbenzene	960	5	ug/L		580	5	ug/L		160	5	ug/L	
m/p-Xylene	860	5	ug/L		740	5	ug/L		280	5	ug/L	
o-Xylene	27	5	ug/L		16	5	ug/L		18	5	ug/L	
1,2,4-Trimethylbenzene	3400	5	ug/L		2400	5	ug/L		340	5	ug/L	
Naphthalene	240	5	ug/L		250	5	ug/L		46	5	ug/L	
TVPH	17	5	mg/L		51	5	mg/L		8.4	5	mg/L	
% Surrogate Recovery												
1,2-Dichloroethane-d4	95				94				99			
d8-Toluene	103				105				102			
p-Bromofluorobenzene	90				107				113			
F												
Lactate	ND	2	mg/L		ND	2	mg/L		ND	2	mg/L	
Acetate	ND	2	mg/L		ND	2	mg/L		ND	2	mg/L	
Propionate	ND	2	mg/L		ND	2	mg/L		ND	2	mg/L	
Formate/Isobutyrate	ND	4	mg/L		ND	4	mg/L		ND	4	mg/L	
Butyrate	ND	2	mg/L		ND	2	mg/L		ND	2	mg/L	
Pyruvate	ND	2	mg/L		ND	2	mg/L		ND	2	mg/L	
Chloride	7	2	mg/L		7.9	2	mg/L		16	2	mg/L	
Nitrite	ND	2	mg/L		ND	2	mg/L		ND	2	mg/L	
Succinate	ND	10	mg/L		ND	10	mg/L		ND	10	mg/L	
Nitrate	ND	2 2	mg/L		ND	2 2	mg/L		ND	2 2	mg/L	
Sulfate	ND	2	mg/L		ND	2	mg/L		ND	2	mg/L	
Phosphate Sulfide	NA ND	2	mg/L mg/L		NA ND	2	mg/L mg/L		NA ND	2	mg/L mg/L	
Sumue	ND	2	mg/∟		ND	2	mg/L		ND	2	mg/L	
Methane	3700	20	ug/L		2400	20	ug/L		3200	20	ug/L	
Ethane	ND	2	ug/L		3	2	ug/L		9.9	2	ug/L	
Ethylene	ND	2	ug/L		ND	2	ug/L		ND	2	ug/L	
Propane	ND	2	ug/L		ND	2	ug/L		ND	2	ug/L	
Propylene	ND	2	ug/L		ND	2	ug/L		ND	2	ug/L	
Isobutane	ND	2	ug/L		ND	2	ug/L		7	2	ug/L	
n-Butane	13	2	ug/L		9.5	2	ug/L		39	2	ug/L	
Acetylene	ND	2	ug/L		ND	2	ug/L		ND	2	ug/L	
t-2-Butene	ND	2	ug/L		ND	2	ug/L		ND	2	ug/L	
1-Butene	ND	2 2	ug/L		ND	2 2	ug/L		ND	2 2	ug/L	
Isobutylene	ND 200	2	ug/L		ND	2	ug/L		ND	2	ug/L	
cis-2-Butene	300	2	ug/L		55	2	ug/L		130	2	ug/L	
1,3-Butadiene	2.1 ND	2	ug/L		5 ND	2	ug/L		7.8 ND	2	ug/L	
Methyl Acetylene	UN	2	ug/L		ND	2	ug/L		ND	2	ug/L	
Carbon Dioxide	150	2	mg/L		87	2	mg/L		42	2	mg/L	

ATTACHMENT C BOS 200+[®] Injection Design and Pricing, 3-Phase Partitioning Calculations Three Phase Partitioning Model to Determine Soil Concentration that is protective of the Groundwater

 $C_s = C_w(UCF) DF \left[K_d + \frac{(\theta_w + \theta_a H_{cc})}{\rho_b} \right]$

Cs = Cw x (UCF) x DF x [Kd + (Tw + Ta x Hc)/Rb)]

Where

- Cs = Soil Concentration (mg/Kg)
- Cw = Groundwater concentration (ug/I)
- UCF = Unit Conversion Factor (1mg/1000 ug)
- DF = Dilution Factor: 20 for unsaturated soils and 1 for saturated soils
- Kd = Distribution Coefficient (L/kg) (See Table 747-1 and equation 747-2)
- Tw = Water-filled porosity (ml water/ml soil) 0.3 for unsaturated soil and 0.43 for saturated conditions
- Ta = Airfilled Porosity (ml air/ml soil) 0.13 for unsaturated soil and 0 for saturated
- Hc = Henry's Law Constants (See Table 747-4)
- Rb = Dry soil bulk density (1.5 Kg/L)

Kd = Koc x Foc

Where

Koc = Soil organic carbon-water partitioning coefficient (ml/g) See Table 747-1

Foc = Soil faction of organic carbon (0.1% or 0.001 g/g) EPA uses 0.2% or 0.002

					Oaturatet							
				Кос		Kd	Tw (ml H2O/ml	Ta (ml air/ml			Cs	
Contaminant	Cw (ug/L)	UCF	DF	(ml/g)	Foc (g/g)	(L/Kg)	soil)	soil)	Hc	Rb (Kg/L)	(mg/Kg)	Cs (ug/Kg)
Benzene	1080	0.001	1	62	0.002	0.124	0.43	0	0.228	1.5	0.444	443.5
Toluene	215000	0.001	1	265	0.002	0.53	0.43	0	0.754	1.5	175.6	175583.3
Ethylbenzene	151000	0.001	1	204	0.002	0.408	0.43	0	0.323	1.5	104.9	104894.7
Xylene	175000	0.001	1	311	0.002	0.622	0.43	0	0.314	1.5	159.02	159016.7
MTBE	4300	0.001	1	11	0.002	0.022	0.43	0	0.018	1.5	1.3	1327.3
Naphthalene	4300	0.001	1	1191	0.002	2.382	0.43	0	0.0198	1.5	11.475	11475.3

Saturated Soil

Client Name	PM Environmental
Project Location	Former Gasoline Service Station - Sheffield, AL
Date: February 17, 2025	Revision: 0

		Area A	Area B	Area C	Area D (Optional)	Totals
		RDC-04, MW-05	RDC-02, MW-02	RDC-01	MW-03 and 11	Totals
Site Information	Predominate Geology of Treatment Zone	Clay	Clay	Clay	Clay	
	Treatment Zone Area (ft^2)	250	250	725	335	975
	Contamination Depth Start (ft bgs)	32	35	35	30	
	Contamination Depth End (ft bgs)	55	40	65	40	
	Treatment Volume (yd^3)	213.0	46.3	805.6	124.1	1,189
	Triangular Grid Spacing (ft)	6	6	6	6	
	Number of Injection Points - Design	7	7	20	9	27
	Injection Interval Distance (ft)	2	2	2	2	
	Number of Injection Intervals per Point - Design	12.0	3.0	15.5	5.5	
	Total Number of Injection Intervals	84	21	310	50	465
	Effective Porosity	20%	20%	20%	20%	
	Pore Volume (L)	32,568	7,080	123,192	18,974	
	Soil Density (lb/ft^3)	110	110	110	110	
TPH Design Calculations	TPH Groundwater Concentration (mg/L)	8.4	0	0	0	
v	TPH Soil Concentration (mg/kg)	2,600	870	5,200	400	
	TPH Mass (lb)	1,649	120	12,467	148	
	BOS 200 Total Demand (lb)	2,967	216	22,440	266	
	BOS 200 per Injection Interval - Design (lb)	30	15	30	7.5	
	BOS 200 Slurry Volume per Interval (gal)	15	15	15	15	
	Average BOS 200 per Injection Point (lb)	360	45	465	41	
	BOS 200 Total (lb)	2,520	315	9,300	371	12,550
Design Basis	Select Speciated or TPH	ТРН	ТРН	TPH	ТРН	
	Design BOS 200 Total per Area (lb)	2,520	315	9,300	371	12,550
	BOS 200 Loading - Mass Per Unit Volume (lb/ft^3)	0.438	0.252	0.428	0.111	12,550
Trap & Treat Bacteria Calculations	Bacteria Concentrate (gal)	5	1	19	1	28
					_	28
Kinetic Design Additives	Supplemental Gypsum per Interval - Design (Ib)	15	7.5	15	7.5	
	Total Supplemental Gypsum (lb)	1,260	158	4,650	371	6,450
	Supplemental Magnesium Sulfate per Interval - Design (Ib)	7.5	7.5	7.5	7.5	
	Total Supplemental Magnesium Sulfate (lb)	630	158	2,325	371	3,500
	Food Grade Starch per Interval (lb)	7.5	7.5	7.5	7.5	2 5 2 2
	Total Food Grade Starch (lb)	630	158	2,325	371	3,500
	Yeast Extract per Interval (lb)	0.20	0.20	0.20	0.20	110
	Total Yeast Extract (lb)	16	4	60	10	110
Slurry and Water Volumes	Slurry Volume per Interval (gal)	15	15	15	15	
	Estimated Water Volume (gal)	1,260	315	4,650	743	6,968
Summary	BOS 200 Total (lb)	12,550				
	BOS 200 Unit Price (\$/lb)	\$6.50				
	Bacteria Concentrate (gal)	27.5	1			
	Bacteria Concentrate Price (\$/gal)	\$115				
	BOS 200+ Components (LS)	\$10,300				
	Ship Rate (\$/lb) - BOS 200 ONLY	\$0.40				
	Estimated Shipping and Tax (\$)	\$5,020				
	Total Material Price (\$)	\$100,058				
	Linear Footage per Day Achievable	250				
	Number of Field Days to Complete	10				
	Installation Day Rate (\$/day, includes per diem and lodging)	\$5,710				
	Per Diem (\$/day)	\$740				
	Mobilization (\$)	\$4,900				
	Weekend Downtime (\$, crew off Sunday for DOT Reset)	\$1,000				
	Total Installation Price (\$)	\$70,400]			
	Injection Summary Report (\$)	\$1,472				
	Total Estimated Price (\$)	\$171,930				

AST Standard Terms Conditions

- 1 Pricing for products and services is valid through May 31, 2025.
- Pricing is based on the quantities outlined above. Should the quantities change from this design, pricing must be adjusted to conform to the pricing structure shown at: https://www.trapandtreat.com/product-pricing/
- 3 Unless a MSA is in place, payment terms are full payment of product and shipping costs upon arrival. Payment of injection services is not to exceed 30 calendar days from date of invoice. Interest will accrue at a monthly rate of 1.5% for all outstanding balances including interest. The interest rate will be prorated for partial months
- There will be adequate water onsite (e.g. 25-gpm service) to prepare the BOS materials for injection. The water service should be within 200 ft of all injection locations; fire hoses can be placed and remain inplace for the duration of the injection (i.e. shuttling of water is not required). The water will be provided at no cost to AST. Hydrant permits and fees will be provided by others. Note that AST can bring hose ramps if discussed before mobilization.

All utilities and underground appurtenances will be located prior to AST performing injection services on-site. AST has not provided pricing for a private utility locating service, this can be provided by AST for an additional cost. AST will not be responsible for repairs to mis-marked or unmarked buried utilities and other appurtenances. AST has not included any provisions to perform invasive subsurface utility

- 5 clearance (such as air-knife excavation). Invasive utility clearances such as air knife will be performed at a minimum of 72-hours prior to mobilization of AST Injection Staff. AST does not perform handaugering.
- 6 The site stratigraphy allows for pushing up to 250 linear feet of 1.5" or 2.25" direct push rods per day and the geology/logistics allow for the injection of up to 2700 lb of prepared slurry per day.
- 7 The total depth throughout the area identified in the injection design will be accessible via direct push utilizing a Geoprobe[®] 7000 series rig (or equivalent).
- 8 Asphalt/concrete penetrations will be patched with like materials. Concrete coring, if necessary, is assumed to be performed by others.
- 9 Investigated derived waste will be drummed and staged on site for disposal by others.
- 10 Traffic control and site security to be provided by others, if required.
- 11 The project is non-union and will not require prevailing wages.
- 12 Work is performed during standard workweek and hours (Monday-Saturday 7am-6pm)
- 13 Cold Weather Protocol:

All injection work is to be performed with overnight temperatures above 32 degrees F. If injections are to be performed with overnight lows below 32 degrees F, the installation price will be subject to an additional 25% charge to account for loss time for additional shutdown/startup time for the injection system.

Injection work in temperatures below 20 degrees F is a health and safety concern for the injection crew. If temperatures are not above 20 degrees F by 10 a.m., no injection work will be performed that day. A daily stand by rate will be charged for days lost due to cold weather.

14 Extra time may be needed onsite to redevelop monitoring wells. AST will notify the client as soon as possible if this extra time is necessary.

Appendix C

This site-specific Health and Safety Plan (HASP) documentation is designed to assist PM personnel with providing for a safe work environment and is intended to be a site-specific reference and supplement to PM's internal Health and Safety Program and accompanying Health and Safety Plan Manual. A map of the work site is included as Attachment A, and hospital route map included as Attachment B.

SITE EMERGENCY FORM

Scope Of Work:	Sampling, BOS 200+ Injection
Contaminants of Concern (COCs)	:Gasoline Fuel.
	See Attachment C for data sheets of contaminants of concern.
Air Monitoring Required:	Yes – PID equipped with 10.6 eV lamp. Air monitoring levels will be recorded on a 15-minute, hourly, or other basis. Air monitoring thresholds based on naphthalene.
Minimum Level of Protection:	(0.0 to 10.0 ppm) Level-D PPE (Steel-toed Boots, Nitrile Gloves, Hard Hat, and Safety Glasses, High Visibility/Reflective Vests)
Alternate Levels of Protection:	None Allowed – work activities permitted under Level-D PPE conditions only.
	At sustained ambient air PID readings exceeding 10.0 ppm (10 minutes or more), stop work, clear work area of personnel, and allow area to ventilate, workspace must remain below 10.0 ppm for 15 minutes following work stoppage prior to resuming work. If levels continue to exceed 10.0 ppm, all work will stop.

Hazard Determination (Refer to Page 5 for Additional Hazard Analysis Information):

Serious_____ Moderate____ Low _X__

Do not endanger your own me. Survey the situation before taking any action.		
PM Office Telephone:	800-313-2966	
Site Location Address:	400 East 2nd Street and Atlanta Street, Sheffield, Alabama	
Telephone Located at:	Use PM Employee Cell Phones	

Do not endanger your own life. Survey the situation before taking any action.

EMERGENCY PHONE NUMBERS CONTACT PROJECT MANAGER (PM) OR HEALTH AND SAFETY MANAGER

Ambulance	911
Fire	911
Police	911
Hospital Name	Helen Keller Hospital
Hospital Phone Number	256-386-4196 (Hospital Route Map Included in Attachment B)
Field Project Manager/ Site Safety Officer	
Project and Health and Safety Manager	Suzanne Evans Refer to PM office telephone number above
Client Contact	Trey Lewis
State Agency	ADEM PM James Robinson: 1-334-271-7704

UTILITY MARKER EMERGENCY TELEPHONE NUMBERS

Utility	Color Code	Telephone Number		
Water (Sheffield Utilities) Gas (Sheffield Utilities) Electric (Sheffield Utilities) Telephone/Cable(ATT/Charter) Sewer (Sheffield Utilities)	Blue Yellow Red Orange Green	256-389-2000 256-389-2000 256-389-2000 800-292-8525 256-389-2000		
Dig Safe (AL One Call) Telephone Number: 800-292-8525				

EMERGENCY FIRST AID

- Ingestion: DO NOT INDUCE VOMITING. Call Poison Control (1-800-222-1222) - follow instructions. Administer cardiopulmonary resuscitation (CPR), if necessary. Seek medical attention.
- Inhalation: Remove person from contaminated environment. Administer CPR if necessary. Seek medical attention. DO NOT ENTER A CONFINED SPACE TO RESCUE SOMEONE WHO HAS BEEN OVERCOME UNLESS PROPERLY EQUIPPED AND A STANDBY PERSON IS PRESENT.
- Skin Contact: Brush off dry material, remove wet or contaminated clothing. Flush skin thoroughly with water. Seek medical attention if irritation persists.
- Eye Contact: Flush eyes with water for 15~minutes. Seek medical attention.
- Exposure Headache, dizziness, nausea, drowsiness, irritation of eyes, nose, throat, Symptoms: breathing difficulties.
- Contingency Plan: Report incident to PM and Health and Safety Manager (HSM) after emergency procedures have been implemented.

RESPONDER MUST HAVE A CURRENT CERTIFICATE TO ADMINISTER FIRST AID OR CPR

- 1. Survey the situation. Do not endanger your own life. DO NOT ENTER A CONFINED SPACE TO RESCUE SOMEONE WHO HAS BEEN OVERCOME UNLESS PROPERLY EQUIPPED AND TRAINED. ENSURE ALL PROTOCOLS ARE FOLLOWED INCLUDING THAT A STANDBY PERSON IS PRESENT.
- 2. Call 911 (if available) or the fire department **IMMEDIATELY**. Explain the physical injury, chemical exposure, fire, or release.
- 3. Decontaminate the victim without delaying life-saving procedures.
- 4. If the victim's condition appears to be noncritical, but seems to be more severe than minor cuts, he/she should be transported to the nearest hospital by trained Emergency Medical Services (EMS) personnel: let the doctor assume the responsibility for determining the severity of the injury. If the condition is obviously serious, EMS must transport the victim.
- 5. Notify the PM and the HSM.

EMERGENCY FIRST AID PROCEDURES				
	To Stop Bleeding		CPR	
1.	Give medical statement.	1.	Give medical statement.	
2.			Arousal: Check for consciousness.	
		3.	Open airway with chin-lift.	
5.	3. Use DIRECT PRESSURE over the wound with clean dressing or your		Look. listen, and feel for breathing.	
hand (use non-permeable gloves). Direct pressure will control most bleeding.		5.	If breathing is absent, give 2 slow, full rescue breaths.	
4.	Bleeding from an artery or several injury sites may require DIRECT PRESSURE on a PRESSURE	6.	Check the pulse for 5 to 10 seconds.	
	POINT . Use pressure points for 30 to 60 seconds to help control severe bleeding.	7.	If pulse is present, continue rescue breathing: 1 breath every 5 seconds .	
5.	Continue primary care and seek medical aid as needed.	8.	If pulse is absent, initiate CPR; 15~compressions for each two breaths.	

F

THIS SPACE INTENTIONALLY LEFT BLANK

Hazard Analysis Matrix	
------------------------	--

Hazards	Tasks					
	Drilling Boring Auguring	Soil Sampling	Water Sampling	Geophysical Investigation	Excavation Oversight	Building Materials
Contaminants of Concern Exposure		Х				
OSHA Chemicals Exposure						
Mechanical Equipment/ Construction Electrical		х				
Fire and Explosion						
Heat/Cold Stress		х				
Vehicular Traffic		х				
Pedestrian Traffic						
Overhead Utilities		х				
Underground Utilities		х				
Noise		х				
Confined Space Entry (CSE)						
Trip/Fall Hazard		х				
Snakes/ Spiders/ Insects		Х				

TAILGATE MEETING AND HASP ACKNOWLEDGEMENT SHEET

PM personnel have the authority to stop work at this site if any activity is not performed in accordance with the requirements of the HASP. All PM project personnel, subcontractor personnel, and visitors are required to sign the Agreement and Acknowledgement Sheet **prior** to conducting field activities at this site.

Topics Discussed during Tailgate Safety Meeting:

□HASP □Traffic Safety □Stop Work Authority

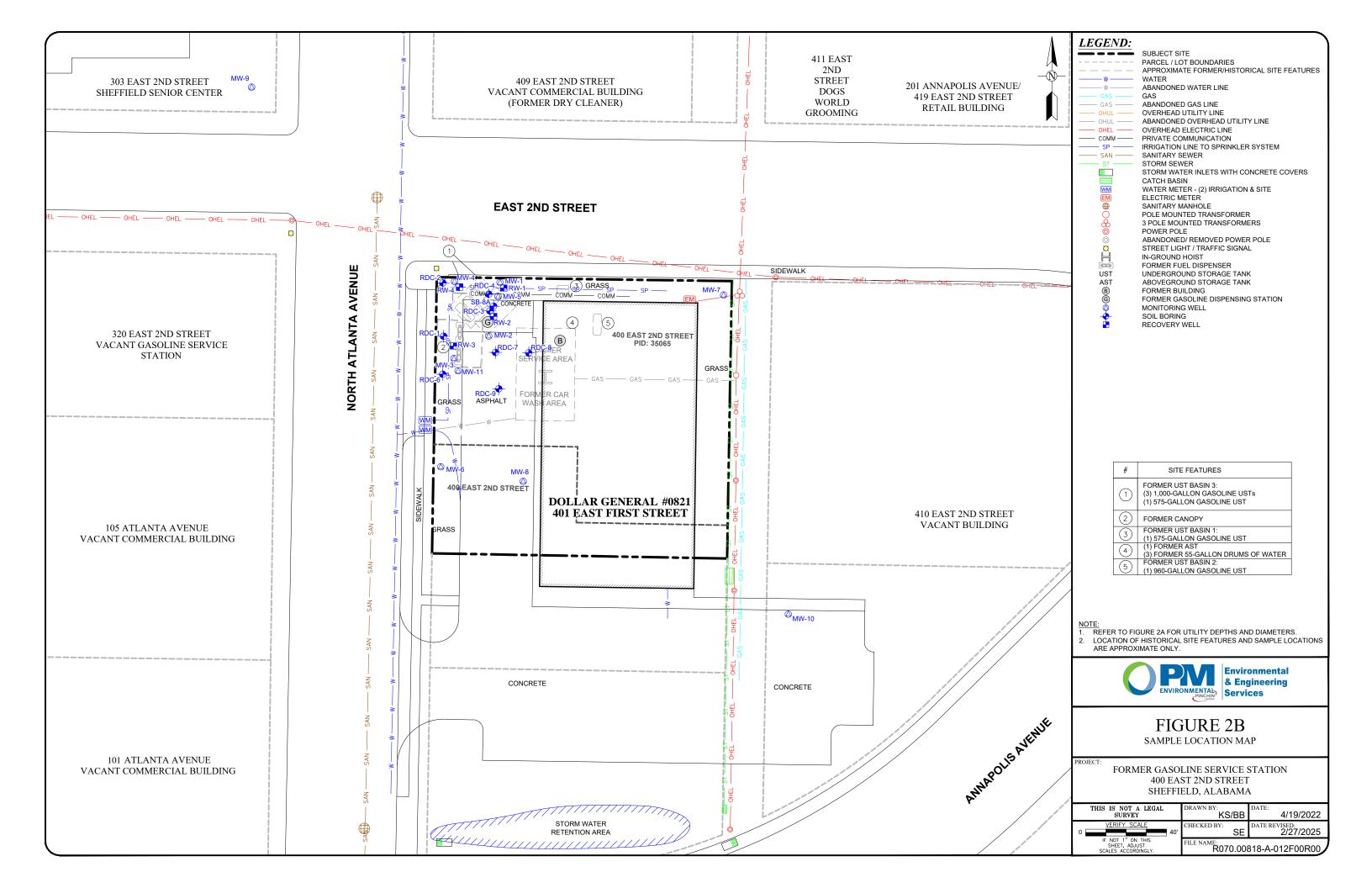
□ Scope of Work □ PPE Requirements

Other Site-Specific Safety Concerns (list out):

TAILGATE MEETING AND HASP ACKNOWLEDGEMENT STATEMENT

1. I have read and fully understand the HASP and my responsibilities.

- 2. I agree to abide by the provisions of the HASP.
- 3. I attended the Tailgate Safety Meeting.


Name	Signature
Company	Date
Name:	Signature:
Company:	Date:
Name:	Signature:
Name: Company:	Signature: Date:

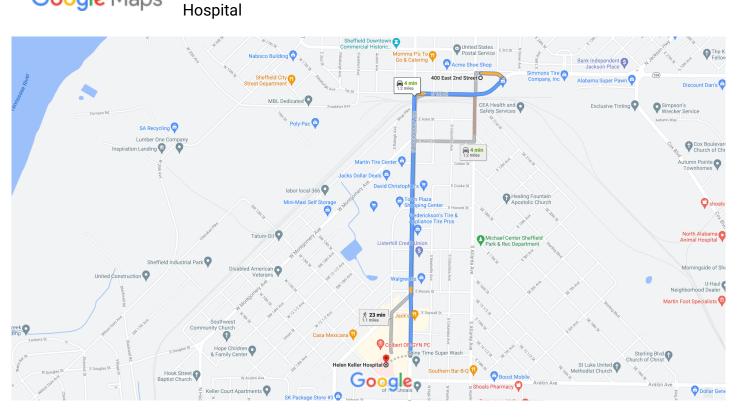
TAILGATE MEETING AND HASP ACKNOWLEDGEMENT STATEMENT (Continued)		
 I have read and fully understand the HASP and my responsibilities. I agree to abide by the provisions of the HASP. I attended the Tailgate Safety Meeting. 		
Name: Signature:		
Company:	Date:	
Name:	Signature:	
Company:	Date:	
Name:	Signature:	
Company:	Date:	
Name:	Signature:	
Company:	Date:	
Name:	Signature:	
Company:	Date:	
Name:	Signature:	
Company:	Date:	
Name:	Signature:	
Company:	Date:	
Name:	Signature:	
Company:	Date:	
Name:	Signature:	
Company:	Date:	
Name:	Signature:	
Company:	Date:	

Site-Specific Health and Safety Plan 400 East 2nd Street and Atlanta Street, Sheffield, Alabama PM Project Number R070.00818.00A Phase 0013

<u>HASP</u> <u>Attachment A</u> Map of Work Area (If Known)

Form # 023; Revised: July 2015

Site-Specific Health and Safety Plan 400 East 2nd Street and Atlanta Street, Sheffield, Alabama PM Project Number R070.00818.00A Phase 0013


HASP Attachment B

Hospital Route Map

Form # 023; Revised: July 2015

Google Maps

Drive 1.2 miles, 4 min

400 East 2nd Street, Sheffield, AL to Helen Keller

Map data ©2021 500 ft ∟_____

400 E 2nd St

Sheffield, AL 35660

1	1.	Head east on E 2nd St toward E 1st St	
L,	2.	Turn right onto E 1st St	—— 423 ft
4		Turn left onto S Montgomery Ave Pass by Dollar General (on the left in 0.6 mi)	— 0.3 mi
	-		— 0.9 mi

Helen Keller Hospital

1300 S Montgomery Ave, Sheffield, AL 35660

These directions are for planning purposes only. You may find that construction projects, traffic, weather, or other events may cause conditions to differ from the map results, and you should plan your route accordingly. You must obey all signs or notices regarding your route.

HASP Attachment C

Data Sheets for Contaminants of Concern (Note: SDS Sheets for field-use chemicals are located in the SDS folders on each field vehicle)

Safety Data Sheet

SECTION 1 CHEMICAL IDENTIFIER AND COMPANY IDENTIFICATION

Chevron and Texaco Unleaded Gasolines (All Grades)

Recommended Use of the Chemical and Restrictions on Use: Fuel

Synonyms: Automotive; Calco Mid-Grade Unleaded Gasoline; Calco Premium Gasoline; Calco Regular Unleaded Gasoline; CHEVRON and TEXACO MID-GRADE UNLEADED GASOLINES; CHEVRON and TEXACO PREMIUM UNLEADED GASOLINES; CHEVRON and TEXACO REGULAR UNLEADED GASOLINES; Chevron Mid-Grade Unleaded Gasoline; Chevron Plus Unleaded Gasoline; Chevron Premium Unleaded Gasoline; Chevron Regular Unleaded Gasoline; Chevron Supreme Plus Unleaded Gasoline; Chevron Supreme Plus Gasoline; Chevron UL/CQ Gasoline; GASOLINE (GENERIC); Gasolines; Texaco Power Plus Gasoline; Texaco Power Premium Unleaded Gasoline; Texaco Unleaded Gasoline; UNLEADED GASOLINE FOR EXPORT

Company Identification

Chevron Products Company 5001 Executive Parkway, Suite 200 San Ramon, CA 94583 United States of America

Transportation Emergency Response

CHEMTREC: (800) 424-9300 or (703) 527-3887 Health Emergency Chevron Emergency & Information Center: Located in the USA. International collect calls accepted. (800) 231-0623 or (510) 231-0623 Product Information Product Information: (800) 582-3835 SDS Requests: lubemsds@chevron.com

SPECIAL NOTES: This SDS applies to: all motor gasoline.

SECTION 2 HAZARDS IDENTIFICATION

CLASSIFICATION:

- Flammable liquid: Category 1.
- Aspiration toxicant: Category 1.
- Carcinogen: Category 1B.
- · Eye irritation: Category 2A.
- Germ Cell Mutagen: Category 1B.
- Reproductive toxicant (developmental): Category 2.
- Skin irritation: Category 2.
- Target organ toxicant (central nervous system): Category 3.
- Target organ toxicant (repeated exposure): Category 2.
- Acute aquatic toxicant: Category 2.
- Chronic aquatic toxicant: Category 2.

Signal Word: Danger

- Physical Hazards:
- Extremely flammable liquid and vapour (H224).

Health Hazards:

- May be fatal if swallowed and enters airways (H304).
- Causes skin irritation (H315).
- Causes serious eye irritation (H319).
- May cause drowsiness or dizziness (H336).
- May cause genetic defects (H340).
- May cause cancer (H350).
- Suspected of damaging the unborn child (H361D).

• May cause damage to organs (Blood/Blood Forming Organs) through prolonged or repeated exposure (H373).

Environmental Hazards:

• Toxic to aquatic life with long lasting effects (H411).

PRECAUTIONARY STATEMENTS:

General:

- Keep out of reach of children (P102).
- Read label before use (P103).

Prevention:

- Obtain special instructions before use (P201).
- · Do not handle until all safety precautions have been read and understood (P202).
- Keep away from heat, hot surfaces, sparks, open flames, and other ignition sources. No smoking (P210).
- Keep container tightly closed (P233).
- Keep cool (P235).
- Ground and bond container and receiving equipment (P240).
- Use explosion-proof electrical/ventilating/lighting/equipment (P241).
- Use non-sparking tools (P242).
- Take action to prevent static discharge (P243).
- Do not breathe dust/fume/gas/mist/vapours/spray (P260).
- Wash thoroughly after handling (P264).
- · Use only outdoors or in a well-ventilated area (P271).
- Avoid release to the environment (P273).
- Wear protective gloves/protective clothing/eye protection/face protection (P280).

Response:

• IF SWALLOWED: Immediately call a POISON CENTER or doctor/physician (P301+P310).

• IF ON SKIN (or hair): Take off immediately all contaminated clothing. Rinse skin with water or shower (P303+P361+P353).

- IF INHALED: Remove person to fresh air and keep comfortable for breathing (P304+P340).
- IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing (P305+P351+P338).
- IF exposed or concerned: Get medical advice/attention (P308+P313).
- Specific treatment (see Notes to Physician on this label) (P321).
- Do NOT induce vomiting (P331).
- If skin irritation occurs: Get medical advice/attention (P332+P313).

- If eye irritation persists: Get medical advice/attention (P337+P313).
- Wash contaminated clothing before reuse (P363).
- In case of fire: Use media specified in the SDS to extinguish (P370+P378).
- Collect spillage (P391).

Storage:

- Store in a well-ventilated place. Keep container tightly closed (P403+P233).
- Store locked up (P405).

Disposal:

• Dispose of contents/container in accordance with applicable local/regional/national/international regulations (P501).

SECTION 3 COMPOSITION/ INFORMATION ON INGREDIENTS

This material is a mixture.

COMPONENTS	CAS NUMBER	AMOUNT
Gasoline	86290-81-5	100 %volume
Toluene	108-88-3	1 - 35 %volume
Pentane, 2,2,4-trimethyl-	540-84-1	10 - 15 %volume
Xylene	1330-20-7	1 - 15 %volume
Trimethylbenzene (3 isomers: 1,2,3-; 1,2,4-; 1,3,5-	25551-13-7	5 - 10 %volume
isomer)		
Pentane isomers (pentanes)	Mixture	1 - 13 %volume
Butane	106-97-8	1 - 12 %volume
Ethanol	64-17-5	0 - 10 %volume
Hexane	110-54-3	1 - 5 %volume
Benzene	71-43-2	0.1 - 5 %volume
Heptane	142-82-5	1 - 4 %volume
Cyclohexane	110-82-7	1 - 3 %volume
Ethylbenzene	100-41-4	0.1 - 3 %volume
Methylcyclohexane	108-87-2	1 - 2 %volume
Naphthalene	91-20-3	0.1 - 2 %volume

Motor gasoline is considered a mixture by EPA under the Toxic Substances Control Act (TSCA). The refinery streams used to blend motor gasoline are all on the TSCA Chemical Substances Inventory. The appropriate CAS number for refinery blended motor gasoline is 86290-81-5. The product specifications of motor gasoline sold in your area will depend on applicable Federal and State regulations.

SECTION 4 FIRST AID MEASURES

Eye: Flush eyes with water immediately while holding the eyelids open. Remove contact lenses, if worn, after initial flushing, and continue flushing for at least 15 minutes. Get immediate medical attention. **Skin:** Wash skin with water immediately and remove contaminated clothing and shoes. Get medical attention if any symptoms develop. To remove the material from skin, use soap and water. Discard contaminated clothing and shoes or thoroughly clean before reuse.

Ingestion: If swallowed, get immediate medical attention. Do not induce vomiting. Never give anything by mouth to an unconscious person.

Inhalation: Move the exposed person to fresh air. If not breathing, give artificial respiration. If breathing is difficult, give oxygen. Get medical attention if breathing difficulties continue or if any other symptoms develop.

Note to Physicians: Ingestion of this product or subsequent vomiting may result in aspiration of light hydrocarbon liquid, which may cause pneumonitis.

SECTION 5 FIRE FIGHTING MEASURES

EXTINGUISHING MEDIA: Dry Chemical, CO2, Aqueous Film Forming Foam (AFFF) or alcohol resistant foam.

Unusual Fire Hazards: See Section 7 for proper handling and storage. UNSUITABLE EXTINGUISHING MEDIA: No data available

PROTECTION OF FIRE FIGHTERS:

Fire Fighting Instructions: For fires involving this material, do not enter any enclosed or confined fire space without proper protective equipment, including self-contained breathing apparatus.

Combustion Products: Highly dependent on combustion conditions. A complex mixture of airborne solids, liquids, and gases including carbon monoxide, carbon dioxide, and unidentified organic compounds will be evolved when this material undergoes combustion.

SECTION 6 ACCIDENTAL RELEASE MEASURES

Personal Precautions, Protective Equipment, and Emergency Procedures:

Eliminate all sources of ignition in the vicinity of the spill or released vapor. If this material is released into the work area, evacuate the area immediately. Monitor area with combustible gas indicator. **Environmental Precautions:**

Stop the source of the release if you can do it without risk. Contain release to prevent further contamination of soil, surface water or groundwater.

Methods and Material For Containment and Cleaning Up:

Clean up spill as soon as possible, observing precautions in Exposure Controls/Personal Protection. Use appropriate techniques such as applying non-combustible absorbent materials or pumping. Where feasible and appropriate, remove contaminated soil. Place contaminated materials in disposable containers and dispose of in a manner consistent with applicable regulations.

Reporting:

Report spills to local authorities as appropriate or required.

SECTION 7 HANDLING AND STORAGE PRECAUTIONS

General Handling Information: Avoid contaminating soil or releasing this material into sewage and drainage systems and bodies of water.

Precautionary Measures: This product presents an extreme fire hazard. Liquid very quickly evaporates, even at low temperatures, and forms vapor (fumes) which can catch fire and burn with explosive violence. Invisible vapor spreads easily and can be set on fire by many sources such as pilot lights, welding equipment, and electrical motors and switches. Never siphon gasoline by mouth.

Do not store in open or unlabeled containers. READ AND OBSERVE ALL PRECAUTIONS ON PRODUCT LABEL. Use only as a motor fuel. Do not use for cleaning, pressure appliance fuel, or any other such use. Do not get in eyes, on skin, or on clothing. Do not taste or swallow. Do not breathe vapor or fumes. Wash thoroughly after handling. Keep out of the reach of children.

Static Hazard: Improper filling of portable gasoline containers creates danger of fire. Only dispense gasoline into approved and properly labeled gasoline containers. Always place portable containers on the ground. Be sure pump nozzle is in contact with the container while filling. Do not use a nozzle's lockopen device. Do not fill portable containers that are inside a vehicle or truck/trailer bed.

Electrostatic charge may accumulate and create a hazardous condition when handling this material. To minimize this hazard, bonding and grounding may be necessary but may not, by themselves, be sufficient. Review all operations which have the potential of generating and accumulating an electrostatic charge and/or a flammable atmosphere (including tank and container filling, splash filling, tank cleaning, sampling, gauging, switch loading, filtering, mixing, agitation, and vacuum truck operations) and use appropriate mitigating procedures.

Container Warnings: Container is not designed to contain pressure. Do not use pressure to empty

container or it may rupture with explosive force. Empty containers retain product residue (solid, liquid, and/or vapor) and can be dangerous. Do not pressurize, cut, weld, braze, solder, drill, grind, or expose such containers to heat, flame, sparks, static electricity, or other sources of ignition. They may explode and cause injury or death. Empty containers should be completely drained, properly closed, and promptly returned to a drum reconditioner or disposed of properly.

General Storage Information: DO NOT USE OR STORE near heat, sparks, flames, or hot surfaces . USE AND STORE ONLY IN WELL VENTILATED AREA. Keep container closed when not in use.

SECTION 8 EXPOSURE CONTROLS AND PERSONAL PROTECTION

GENERAL CONSIDERATIONS:

Consider the potential hazards of this material (see Section 2), applicable exposure limits, job activities, and other substances in the workplace when designing engineering controls and selecting personal protective equipment (PPE). If engineering controls or work practices are not adequate to prevent exposure to harmful levels of this material, refer to PPE information below.

Factors that affect PPE include, but are not limited to: properties of the chemical, other chemicals which may contact the same PPE, physical requirements (fit & sizing, cut/puncture protection, dexterity, thermal protection, etc.), and potential allergic reactions to the PPE material. It is the responsibility of the user to read and understand all instructions and limitations supplied with the equipment since protection is usually provided for a limited time or under certain circumstances. Refer to appropriate CEN standards.

ENGINEERING CONTROLS:

Use general ventilation, local exhaust ventilation, or a combination of both.

PERSONAL PROTECTIVE EQUIPMENT

Eye/Face Protection: Wear protective equipment to prevent eye contact. Selection of protective equipment may include safety glasses, chemical goggles, face shields, or a combination depending on the work operations conducted.

Skin Protection: Wear chemical personal protective equipment (PPE) to prevent skin contact. Selection of chemical protective clothing should be performed by an Occupational Hygienist or Safety Professional and be based upon applicable standards (ASTM F739 or EN 374). Using chemical PPE depends upon operations conducted and may include chemical gloves, boots, chemical apron, chemical suit, and complete facial protection. Refer to PPE manufacturers to obtain breakthrough time information to determine how long PPE can be used before it needs to be replaced. Unless specific glove manufacturer data indicates otherwise, the below table is based upon available industry data to assist in the glove selection process and is intended to be used as reference only.

Chemical Glove Material	Thickness (mm)	Typical Breakthrough Time (minutes)
Butyl	0.7	7
Neoprene	0.61	7
Nitrile	0.8	60
Nitrile	0.23	2
Polyvinyl Chloride (PVC)	1.1	2
Viton Butyl	0.3	120

Respiratory Protection: Determine if airborne concentrations are below the recommended occupational exposure limits for jurisdiction of use. If airborne concentrations are above the acceptable limits, wear an approved respirator that provides adequate protection from this material, such as: Air-Purifying Respirator for Organic Vapors. When used as a fuel, this material can produce carbon monoxide in the exhaust. Determine if airborne concentrations are below the occupational exposure limit for carbon

monoxide. If not, wear an approved positive-pressure air-supplying respirator. Use a positive pressure air-supplying respirator in circumstances where air-purifying respirators may not provide adequate protection.

Component	Country/ Agency	Form	TWA	STEL	Ceiling	Notation
Gasoline	ACGIH	Vapor	300 ppm	500 ppm		A3
Gasoline	ACGIH		300 ppm	500 ppm		
Toluene	ACGIH		20 ppm			
Toluene	JSOH		188 mg/m3			Skin
Pentane, 2,2,4-trimethyl-	ACGIH		300 ppm			
Pentane, 2,2,4-trimethyl-	JSOH		1400 mg/m3			
Xylene	ACGIH		20 ppm			
Xylene	JSOH		217 mg/m3			
Trimethylbenzene (3 isomers: 1,2,3-; 1,2,4-; 1,3,5- isomer)	ACGIH		10 ppm			
Butane	ACGIH			1000 ppm		
Butane	JSOH		1200 mg/m3			
Ethanol	ACGIH		1000 ppm	1000 ppm		A4
Hexane	ACGIH		50 ppm			Skin
Hexane	JSOH		140 mg/m3			Skin
Benzene	ACGIH	Vapor	0.50 ppm	2.50 ppm		
Benzene	ACGIH		0.05 ppm	2.50 ppm		Skin
Benzene	CVX	Vapor	0.50 ppm	2.50 ppm		
Heptane	ACGIH		400 ppm	500 ppm		
Heptane	JSOH		820 mg/m3			
Cyclohexane	ACGIH		100 ppm			
Cyclohexane	JSOH		520 mg/m3			
Ethylbenzene	ACGIH	Vapor	100 ppm			
Ethylbenzene	ACGIH		20 ppm			
Ethylbenzene	JSOH		87 mg/m3			Skin
Methylcyclohexane	ACGIH		400 ppm			
Methylcyclohexane	JSOH		1600 mg/m3			
Naphthalene	ACGIH	Vapor	10 ppm	15 ppm		A4 Skin
Naphthalene	ACGIH		10 ppm			Skin

Occupational Exposure Limits:

Consult local authorities for appropriate values.

SECTION 9 PHYSICAL AND CHEMICAL PROPERTIES

Attention: the data below are typical values and do not constitute a specification.

Color: Colorless to yellow Physical State: Liquid Odor: Petroleum odor Odor Threshold: No data available pH: Not Applicable Vapor Pressure: 5 psi - 15.50 psi (Typical) @ 37.8 °C (100 °F) Relative Vapor Density: 3 - 4 (Typical) Particle Characteristics: No data available Boiling Point: 27.2°C (81°F) - 52.8°C (127°F) (Typical) Solubility: Negligible Freezing Point: Not Applicable Melting Point: Not Applicable Specific Gravity: 0.70 g/ml - 0.80 g/ml @ 15.6°C (60.1°F) (Typical) Density: No data available Viscosity: <1 SUS @ 37.8°C (100°F) Evaporation Rate: No data available n-Octanol/Water Partition Coefficient: 2 - 7 Combustion Characteristics (Solids/Gases): No data available Decomposition Temperature: No data available Boiling Range: No data available

FLAMMABLE PROPERTIES: Flashpoint: (Tagliabue Closed Cup ASTM D56) < -45 °C (< -49 °F)

Autoignition: > 280 °C (> 536 °F) Flammability (solid, gas): Not Applicable Flammability (Explosive) Limits (% by volume in air): Lower: 1.4 Upper: 7.6

SECTION 10 STABILITY AND REACTIVITY

Reactivity: May react with strong acids or strong oxidizing agents, such as chlorates, nitrates, peroxides, etc.

Chemical Stability: This material is considered stable under normal ambient and anticipated storage and handling conditions of temperature and pressure.
 Incompatibility With Other Materials: Not applicable
 Hazardous Decomposition Products: None known (None expected)
 Hazardous Polymerization: Hazardous polymerization will not occur.

SECTION 11 HAZARD INFORMATION

IMMEDIATE HEALTH EFFECTS

Eye: Contact with the eyes causes severe irritation. Symptoms may include pain, tearing, reddening, swelling and impaired vision.

Eye Irritation: This material causes serious eye irritation. The product has not been tested. The statement is based on evaluation of data for product components.

Skin: Contact with the skin causes irritation. Skin contact may cause drying or defatting of the skin. Symptoms may include pain, itching, discoloration, swelling, and blistering. Contact with the skin is not expected to cause an allergic skin response.

Acute Dermal Toxicity: LD50: >3.75 g/kg (rabbit).

Skin Irritation: For a 4-hour exposure, the Primary Irritation Index (PII) in rabbits is: 4.8/8.0. **Skin Sensitization:** This material did not cause skin sensitization reactions in a Buehler guinea pig test.

Ingestion: Highly toxic; may be fatal if swallowed. Because of its low viscosity, this material can directly enter the lungs, if swallowed, or if subsequently vomited. Once in the lungs it is very difficult to remove and can cause severe injury or death. May be irritating to mouth, throat, and stomach. Symptoms may include pain, nausea, vomiting, and diarrhea.

Acute Oral Toxicity: LD50: >5 ml/kg (rat).

Inhalation: Excessive or prolonged breathing of this material may cause central nervous system effects. Central nervous system effects may include headache, dizziness, nausea, vomiting, weakness, loss of coordination, blurred vision, drowsiness, confusion, or disorientation. At extreme exposures, central nervous system effects may include respiratory depression, tremors or convulsions, loss of

consciousness, coma or death. **Acute Inhalation Toxicity:** 4 hour(s) LD50: >20000 mg/m3 (rat). **Acute Toxicity Estimate:** Not Determined

DELAYED OR OTHER HEALTH EFFECTS:

Reproductive Toxicity: Contains material that may cause harm to the unborn child if inhaled above the recommended exposure limit. This material is suspected of damaging the unborn child. The product has not been tested. The statement is based on evaluation of data for similar materials or product components.

Carcinogenicity: Prolonged or repeated exposure to this material may cause cancer. Gasoline has been classified as a Group 2B carcinogen (possibly carcinogenic to humans) by the International Agency for Research on Cancer (IARC).

Whole gasoline exhaust has been classified as a Group 2B carcinogen (possibly carcinogenic to humans) by the International Agency for Research on Cancer (IARC).

Contains benzene, which has been classified as a carcinogen by the National Toxicology Program (NTP) and a Group 1 carcinogen (carcinogenic to humans) by the International Agency for Research on Cancer (IARC).

Contains naphthalene, which has been classified as a Group 2B carcinogen (possibly carcinogenic to humans) by the International Agency for Research on Cancer (IARC). Contains ethylbenzene which has been classified as a Group 2B carcinogen (possibly carcinogenic to humans) by the International Agency for Research on Cancer (IARC).

This material may cause cancer. The product has not been tested. The statement is based on evaluation of data for similar materials or product components.

Germ Cell Mutagenicity: This material may cause genetic defects. The product has not been tested. The statement is based on evaluation of data for similar materials or product components.

Target Organs: Contains material that may cause damage to the following organ(s) following repeated inhalation at concentrations above the recommended exposure limit: Blood/Blood Forming Organs **Specific Target Organ Toxicity - Single Exposure:** This material may cause drowsiness or dizziness. The product has not been tested. The statement is based on evaluation of data for similar materials or product components.

Specific Target Organ Toxicity - Repeated Exposure: This material may cause damage to organs through prolonged or repeated exposure. The product has not been tested. The statement is based on evaluation of data for similar materials or product components.

Aspiration Hazard: This material is considered an aspiration hazard based on the kinematic viscosity of the material.

ADDITIONAL TOXICOLOGY INFORMATION:

This product contains naphthalene.

GENERAL TOXICITY: Exposure to naphthalene has been reported to cause methemoglobinemia and/or hemolytic anemia, especially in humans deficient in the enzyme glucose-6-phosphate dehydrogenase. Laboratory animals given repeated oral doses of naphthalene have developed cataracts.

REPRODUCTIVE TOXICITY AND BIRTH DEFECTS: Naphthalene did not cause birth defects when administered orally to rabbits, rats, and mice during pregnancy, but slightly reduced litter size in mice at dose levels that were lethal to the pregnant females. Naphthalene has been reported to cross the human placenta. GENETIC TOXICITY: Naphthalene caused chromosome aberrations and sister chromatid exchanges in Chinese hamster ovary cells, but was not a mutagen in several other in-vitro tests.CARCINOGENICITY: In a study conducted by the National Toxicology Program (NTP), mice exposed to 10 or 30 ppm of naphthalene by inhalation daily for two years had chronic inflammation of the nose and lungs and increased incidences of metaplasia in those tissues. The incidence of benign lung tumors (alveolar/bronchiolar adenomas) was significantly increased in the high-dose female group but not in the male groups. In another two-year inhalation study conducted by NTP, exposure of rats to 10, 30,

and 60 ppm naphthalene caused increases in the incidences of a variety of nonneoplastic lesions in the nose. Increases in nasal tumors were seen in both sexes, including olfactory neuroblastomas in females at 60 ppm and adenomas of the respiratory epithelium in males at all exposure levels. The relevance of these effects to humans has not been established. No carcinogenic effect was reported in a 2-year feeding study in rats receiving naphthalene at 41 mg/kg/day.

This product contains cyclohexane.

Cyclohexane primarily affects the central nervous systems of laboratory animals and humans. Acute or prolonged inhalation of cyclohexane at levels below the recommended exposure limits does not result in toxic effects while acute exposures to levels above these recommended limits can cause reversible central nervous system depression. Prolonged exposures of laboratory animals to high levels (up to low thousands of parts per million) have also caused reversible effects which included hyperactivity, diminished response to stimuli, and adaptive liver changes while very high levels (high thousands of parts per million) were fatal. No developmental effects were seen in rats or rabbits following exposures of up to 7000 ppm cyclohexane. No reproductive effects occurred in rats, although postnatal pup growth was reduced at 7000 ppm in a similar manner as observed in the parental animals. Cyclohexane has not been shown to be mutagenic in several in vitro and in vivo assays and has not produced tumors in several dermal application long-term bioassays. Based on these results and the lack of any mutagenic or genotoxic metabolites, cyclohexane is not expected to be mutagenic or genotoxic. Following dermal exposure, cyclohexane is rapidly absorbed, metabolized, and excreted.

This product contains butane.

An atmospheric concentration of 100,000 ppm (10%) butane is not noticeably irritating to the eyes, nose or respiratory tract, but will produce slight dizziness in a few minutes of exposure. No chronic systemic effect has been reported from occupational exposure.

This product contains benzene.

GENETIC TOXICITY/CANCER: Repeated or prolonged breathing of benzene vapor has been associated with the development of chromosomal damage in experimental animals and various blood diseases in humans ranging from aplastic anemia to leukemia (a form of cancer). All of these diseases can be fatal. In some individuals, benzene exposure can sensitize cardiac tissue to epinephrine which may precipitate fatal ventricular fibrillation.

REPRODUCTIVE/DEVELOPMENTAL TOXICITY: No birth defects have been shown to occur in pregnant laboratory animals exposed to doses not toxic to the mother. However, some evidence of fetal toxicity such as delayed physical development has been seen at such levels. The available information on the effects of benzene on human pregnancies is inadequate but it has been established that benzene can cross the human placenta.

OCCUPATIONAL: The OSHA Benzene Standard (29 CFR 1910.1028) contains detailed requirements for training, exposure monitoring, respiratory protection and medical surveillance triggered by the exposure level. Refer to the OSHA Standard before using this product.

This product contains n-hexane.

TARGET ORGAN TOXICITY: Prolonged or repeated ingestion, skin contact or breathing of vapors of nhexane has been shown to cause peripheral neuropathy. Recovery ranges from no recovery to complete recovery depending upon the severity of the nerve damage. Exposure to 1000 ppm n-hexane for 18 hr/day for 61 days has been shown to cause testicular damage in rats. However, when rats were exposed to higher concentrations for shorter daily periods (10,000 ppm for 6 h/day, 5 days/wk for 13 weeks), no testicular lesions were seen.

CARCINOGENICITY: Chronic exposure to commercial hexane (52% n-hexane) at a concentration of 9000ppm was not carcinogenic to rats or to male mice, but did result in an increased incidence of liver tumors in female mice. No carcinogenic effects were observed in female mice exposed to 900 or 3000 ppm hexane or in male mice. The relevance for humans of these hexane-induced mouse liver tumors is questionable.

GENETIC TOXICITY: n-Hexane caused chromosome aberrations in bone marrow of rats, but was

negative in the AMES and mouse lymphoma tests.

This product contains ethanol (ethyl alcohol).

Chronic ingestion of ethanol can damage the liver, nervous system and heart. Chronic heavy consumption of alcoholic beverages has been associated with an increased risk of cancer. Ingestion of ethanol during pregnancy can cause human birth defects such as fetal alcohol syndrome.

Gasolines are highly volatile and can produce significant concentrations of vapor at ambient temperatures. Gasoline vapor is heavier than air and at high concentrations may accumulate in confined spaces to present both safety and health hazards. When vapor exposures are low, or short duration and infrequent, such as during refueling and tanker loading/unloading, neither total hydrocarbon nor components such as benzene are likely to result in any adverse health effects. In situations such as accidents or spills where exposure to gasoline vapor is potentially high, attention should be paid to potential toxic effects of specific components. Information about specific components in gasoline can be found in Sections 2/3, 8 and 15 of this SDS. More detailed information on the health hazards of specific gasoline components can be obtained calling the Chevron Emergency Information Center (see Section 1 for phone numbers).

Pathological misuse of solvents and gasoline, involving repeated and prolonged exposure to high concentrations of vapor is a significant exposure on which there are many reports in the medical literature. As with other solvents, persistent abuse involving repeated and prolonged exposures to high concentrations of vapor has been reported to result in central nervous system damage and eventually, death. In a study in which ten human volunteers were exposed for 30 minutes to approximately 200, 500 or 1000 ppm concentrations of gasoline vapor, irritation of the eyes was the only significant effect observed, based on both subjective and objective assessments.

Lifetime inhalation of wholly vaporized unleaded gasoline at 2056 ppm has caused increased liver tumors in female mice and kidney cancer in male rats. In their 1988 review of carcinogenic risk from gasoline, The International Agency for Research on Cancer (IARC) noted that, because published epidemiology studies did not include any exposure data, only occupations where gasoline exposure may have occurred were reviewed. These included gasoline service station attendants and automobile mechanics. IARC also noted that there was no opportunity to separate effects of combustion products from those of gasoline itself. Although IARC allocated gasoline a final overall classification of Group 2B, i.e. possibly carcinogenic to humans, this was based on limited evidence in experimental animals plus supporting evidence including the presence in gasoline of benzene. The actual evidence for carcinogenicity in humans was considered inadequate.

MUTAGENICITY: Gasoline was not mutagenic, with or without activation, in the Ames assay (Salmonella typhimurium). Saccharamyces cerevisesae, or mouse lymphoma assays. In addition, point mutations were not induced in human lymphocytes. Gasoline was not mutagenic when tested in the mouse dominant lethal assay. Administration of gasoline to rats did not cause chomosomal aberrations in their bone marrow cells. EPIDEMIOLOGY: To explore the health effects of workers potentially exposed to gasoline vapors in the marketing and distribution sectors of the petroleum industry, the American Petroleum Institute sponsored a cohort mortality study (Publication 4555), a nested case-control study (Publication 4551), and an exposure assessment study (Publication 4552). Histories of exposure to gasoline were reconstructed for cohort of more than 18,000 employees from four companies for the time period between 1946 and 1985. The results of the cohort mortality study indicated that there was no increased mortality from either kidney cancer or leukemia among marketing and marine distribution employees who were exposed to gasoline in the petroleum industry, when compared to the general population. More importantly, based on internal comparisons, there was no association between mortality from kidney cancer or leukemia and various indices of gasoline exposure. In particular, neither duration of employment, duration of exposure, age at first exposure, year of first exposure, job category, cumulative exposure, frequency of peak exposure, nor average intensity of exposure had any effect on kidney cancer or leukemia mortality. The results of the nested case-control study confirmed the findings of the original cohort study. That is, exposure to gasoline at the levels experienced by this cohort of distribution workers is not a significant risk factor for leukemia (all cell types), acute myeloid leukemia, kidney cancer or multiple myeloma.

This product contains ethylbenzene.

BIRTH DEFECTS AND REPRODUCTION: Ethylbenzene is not expected to cause birth defects or other developmental effects based on well-conducted studies in rabbits and rats sponsored by NIOSH. Other studies in rats and mice which reported urinary tract malformations have many deficiencies and have limited usefulness in evaluating human risk. Reproductive effects are not expected based on a NIOSH study of fertility, and lack of effects observed for sperm counts and motility, estrous cycle and pathology of reproductive organs following repeated exposures. HEARING: Statistically significant losses in outer hair cells (OHCs) were observed in rats exposed to >=200 ppm ethylbenzene, 6 hours/day, 6 days/week for 13 weeks, after an 8-week recovery period. Following longer exposure, inner hair cells losses were also observed in rats exposed to >= 600 ppm ethylbenzene, but only occasionally in rats exposed to 400 ppm. The Lowest Observed Adverse Effect Level in rats (LOAEL) was 200 ppm for losses of OHCs. Guinea pigs exposed to ethylbenzene at 2,500 ppm, 6 hours/day for 5 days did not show auditory deficits or losses in OHCs. The concentration of ethylbenzene used in the JP-8 study was approximately 10 ppm. GENETIC TOXICITY: Ethylbenzene tested negative in the bacterial mutation test. Chinese Hamster Ovary (CHO) cell in vitro assay, sister chromatid exchange assay and an unscheduled DNA synthesis assay. Conflicting results have been reported for the mouse lymphoma cell assay. Increased micronuclei were reported in an in vitro Svrian hamster embryo cell assay; however, two in vivo micronuclei studies in mice were negative. In Syrian hamster embryo cells in vitro, cell transformation was observed at 7 days of incubation but not at 24 hours. Based on these results, ethylbenzene is not expected to be mutagenic or clastogenic. CARCINOGENICITY: In studies conducted by the National Toxicology Program, rats and mice were exposed to ethylbenzene at 25, 250 and 750 ppm for six hours per day, five days per week for 103 weeks. In rats exposed to 750 ppm, the incidence of kidney tubule hyperplasia and tumors was increased. Testicular tumors develop spontaneously in nearly all rats if allowed to complete their natural life span; in this study, the development of these tumors appeared to be enhanced in male rats exposed to 750 ppm. In mice, the incidences of lung tumors in males and liver tumors in females exposed to 750 ppm were increased as compared to control mice but were within the range of incidences observed historically in control mice. Other liver effects were observed in male mice exposed to 250 and 750 ppm. The incidences of hyperplasia were increased in the pituitary gland in female mice at 250 and 750 ppm and in the thyroid in male and female mice at 750 ppm.

This product contains toluene.

GENERAL TOXICITY: The primary effects of exposure to toluene in animals and humans are on the central nervous system. Solvent abusers, who typically inhale high concentrations (thousands of ppm) for brief periods of time, in addition to experiencing respiratory tract irritation, often suffer permanent central nervous system effects that include tremors, staggered gait, impaired speech, hearing and vision loss, and changes in brain tissue. Death in some solvent abusers has been attributed to cardiac arrhythmias, which appear to be have been triggered by epinephrine acting on solvent sensitized cardiac tissue. Although liver and kidney effects have been seen in some solvent abusers, results of animal testing with toluene do not support these as primary target organs.

HEARING: Humans who were occupationally exposed to concentrations of toluene as low as 100 ppm for long periods of time have experienced hearing deficits. Hearing loss, as demonstrated using behavioral and electrophysiological testing as well as by observation of structural damage to cochlear hair cells, occurred in experimental animals exposed to toluene. It also appears that toluene exposure and noise may interact to produce hearing deficits.

COLOR VISION: In a single study of workers exposed to toluene at levels under 50 ppm, small decreases in the ability to discriminate colors in the blue-yellow range have been reported for female workers. This effect, which should be investigated further, is very subtle and would not likely have been noticed by the people tested.

REPRODUCTIVE/DEVELOPMENTAL TOXICITY: Toluene may also cause mental and/or growth retardation in the children of female solvent abusers who directly inhale toluene (usually at thousands of ppm) when they are pregnant. Toluene caused growth retardation in rats and rabbits when administered at doses that were toxic to the mothers. In rats, concentrations of up to 5000 ppm did not cause birth defects. No effects were observed in the offspring at doses that did not intoxicate the pregnant animals. The exposure level at which no effects were seen (No Observed Effect Level, NOEL) is 750 ppm in the

rat and 500 ppm in the rabbit.

This product contains xylene.

ACUTE TOXICITY: The primary effects of exposure to xylene in animals and humans are on the central nervous system. In addition in some individuals, xylene exposure can sensitize cardiac tissue to epinephrine which may precipitate fatal ventricular fibrillation. DEVELOPMENTAL TOXICITY: Xylene has been reported to cause developmental toxicity in rats and mice exposed by inhalation during pregnancy. The effects noted consisted of delayed development and minor skeletal variations. In addition, when pregnant mice were exposed by ingestion to a level that killed nearly one-third of the test group, lethality (resorptions) and malformations (primarily cleft palate) occurred. Since xylene can cross the placenta, it may be appropriate to prevent exposure during pregnancy. GENETIC TOXICITY/CARCINOGENICITY: Xylene was not genotoxic in several mutagenicity testing assays including the Ames test. In a cancer study sponsored by the National Toxicology Program (NTP), technical grade xylene gave no evidence of carcinogenicity in rats or mice dosed daily for two years. HEARING: Mixed xylenes have been shown to cause measurable hearing loss in rats exposed to 800 ppm in the air for 14 hours per day for six weeks. Exposure to 1450 ppm xylene for 8 hours caused hearing loss while exposure to 1700 ppm for 4 hours did not. Although no information is available for lower concentrations, other chemicals that cause hearing loss in rats at relatively high concentrations do not cause hearing loss in rats at low concentrations. Worker exposure to xylenes at the permissible exposure limit (100 ppm, time-weighted average) is not expected to cause hearing loss.

SECTION 12 ECOLOGICAL INFORMATION

ECOTOXICITY

Gasoline studies have been conducted in the laboratory under a variety of test conditions with a range of fish and invertebrate species. An even more extensive database is available on the aquatic toxicity of individual aromatic constituents. The majority of published studies do not identify the type of gasoline evaluated, or even provide distinguishing characteristics such as aromatic content or presence of lead alkyls. As a result, comparison of results among studies using open and closed vessels, different ages and species of test animals and different gasoline types, is difficult.

The bulk of the available literature on gasoline relates to the environmental impact of monoaromatic (BTEX) and diaromatic (naphthalene, methylnaphthalenes) constituents. In general, non-oxygenated gasoline exhibits some short-term toxicity to freshwater and marine organisms, especially under closed vessel or flow-through exposure conditions in the laboratory. The components which are the most prominent in the water soluble fraction and cause aquatic toxicity, are also highly volatile and can be readily biodegraded by microorganisms.

This material is expected to be toxic to aquatic organisms and may cause long-term adverse effects in the aquatic environment.

48 hour(s) LC50: 3.0 mg/l (Daphnia magna) 96 hour(s) LC50: 1.8 mg/l (Mysidopsis bahia) 96 hour(s) LC50: 8.3 mg/l (Cyprinodon variegatus) 96 hour(s) LC50: 2.7 mg/l (Oncorhynchus mykiss)

MOBILITY IN SOIL

No data available.

PERSISTENCE AND DEGRADABILITY

This material is expected to be readily biodegradable. Following spillage, the more volatile components of gasoline will be rapidly lost, with concurrent dissolution of these and other constituents into the water. Factors such as local environmental conditions (temperature, wind, mixing or wave action, soil type, etc), photo-oxidation, biodegradation and adsorption onto suspended sediments, can contribute to the

weathering of spilled gasoline.

The aqueous solubility of non-oxygenated unleaded gasoline, based on analysis of benzene, toluene, ethylbenzene+xylenes and naphthalene, is reported to be 112 mg/l. Solubility data on individual gasoline constituents also available.

The product has not been tested. The statement has been derived from the properties of the individual components.

POTENTIAL TO BIOACCUMULATE

Bioconcentration Factor: No data available. Octanol/Water Partition Coefficient: 2 - 7

ADVERSE EFFECTS FOR OZONE LAYER:

No data available.

SECTION 13 NOTES ON DISPOSAL

Use material for its intended purpose or recycle if possible. This material, if it must be discarded, may meet the criteria of a hazardous waste as defined by international, country, or local laws and regulations.

SECTION 14 TRANSPORT INFORMATION

The description shown may not apply to all shipping situations. Consult 49CFR, or appropriate Dangerous Goods Regulations, for additional description requirements (e.g., technical name) and mode-specific or quantity-specific shipping requirements.

UN Shipping Description: UN1203, GASOLINE, 3, II

IMO/IMDG Shipping Description: UN1203, GASOLINE, 3, II, FLASH POINT SEE SECTION 9, MARINE POLLUTANT (GASOLINE)

ICAO/IATA Shipping Description: UN1203, GASOLINE, 3, II

Domestic Regulatory Information

Land Regulatory Information: subject to the provisions of the Fire Service Act Maritime Regulatory Information: subject to the provisions of the Ship Safety Act Aviation Regulatory Information: subject to the provisions of the Civil Aeronautics Act

SECTION 15 REGULATORY INFORMATION

REGULATORY LISTS SEARCHED:

01-1=IARC Group 1 01-2A=IARC Group 2A 01-2B=IARC Group 2B 02-1=PRTR (Pollutant Release and Transfer Register) Class 1 02-2=PRTR (Pollutant Release and Transfer Register) Class 2 03-1=Industrial Safety and Health Law (Harmful Substances, etc., Prohibited for Manufacture) 03-2=Industrial Safety and Health Law (Harmful Substances Subject to Obtaining Permission for Manufacturing) 03-3=Industrial Safety and Health Law (Harmful Substances Whose Names, etc., are to Be Indicated) 03-4=Industrial Safety and Health Law (Notifiable Substances) 04-1=Poisonous and Deleterious Substances Control Law (Poisonous substance) 04-2=Poisonous and Deleterious Substances Control Law (Deleterious substance)

The following components of this material are found on the regulatory lists indicated.

Gasoline Toluene Pentane, 2,2,4-trimethyl- Xylene Trimethylbenzene (3 isomers: 1,2,3-; 1,2,4-; 1,3,5-	01-2B 02-1, 03-3, 03-4, 04-2 02-2, 03-3 02-1, 03-3, 03-4, 04-2 02-1, 03-3, 03-4
isomer)	
Butane	03-3, 03-4
Ethanol	01-1, 03-3, 03-4
Hexane	02-1, 03-3, 03-4
Benzene	01-1, 02-1, 03-1, 03-3, 03-4
Heptane	02-1, 03-3, 03-4
Cyclohexane	02-1, 03-3, 03-4
Ethylbenzene	01-2B, 02-1, 03-3, 03-4
Methylcyclohexane	03-3, 03-4
Naphthalene	01-1, 01-2B, 02-1, 03-3, 03-4

JAPANESE FIRE LAW: Group 4, Class 1 Petroleum

CHEMICAL INVENTORIES:

All components comply with the following chemical inventory requirements: AIIC (Australia), DSL (Canada), EINECS (European Union), KECI (Korea), NZIoC (New Zealand), PICCS (Philippines), TCSI (Taiwan).

SECTION 16 OTHER INFORMATION

REVISION STATEMENT: SECTION 08 - Engineering Control Measures information was modified. SECTION 08 - General Considerations information was modified.

SECTION 00 - General Considerations Information was mounted.

SECTION 08 - Occupational Exposure Limit Table information was modified.

SECTION 08 - Personal Protective Equipment List information was deleted.

SECTION 08 - Personal Protective Equipment information was added.

SECTION 08 - Skin Protection information was modified.

SECTION 15 - Regulatory Information information was modified.

Revision Date: 2023/03/01

ABBREVIATIONS THAT MAY HAVE BEEN USED IN THIS DOCUMENT:

TLV - Threshold Limit Value	TWA - Time Weighted Average
STEL - Short-term Exposure Limit	PEL - Permissible Exposure Limit
	CAS - Chemical Abstract Service Number
ACGIH - American Conference of Governmental	IMO/IMDG - International Maritime Dangerous Goods
Industrial Hygienists	Code
API - American Petroleum Institute	SDS - Safety Data Sheet
CVX - Chevron	NFPA - National Fire Protection Association (USA)
	NTP - National Toxicology Program (USA)
IARC - International Agency for Research on Cancer	

Prepared according to JIS Z 7253:2019 / JIS Z 7252:2019 by Chevron Technical Center, 6001 Bollinger Canyon Road, San Ramon, CA 94583.

The above information is based on the data of which we are aware and is believed to be correct as of the date hereof. Since this information may be applied under conditions beyond our control and with which we may be unfamiliar and since data made available subsequent to the date hereof may suggest modifications of the information, we do not assume any responsibility for the results of its use. This information is

furnished upon condition that the person receiving it shall make his own determination of the suitability of the material for his particular purpose.

SAFETY DATA SHEET

CITGO Gasolines, All Grades Leaded

Section 1. Identification

GHS product identifier	: CITGO Gasolines, All Grades Leaded
Synonyms	: Leaded gasoline; Motor gasoline; Petrol; Automobile motor fuels; Finished gasolines; Racing gasoline
Material uses	: Fuel.
Code	: Various
MSDS #	: LEADED
Supplier's details	: CITGO Petroleum Corporation P.O. Box 4689 Houston, TX 77210 sdsvend@citgo.com
Emergency telephone number	: Technical Contact: (832) 486-4000 Medical Emergency: (832) 486-4700 CHEMTREC Emergency: (800) 424-9300 (United States Only)

Section 2. Hazards identification

OSHA/HCS status	: This material is considered hazardous by the OSHA Hazard Communication Standard (29 CFR 1910.1200).
Classification of the substance or mixture	 FLAMMABLE LIQUIDS - Category 2 SKIN CORROSION/IRRITATION - Category 2 SERIOUS EYE DAMAGE/ EYE IRRITATION - Category 2B GERM CELL MUTAGENICITY - Category 1B CARCINOGENICITY - Category 1B TOXIC TO REPRODUCTION [Fertility] - Category 2 TOXIC TO REPRODUCTION [Unborn child] - Category 2 SPECIFIC TARGET ORGAN TOXICITY (SINGLE EXPOSURE) [central nervous system (CNS)] - Category 2 SPECIFIC TARGET ORGAN TOXICITY (SINGLE EXPOSURE) [Respiratory tract irritation and Narcotic effects] - Category 3 SPECIFIC TARGET ORGAN TOXICITY (REPEATED EXPOSURE): INHALATION [blood system] - Category 1 SPECIFIC TARGET ORGAN TOXICITY (REPEATED EXPOSURE) [central nervous system (CNS) and nervous system] - Category 2 SPECIFIC TARGET ORGAN TOXICITY (REPEATED EXPOSURE): INHALATION [blood system] - Category 1 SPECIFIC TARGET ORGAN TOXICITY (REPEATED EXPOSURE): INHALATION [blood system] - Category 2 SPECIFIC TARGET ORGAN TOXICITY (REPEATED EXPOSURE): INHALATION [blood system] - Category 2 SPECIFIC TARGET ORGAN TOXICITY (REPEATED EXPOSURE): INHALATION [kidneys] - Category 2 ASPIRATION HAZARD - Category 1
GHS label elements	
Hazard pictograms	
Signal word	: Danger

Signal Word	
Hazard statements	 Highly flammable liquid and vapor. Causes skin and eye irritation. May cause genetic defects. May cause cancer. Suspected of damaging fertility or the unborn child. May be fatal if swallowed and enters airways. May cause damage to organs. (central nervous system (CNS)) May cause respiratory irritation. May cause drowsiness and dizziness.

Section 2. Hazards identification

	Causes damage to organs through prolonged or repeated exposure if inhaled. (blood system)
	May cause damage to organs through prolonged or repeated exposure. (central nervous system (CNS), nervous system)
	May cause damage to organs through prolonged or repeated exposure if inhaled. (kidneys)
Precautionary statements	
Prevention	: Obtain special instructions before use. Do not handle until all safety precautions have been read and understood. Use personal protective equipment as required. Wear protective gloves. Wear eye or face protection. Keep away from heat, sparks, open flames and hot surfaces No smoking. Use explosion-proof electrical, ventilating, lighting and all material-handling equipment. Use only non-sparking tools. Take precautionary measures against static discharge. Keep container tightly closed. Use only outdoors or in a well-ventilated area. Do not breathe vapor. Do not eat, drink or smoke when using this product. Wash hands thoroughly after handling.
Response	: Get medical attention if you feel unwell. IF exposed or if you feel unwell: Call a POISON CENTER or physician. IF INHALED: Remove victim to fresh air and keep at rest in a position comfortable for breathing. Call a POISON CENTER or physician if you feel unwell. IF SWALLOWED: Immediately call a POISON CENTER or physician. Do NOT induce vomiting. IF ON SKIN (or hair): Take off immediately all contaminated clothing. Rinse skin with water or shower. IF ON SKIN: Wash with plenty of soap and water. Take off contaminated clothing. If skin irritation occurs: Get medical attention. IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. If eye irritation persists: Get medical attention.
Storage	: Store locked up. Store in a well-ventilated place. Keep cool.
Disposal	 Dispose of contents and container in accordance with all local, regional, national and international regulations.
Supplemental label elements	: Avoid contact with skin and clothing. Wash thoroughly after handling.
Hazards not otherwise classified	: Prolonged or repeated contact may dry skin and cause irritation.

Section 3. Composition/information on ingredients

Substance/mixture	: Substance
Other means of	: Leaded gasoline; Motor gasoline; Petrol; Automobile motor fuels; Finished gasolines;
identification	Racing gasoline

Ingredient name	%	% CAS number	
Toluene	<20	108-88-3	
Pentane, all isomers	<20	109-66-0	
Xylenes, mixed isomers	<20	1330-20-7	
Hexane, other isomers	<15	*	
Heptane, all isomers	<15	142-82-5	
Ethanol	0 - 10	64-17-5	
Butane	0 - 10	106-97-8	
Benzene	<4.9	71-43-2	
Cumene	<4	98-82-8	
Ethylbenzene	<4	100-41-4	
n-Hexane	<3	110-54-3	
Cyclohexane	<3	110-82-7	
1,2,4-Trimethylbenzene	<2	95-63-6	
Naphthalene	<2	91-20-3	
tetraethyllead	<1	78-00-2	

* = Various ** = Mixture *** = Proprietary

Any concentration shown as a range is to protect confidentiality or is due to process variation.

Occupational exposure limits, if available, are listed in Section 8.

: 5/29/2015.

Section 4. First aid measures

Description of necessary first aid measures

Eye contact	: Immediately flush eyes with plenty of water, occasionally lifting the upper and lower eyelids. Check for and remove any contact lenses. Continue to rinse for at least 10 minutes. Get medical attention. If necessary, call a poison center or physician.
Inhalation	: Remove victim to fresh air and keep at rest in a position comfortable for breathing. If it is suspected that gas or vapor is still present, the rescuer should wear an appropriate mask or self-contained breathing apparatus. If not breathing, if breathing is irregular or if respiratory arrest occurs, provide artificial respiration or oxygen by trained personnel. It may be dangerous to the person providing aid to give mouth-to-mouth resuscitation. Get medical attention. If necessary, call a poison center or physician. If unconscious, place in recovery position and get medical attention immediately. Maintain an open airway. Loosen tight clothing such as a collar, tie, belt or waistband.
Skin contact	: Wash skin thoroughly with soap and water or use recognized skin cleanser. Remove contaminated clothing and shoes. Wash contaminated clothing thoroughly with water before removing it, or wear gloves. Continue to rinse for at least 10 minutes. Get medical attention. If necessary, call a poison center or physician. Wash clothing before reuse. Clean shoes thoroughly before reuse.
Ingestion	: Get medical attention immediately. Call a poison center or physician. Wash out mouth with water. Remove dentures if any. Remove victim to fresh air and keep at rest in a position comfortable for breathing. Aspiration hazard if swallowed. Can enter lungs and cause damage. Do not induce vomiting. If vomiting occurs, the head should be kept low so that vomit does not enter the lungs. Never give anything by mouth to an unconscious person. If unconscious, place in recovery position and get medical attention immediately. Maintain an open airway. Loosen tight clothing such as a collar, tie, belt or waistband.

Most important symptoms/e	ffe	cts, acute
Potential acute health effec	ts	
Eye contact	:	Causes eye irritation.
Inhalation	:	Can cause central nervous system (CNS) depression. May cause drowsiness and dizziness. May cause respiratory irritation. Breathing high concentrations can cause irregular heartbeats which can be fatal.
Skin contact	:	Causes skin irritation. Defatting to the skin.
Ingestion	1	Can cause central nervous system (CNS) depression. May be fatal if swallowed and enters airways. Irritating to mouth, throat and stomach.
Over-exposure signs/symp	ton	<u>ns</u>
Eye contact	:	Adverse symptoms may include the following: pain or irritation watering redness
Inhalation	:	Adverse symptoms may include the following: respiratory tract irritation coughing nausea or vomiting headache drowsiness/fatigue dizziness/vertigo unconsciousness Breathing high concentrations can cause irregular heartbeats which can be fatal.
Skin contact	:	Adverse symptoms may include the following: irritation redness dryness cracking
Ingestion	:	Adverse symptoms may include the following: nausea or vomiting

Indication of immediate medical attention and special treatment needed, if necessary

Section 4. First aid measures

Notes to physician	: This material (or a component) may sensitize the heart to the effects of sympathomimetic amines. Epinephrine and other sympathomimetic drugs may initiate cardiac arrthymias in individuals exposed to this material. If ingested, this material presents a significant aspiration and chemical pneumonitis hazard. Induction of emesis is not recommended. Consider activated charcoal and/or gastric lavage. If patient is obtunded, protect the airway by cuffed endotracheal intubation or by placement of the body in a Trendelenburg and left lateral decubitus position.
Specific treatments	: Treat symptomatically and supportively.
Protection of first-aiders	: No action shall be taken involving any personal risk or without suitable training. If it is suspected that gas or vapor is still present, the rescuer should wear an appropriate mask or self-contained breathing apparatus. It may be dangerous to the person providing aid to give mouth-to-mouth resuscitation. Wash contaminated clothing thoroughly with water before removing it, or wear gloves.

See toxicological information (Section 11)

Section 5. Fire-fighting measures

Specific hazards arising from the chemical	: Highly flammable liquid and vapor. In a fire or if heated, a pressure increase will occur and the container may burst, with the risk of a subsequent explosion. The vapor/gas is heavier than air and will spread along the ground. Vapors may accumulate in low or confined areas or travel a considerable distance to a source of ignition and flash back. Runoff to sewer may create fire or explosion hazard. Fire water contaminated with this material must be contained and prevented from being discharged to any waterway, sewer or drain.
Extinguishing media	
Suitable extinguishing media	: Use caution when applying carbon dioxide in confined spaces. SMALL FIRE: Steam, CO ₂ , dry chemical or inert gas (e.g., nitrogen). LARGE FIRE: Use foam, water fog or water spray. Water fog and spray are effective in cooling containers and adjacent structures. However, water can cause frothing and/or may not extinguish the fire. Water can be used to cool the external walls of vessels to prevent excessive pressure, ignition or explosion.
Unsuitable extinguishing media	: Do not use water jet.
Hazardous thermal decomposition products	: Decomposition products may include the following materials: carbon dioxide carbon monoxide metal oxide/oxides
Special protective actions for fire-fighters	: Promptly isolate the scene by removing all persons from the vicinity of the incident if there is a fire. No action shall be taken involving any personal risk or without suitable training. Move containers from fire area if this can be done without risk. Use water spray to keep fire-exposed containers cool.
Special protective equipment for fire-fighters	: Fire-fighters should wear appropriate protective equipment and self-contained breathing apparatus (SCBA) with a full face-piece operated in positive pressure mode.

Section 6. Accidental release measures

Personal precautions, protective equipment and emergency procedures

For non-emergency personnel	: No action shall be taken involving any personal risk or without suitable tra Evacuate surrounding areas. Keep unnecessary and unprotected perso entering. Do not touch or walk through spilled material. Shut off all igniti No flares, smoking or flames in hazard area. Avoid breathing vapor or m adequate ventilation. Wear appropriate respirator when ventilation is ina on appropriate personal protective equipment.	nnel from on sources. hist. Provide
For emergency responders	: If specialized clothing is required to deal with the spillage, take note of ar Section 8 on suitable and unsuitable materials. See also the information emergency personnel".	
Date of issue/Date of revision	: 5/29/2015.	4/19

Section 6. Accidental release measures

Environmental precautions Methods and materials for co		Avoid dispersal of spilled material and runoff and contact with soil, waterways, drains and sewers. Inform the relevant authorities if the product has caused environmental pollution (sewers, waterways, soil or air). Water polluting material. May be harmful to the environment if released in large quantities.
wiethous and materials for co	лц	
Small spill	:	Stop leak if without risk. Move containers from spill area. Use spark-proof tools and explosion-proof equipment. Absorb with an inert material and place in an appropriate waste disposal container. Dispose of via a licensed waste disposal contractor.
Large spill	-	Stop leak if without risk. Move containers from spill area. Use spark-proof tools and explosion-proof equipment. Approach release from upwind. Prevent entry into sewers, water courses, basements or confined areas. Wash spillages into an effluent treatment plant or proceed as follows. Contain and collect spillage with non-combustible, absorbent material e.g. sand, earth, vermiculite or diatomaceous earth and place in container for disposal according to local regulations (see Section 13). Dispose of via a licensed waste disposal contractor. Contaminated absorbent material may pose the same hazard as the spilled product. Note: see Section 1 for emergency contact information and Section 13 for waste disposal.

Section 7. Handling and storage

Precautions for safe handling	
Protective measures	Put on appropriate personal protective equipment (see Section 8). Avoid exposure - obtain special instructions before use. Avoid exposure during pregnancy. Do not handle until all safety precautions have been read and understood. Do not get in eyes or on skin or clothing. Do not breathe vapor or mist. Do not swallow. Avoid release to the environment. Use only with adequate ventilation. Wear appropriate respirator when ventilation is inadequate. Do not enter storage areas and confined spaces unless adequately ventilated. Keep in the original container or an approved alternative made from a compatible material, kept tightly closed when not in use. Store and use away from heat, sparks, open flame or any other ignition source. Use explosion-proof electrical (ventilating, lighting and material handling) equipment. Use only non-sparking tools. Take precautionary measures against electrostatic discharges. Empty containers retain product residue and can be hazardous. Do not reuse container. Non equilibrium conditions may increase the fire hazard associated with this product. Always bond receiving container is properly grounded. Bonding and grounding alone may be inadequate to eliminate fire and explosion hazards. Carefully review operations that may increase the risks such as tank and container filling, tank cleaning, sampling, gauging, loading, filtering, mixing, agitation, etc. In addition to bonding and grounding, efforts to mitigate the hazards may include, but are not limited to, ventilation, inerting and/or reduction of transfer velocities. Always keep nozzle in contact with the container throughout the loading process. Do NOT fill any portable container in or on a vehicle. Special precautions, such as reduced loading rates and increased monitoring, must be observed during "switch loading" operations (i.e., loading this material in tanks or shipping compartments that previously contained a dissimilar product).
Advice on general occupational hygiene	: Eating, drinking and smoking should be prohibited in areas where this material is handled, stored and processed. Workers should wash hands and face before eating, drinking and smoking. Remove contaminated clothing and protective equipment before entering eating areas. See also Section 8 for additional information on hygiene measures.
Conditions for safe storage, including any incompatibilities	: Store in accordance with local regulations. Store in a segregated and approved area. Store in original container protected from direct sunlight in a dry, cool and well-ventilated area, away from incompatible materials (see Section 10) and food and drink. Store locked up. Eliminate all ignition sources. Separate from oxidizing materials. Keep container tightly closed and sealed until ready for use. Containers that have been opened must be carefully resealed and kept upright to prevent leakage. Do not store in unlabeled containers. Use appropriate containment to avoid environmental
Date of issue/Date of revision	: 5/29/2015. 5/19

Section 7. Handling and storage

contamination.

Bulk Storage Conditions: Maintain all storage tanks in accordance with applicable regulations. Use necessary controls to monitor tank inventories. Inspect all storage tanks on a periodic basis. Test tanks and associated piping for tightness. Maintain the automatic leak detection devices to assure proper working condition.

Section 8. Exposure controls/personal protection

Control parameters

Occupational exposure limits

Ingredient name	Exposure limits
Pentane, all isomers	ACGIH TLV (United States, 4/2014).
	TWA: 1000 ppm 8 hours.
	OSHA PEL (United States, 2/2013).
	TWA: 1000 ppm 8 hours.
- 1	TWA: 2950 mg/m ³ 8 hours.
Toluene	OSHA PEL Z2 (United States, 2/2013).
	TWA: 200 ppm 8 hours.
	CEIL: 300 ppm AMP: 500 ppm 10 minutes.
	ACGIH TLV (United States, 4/2014).
	TWA: 20 ppm 8 hours.
Xylenes, mixed isomers	ACGIH TLV (United States, 4/2014).
	TWA: 100 ppm 8 hours.
	TWA: 434 mg/m ³ 8 hours.
	STEL: 150 ppm 15 minutes.
	STEL: 651 mg/m ³ 15 minutes.
	OSHA PEL (United States, 2/2013).
	TWA: 100 ppm 8 hours.
	TWA: 435 mg/m ³ 8 hours.
Hexane, other isomers	ACGIH (United States).
	TWA: 500 ppm 8 hours.
	STEL: 1000 ppm 15 minutes.
Heptane, all isomers	ACGIH TLV (United States, 4/2014).
	TWA: 400 ppm 8 hours.
	TWA: 1640 mg/m ³ 8 hours.
	STEL: 500 ppm 15 minutes.
	STEL: 2050 mg/m ³ 15 minutes.
	OSHA PEL (United States, 2/2013).
	TWA: 500 ppm 8 hours. TWA: 2000 mg/m ³ 8 hours.
Ethernel	
Ethanol	ACGIH (United States).
	TWA: 1000 ppm 8 hours. OSHA (United States).
	TWA: 1000 ppm 8 hours.
	ACGIH TLV (United States, 4/2014).
	STEL: 1000 ppm 15 minutes.
	OSHA PEL (United States, 2/2013).
	TWA: 1000 ppm 8 hours.
	TWA: 1900 mg/m ³ 8 hours.
Butane	ACGIH (United States).
	TWA: 800 ppm 8 hours.
	ACGIH TLV (United States, 4/2014).
	STEL: 1000 ppm 15 minutes.
Benzene	ACGIH TLV (United States, 4/2014). Absorbed through
	skin.
	TWA: 0.5 ppm 8 hours.
	TWA: 1.6 mg/m ³ 8 hours.
	STEL: 2.5 ppm 15 minutes.
	STEL: 8 mg/m ³ 15 minutes.

Section 8. Exposure controls/personal protection

	OSHA PEL (United States, 2/2013).
	TWA: 1 ppm 8 hours.
	STEL: 5 ppm 15 minutes.
	OSHA PEL Z2 (United States, 2/2013).
	TWA: 10 ppm 8 hours.
	CEIL: 25 ppm
	AMP: 50 ppm 10 minutes.
Cumene	ACGIH TLV (United States, 4/2014).
	TWA: 50 ppm 8 hours.
	OSHA PEL (United States, 2/2013). Absorbed through
	skin.
	TWA: 50 ppm 8 hours.
	TWA: 245 mg/m ³ 8 hours.
Ethylbenzene	ACGIH TLV (United States, 4/2014).
	TWA: 20 ppm 8 hours.
	OSHA PEL (United States, 2/2013).
	TWA: 100 ppm 8 hours.
	TWA: 435 mg/m ³ 8 hours.
n-Hexane	ACGIH TLV (United States, 4/2014). Absorbed through
	skin.
	TWA: 50 ppm 8 hours.
	OSHA PEL (United States, 2/2013).
	TWA: 500 ppm 8 hours.
	TWA: 1800 mg/m ³ 8 hours.
Cyclohexane	ACGIH TLV (United States, 4/2014).
	TWA: 100 ppm 8 hours.
	OSHA PEL (United States, 2/2013).
	TWA: 300 ppm 8 hours.
	TWA: 1050 mg/m ³ 8 hours.
1,2,4-Trimethylbenzene	ACGIH TLV (United States, 4/2014).
	TWA: 25 ppm 8 hours.
	TWA: 123 mg/m ³ 8 hours.
Naphthalene	ACGIH (United States). Absorbed through skin.
	TWA: 10 ppm 8 hours.
	STEL: 15 ppm 15 minutes. OSHA (United States).
	TWA: 10 ppm 8 hours. ACGIH TLV (United States, 4/2014). Absorbed through
	skin.
	TWA: 10 ppm 8 hours.
	TWA: 52 mg/m ³ 8 hours.
	OSHA PEL (United States, 2/2013).
	TWA: 10 ppm 8 hours.
	TWA: 50 mg/m ³ 8 hours.
tetraethyllead	OSHA PEL Z2 (United States). Absorbed through skin.
	TWA: 0.075 mg/m ³ 8 hours.
	ACGIH TLV (United States, 4/2014). Absorbed through
	skin.
	TWA: 0.1 mg/m ³ , (as Pb) 8 hours.
	OSHA PEL (United States, 2/2013). Absorbed through
	skin.
	TWA: 0.075 mg/m³, (as Pb) 8 hours.
<u></u>	

Appropriate engineering controls

: Use only with adequate ventilation. Use process enclosures, local exhaust ventilation or other engineering controls to keep worker exposure to airborne contaminants below any recommended or statutory limits. The engineering controls also need to keep gas, vapor or dust concentrations below any lower explosive limits. Use explosion-proof ventilation equipment.

Section 8. Exposure controls/personal protection

-	· · ·
Environmental exposure : controls	Emissions from ventilation or work process equipment should be checked to ensure they comply with the requirements of environmental protection legislation. In some cases, vapor controls, filters or engineering modifications to the process equipment will be necessary to reduce emissions to acceptable levels.
Individual protection measures	<u>1</u>
Hygiene measures	Wash hands, forearms and face thoroughly after handling chemical products, before eating, smoking and using the lavatory and at the end of the working period. Appropriate techniques should be used to remove potentially contaminated clothing. Wash contaminated clothing before reusing. Ensure that eyewash stations and safety showers are close to the workstation location.
Eye/face protection :	Safety glasses equipped with side shields are recommended as minimum protection in industrial settings. If contact is possible, the following protection should be worn, unless the assessment indicates a higher degree of protection: chemical splash goggles. Safety eyewear complying with an approved standard should be used when a risk assessment indicates this is necessary to avoid exposure to liquid splashes, mists, gases or dusts. If inhalation hazards exist, a full-face respirator may be required instead.
Skin protection	
Hand protection :	Avoid skin contact with liquid. Chemical-resistant gloves complying with an approved standard should be worn at all times when handling chemical products if a risk assessment indicates this is necessary. Recommended: Heavy duty, industrial grade chemically resistant gloves constructed of nitrile, neoprene, polyethylene, fluoroelastomer rubber or polyvinyl chloride as approved by glove manufacturer. Considering the parameters specified by the glove manufacturer, check during use that the gloves are still retaining their protective properties. It should be noted that the time to breakthrough for any glove material may be different for different glove manufacturers. Leather gloves are not protective for liquid contact.
Body protection	Avoid skin contact with liquid. Personal protective equipment for the body should be selected based on the task being performed and the risks involved and should be approved by a specialist before handling this product.
Other skin protection :	Avoid skin contact with liquid. Appropriate footwear and any additional skin protection measures should be selected based on the task being performed and the risks involved and should be approved by a specialist before handling this product. Leather boots are not protective for liquid contact.
Respiratory protection :	Avoid inhalation of gases, vapors, mists or dusts. Use a properly fitted, air-purifying or supplied-air respirator complying with an approved standard if a risk assessment indicates this is necessary. Respirator selection must be based on known or anticipated exposure levels, the hazards of the product and the safe working limits of the selected respirator. If an air purifying respirator is appropriate, use one equipped with cartridges rated for organic vapors.

Section 9. Physical and chemical properties

Physical state	:	Liquid.
Color	1	Transparent, clear to amber or red.
Odor	:	Pungent, characteristic gasoline.
рН	1	Not applicable
Boiling point/boiling range	:	38 to 204°C (100.4 to 399.2°F)
Flash point	:	Closed cup: -43°C (-45.4°F) [Tagliabue [ASTM D-56]]
Evaporation rate	1	7.5 (n-butyl acetate. = 1)
Lower and upper explosive (flammable) limits	:	Lower: 1.4% Upper: 7.6%
Vapor pressure	:	29.3 to 60 kPa (220 to 450 mm Hg) [room temperature]
Vapor density	1	3 to 4 [Air = 1]
Relative density	1	0.72 to 0.77
Solubility	:	Very slightly soluble in the following materials: cold water.

bute of issue bute of revision	Date	of	issue/	Date	of	revision	
--------------------------------	------	----	--------	------	----	----------	--

Section 9. Physical and chemical properties

Auto-ignition temperature	: 280°C (536°F)

Viscosity : Kinematic (room temperature): <0.01 cm²/s (<1 cSt)

Section 10. Stability and reactivity

	j
Reactivity	: Not expected to be Explosive, Self-Reactive, Self-Heating, or an Organic Peroxide under US GHS Definition(s).
Chemical stability	: The product is stable.
Possibility of hazardous reactions	: Under normal conditions of storage and use, hazardous reactions will not occur.
Conditions to avoid	: Avoid all possible sources of ignition (spark or flame). Do not pressurize, cut, weld, braze, solder, drill, grind or expose containers to heat or sources of ignition. Do not allow vapor to accumulate in low or confined areas.
Incompatible materials	: Reactive or incompatible with the following materials: oxidizing materials
Hazardous decomposition products	: Under normal conditions of storage and use, hazardous decomposition products should not be produced.

Section 11. Toxicological information

Information on toxicological effects

Acute toxicity

Product/ingredient name	Result	Species	Dose	Exposure
Toluene	LC50 Inhalation Vapor	Rat	>20 mg/l	4 hours
	LD50 Dermal	Rabbit	12267 mg/kg	-
	LD50 Oral	Rat - Male	5580 mg/kg	-
	TDLo Oral	Rat	1000 mg/kg	-
Xylenes, mixed isomers	LC50 Inhalation Vapor	Rat	5000 ppm	4 hours
-	LC50 Inhalation Vapor	Rat	6700 ppm	4 hours
	LD50 Oral	Mouse	2119 mg/kg	-
	LD50 Oral	Rat	4300 mg/kg	-
	LD50 Oral	Rat	4300 mg/kg	-
Hexane, other isomers	LC50 Inhalation Vapor	Rat	48000 ppm	4 hours
Heptane, all isomers	LD50 Dermal	Rabbit	>2000 mg/kg	-
	LD50 Oral	Rat	>5000 mg/kg	-
Ethanol	LC50 Inhalation Vapor	Mouse	>40000 ppm	10 minutes
	LC50 Inhalation Vapor	Rat	124700 mg/m ³	4 hours
	LD50 Oral	Guinea pig	5560 mg/kg	-
	LD50 Oral	Rabbit	6300 mg/kg	-
	LD50 Oral	Rat	7060 mg/kg	-
Butane	LC50 Inhalation Vapor	Mouse	680000 mg/m ³	2 hours
	LC50 Inhalation Vapor	Rat	658000 mg/m ³	4 hours
Benzene	LC50 Inhalation Vapor	Rat	10000 ppm	7 hours
	LD50 Oral	Mammal -	5700 mg/kg	-
		species		
		unspecified		
	LD50 Oral	Mouse	4700 mg/kg	-
	LD50 Oral	Rat	6400 mg/kg	-
Cumene	LC50 Inhalation Vapor	Mouse	10 g/m³	7 hours
	LD50 Dermal	Rabbit	12300 uL/kg	-
	LD50 Oral	Rat	2.9 g/kg	-
	LD50 Oral	Rat	4000 mg/kg	-
Ethylbenzene	LD50 Dermal	Rabbit	>5000 mg/kg	-
-	LD50 Oral	Rat	3500 mg/kg	-
n-Hexane	LC50 Inhalation Vapor	Rat	48000 ppm	4 hours

	LD50 Oral	Rat	15840 mg/kg	-
Cyclohexane	LC50 Inhalation Vapor	Mouse	70000 mg/m ³	2 hours
2	LD50 Oral	Rat	6240 mg/kg	-
	LD50 Oral	Rat	12705 mg/kg	-
	LD50 Oral	Rat	>5000 mg/kg	-
	LDLo Oral	Rabbit	5500 mg/kg	-
1,2,4-Trimethylbenzene	LC50 Inhalation Vapor	Rat	18000 mg/m ³	4 hours
-	LD50 Oral	Mouse	6900 mg/kg	-
	LD50 Oral	Rat	5 g/kg	-
Naphthalene	LD50 Oral	Rat	490 mg/kg	-
tetraethyllead	LC50 Inhalation Vapor	Rat	850 mg/m³	1 hours
	LD50 Oral	Rat	12.5 mg/kg	-
	LD50 Oral	Rat	12300 µg/kg	-
Conclusion/Summary	: Pentane, all isomers: Stud exposure to extremely high (irregular heartbeats) which	levels (roughly 10	vol.%) may induce ca	
	Toluene: Deliberate inhalati solvent abuse) can cause C Xylenes, mixed isomers: C irritation, headache, cyanosi Effects may be increased by kidney impairment were rep Heptane, all isomers: Hept	ion of toluene at h NS depression, ca Overexposure to x is, blood serum ch y the use of alcoho orted in workers re	igh concentrations (e. ardiac arrhythmias an ylene may cause upp nanges, CNS damage olic beverages. Evide ecovering from a gros	d death. er respiratory tract and narcosis. nce of liver and s over-exposure.
	Toluene: Deliberate inhalati solvent abuse) can cause C Xylenes, mixed isomers: C irritation, headache, cyanos Effects may be increased by kidney impairment were rep	ion of toluene at h NS depression, ca Dverexposure to x is, blood serum ch y the use of alcoho orted in workers ro tane is a CNS dep	igh concentrations (e. ardiac arrhythmias an ylene may cause upp hanges, CNS damage blic beverages. Evide ecovering from a gros pressant and narcosis	d death. er respiratory tract and narcosis. nce of liver and s over-exposure. at elevated

workplace exposure levels is expected to produce eye and mucus membrane irritation. Human exposure at concentrations from 1000 to 5000 ppm produced symptoms of narcosis, stupor and unconsciousness. Subjects exposed to ethanol vapor in concentrations between 500 and 10,000 ppm experienced coughing and smarting of the eyes and nose. At 15,000 ppm there was continuous lacrimation and coughing. While extensive acute and chronic effects can be expected with ethanol consumption, ingestion is not expected to be a significant route of exposure to this product. Butane: Studies in laboratory animals indicate exposure to extremely high levels of butanes (1-10 or higher vol.% in air) may cause cardiac arrhythmias (irregular heartbeats) which may be serious or fatal.

Cumene: Overexposure to cumene may cause upper respiratory tract irritation and CNS depression.

n-Hexane: n-Hexane is a CNS depressant and narcosis at elevated concentrations. Cyclohexane: Cyclohexane is a CNS depressant and narcosis at elevated concentrations.

Irritation/Corrosion

Product/ingredient name	Result	Species	Score	Exposure	Observation
Toluene	Eyes - Mild irritant	Rabbit	-	0.5 minutes 100 milligrams	-
	Eyes - Mild irritant	Rabbit	-	870 Micrograms	-
	Skin - Mild irritant	Pig	-	24 hours 250 microliters	-
	Skin - Mild irritant	Rabbit	-	435 milligrams	-
	Skin - Moderate irritant	Rabbit	-	500 milligrams	-
Xylenes, mixed isomers	Skin - Mild irritant	Rat	-	8 hours 60 microliters	-
	Skin - Moderate irritant	Rabbit	-	24 hours 500 milligrams	-
	Skin - Moderate irritant	Rabbit	-	100 Percent	-
Ethanol	Eyes - Mild irritant	Rabbit	-	24 hours 500 milligrams	-
	Eyes - Moderate irritant	Rabbit	-	0.0666666667	-
Date of issue/Date of revision	: 5/29/2015.				10/19

	ologioal intornati				
				minutes 100	
				milligrams	
	Eyes - Moderate irritant	Rabbit	-	100	-
				microliters	
	Skin - Mild irritant	Rabbit	-	400	-
				milligrams	
	Skin - Moderate irritant	Rabbit	-	24 hours 20	-
				milligrams	
Benzene	Eyes - Moderate irritant	Rabbit	-	88 milligrams	-
	Skin - Mild irritant	Rat	-	8 hours 60	-
	Olvin Milel invite st	Dabbit		microliters	
	Skin - Mild irritant	Rabbit	-	24 hours 15	-
Cumene	Even Mild irritent	Rabbit		milligrams	
Cumene	Eyes - Mild irritant Skin - Mild irritant	Rabbit	-	86 milligrams 24 hours 10	-
	Skill - Mild Initalit	TADDIL	-	milligrams	-
Ethylbenzene	Skin - Mild irritant	Rabbit	_	24 hours 15	_
		1 (abbit		milligrams	
n-Hexane	Eyes - Mild irritant	Rabbit	-	10 milligrams	-
1,2,4-Trimethylbenzene	Skin - Edema	Rabbit	3	-	-
Naphthalene	Skin - Mild irritant	Rabbit	-	495	-
				milligrams	
Skin	: Xylenes, mixed isomer	s: May cause s	skin irritation.		
	Cyclohexane: Cyclohex				ne irritation.
Eyes	: Xylenes, mixed isomers				
Respiratory	: No additional information).			
Sensitization					
Skin	: Toluene: Non-sensitizer	to skin.			
Respiratory	: Toluene: Non-sensitizer	to lungs.			
Mutagenicity		5			
Conclusion/Summary	: Heptane, all isomers: n	-heptane was	not mutageni	ic in the Salmonella	/microsome

Carcinogenicity

Product/ingredient name	Result	Species	Dose	Exposure
Benzene	Positive - Inhalation - TD	Rat - Female	-	-
Conclusion/Summary	 Ethanol: IARC Monograph 96 Group 1 carcinogen. Benzene: Studies of workers e exposure can cause cancer of and aplastic anemia. Also, stu associated with other types of animals indicate that prolonger cause bone marrow suppressi Ethylbenzene: Findings from were as follows: Effects were At this level the incidence of re and female rats (tubular adence mice (alveolar and bronchiolar carcinomas). IARC has classi (Group 2B). Cumene: Studies in laboratory kidney and adrenal glands follo findings to humans is not clear carcinogenic to humans" (Grou reasonably anticipated to be a carcinogenicity from studies in Naphthalene: Laboratory rode 	exposed to benzer the blood forming udies suggest ove leukemia and othe d, repeated exposi- on and cancer in r a 2-year inhalation observed only at t enal tumors was el omas). Also, the in carcinomas) and fied ethyl benzene y animals indicate owing high level ex- r at this time. IAR up 2B). In additior human carcinoge experimental anir	ne show clear ev organs (acute r r-exposure to be er blood disorder ure to high levels nultiple organ sy a study in rodent he highest expo evated in male r cidence of tumo female mice (he as "possibly car evidence of adve (posure. The re C has classified n, NTP has deter n based on suffi-	vidence that over- myelogenous leukemia) enzene may be rs. Studies in laboratory s of benzene vapor can ystems. s conducted by NTP sure level (750 ppm). rats (tubular carcinomas ors was elevated in male epatocellular rcinogenic to humans" erse effects on the levance of these cumene as "possibly rmined cumene is cient evidence of

(Ames) assay. Benzene: Some studies of workers exposed to benzene have shown an association

with increased rates of chromosome aberrations in circulating lymphocytes.

studies) developed non-neoplastic and neoplastic tumors and inflammatory lesions of the nasal and respiratory tract.

Classification

Product/ingredient name	OSHA	IARC	NTP
Toluene	-	3	-
Xylenes, mixed isomers	-	3	-
Ethanol	-	1	-
Benzene	+	1	Known to be a human carcinogen.
Ethylbenzene	-	2B	-
Cumene	-	2B	Reasonably anticipated to be a human carcinogen.
Naphthalene	-	2B	Reasonably anticipated to be a human carcinogen.
tetraethyllead	-	3	Reasonably anticipated to be a human carcinogen.

Reproductive toxicity

Conclusion/Summary

: Toluene: Case studies of persons abusing toluene suggest isolated incidences of adverse effects on the fetus including birth defects. Several studies of workers suggest long-term exposure may be related to small increases in spontaneous abortions and changes in some gonadotropic hormones. However, the weight of evidence does not indicate toluene is a reproductive hazard to humans. Studies in laboratory animals indicate some changes in reproductive organs following high levels of exposure, but no significant effects on mating performance or reproduction were observed. Case studies of persons abusing toluene suggest isolated incidences of adverse effects on the fetus including birth defects. Findings in laboratory animals were largely negative. Positive findings include small increases in minor skeletal and visceral malformations and developmental delays following very high levels of maternal exposure. Benzene: One study of women workers exposed to benzene suggested a weak association with irregular menstruation. However, other studies of workers exposed to benzene have not demonstrated clear evidence of an effect on fertility or reproductive outcome in humans. Benzene can cross the placenta and affect the developing fetus. Cases of aplastic anemia have been reported in the offspring of persons severely over-

exposed to benzene. Studies in laboratory animals show evidence of adverse effects on male reproductive organs following high levels of exposure but no significant effects on reproduction have been observed. Embryotoxicity has been reported in studies of laboratory animals but effects were limited to reduced fetal weight and skeletal variations.

Ethylbenzene: Studies in laboratory animals indicate limited evidence of renal malformations, resorptions, and developmental delays following high levels of maternal exposure. The relevance of these findings to humans is not clear at this time. n-Hexane: In laboratory studies, prolonged exposure to elevated concentrations of nhexane was associated with decreased sperm count and degenerative changes in the testicles of rats.

Teratogenicity

Benzene Negative - Inhalation Rat	Product/ingredient name	Result	Species	Dose	Exposure
, , , , , , , , , , , , , , , , , , ,	Benzene	Negative - Inhalation	Rat	-	-

Conclusion/Summary : No additional information.

Specific target organ toxicity (single exposure)

Name	Category	Route of exposure	Target organs
Toluene	Category 3	Not applicable.	Narcotic effects
Pentane, all isomers	Category 3	Not applicable.	Narcotic effects
Hexane, other isomers	Category 3	Not applicable.	Narcotic effects
Heptane, all isomers	Category 3	Not applicable.	Narcotic effects
Ethanol	Category 3	Not applicable.	Respiratory tract irritation
Butane	Category 2	Not determined	central nervous system (CNS)
Cumene	Category 3	Not applicable.	Respiratory tract
Date of issue/Date of revision : 5/29/2015.			12/19

Ethylbenzen	e	Category 3	irritation Respiratory tract
n-Hexane Cyclohexane		Category 3 Category 3	 irritation Narcotic effects Narcotic effects
1,2,4-Trimet		Category 3	 Respiratory tract irritation

Specific target organ toxicity (repeated exposure)

Name		Route of exposure	Target organs
Toluene Benzene n-Hexane	Category 2 Category 1 Category 2	Inhalation Inhalation	kidneys blood system peripheral nervous system

Aspiration hazard

Name	Result
Toluene	ASPIRATION HAZARD - Category 1
Pentane, all isomers	ASPIRATION HAZARD - Category 1
Hexane, other isomers	ASPIRATION HAZARD - Category 1
Heptane, all isomers	ASPIRATION HAZARD - Category 1
Benzene	ASPIRATION HAZARD - Category 1
Cumene	ASPIRATION HAZARD - Category 1
Ethylbenzene	ASPIRATION HAZARD - Category 1
n-Hexane	ASPIRATION HAZARD - Category 1
Cyclohexane	ASPIRATION HAZARD - Category 1

Information on the likely routes of exposure

: Routes of entry anticipated: Oral, Dermal, Inhalation.

Potential acute health effects

- otoritial acato incatti	
Eye contact	: Causes eye irritation.
Inhalation	 Can cause central nervous system (CNS) depression. May cause drowsiness and dizziness. May cause respiratory irritation. Breathing high concentrations can cause irregular heartbeats which can be fatal.
Skin contact	: Causes skin irritation. Defatting to the skin.
Ingestion	: Can cause central nervous system (CNS) depression. May be fatal if swallowed and enters airways. Irritating to mouth, throat and stomach.

Symptoms related to the physical, chemical and toxicological characteristics

Eye contact	: Adverse symptoms may include the following: pain or irritation watering redness
Inhalation	: Adverse symptoms may include the following: respiratory tract irritation coughing nausea or vomiting headache drowsiness/fatigue dizziness/vertigo unconsciousness Breathing high concentrations can cause irregular heartbeats which can be
Skin contact	: Adverse symptoms may include the following: irritation redness dryness cracking

	5
Ingestion	: Adverse symptoms may include the following: nausea or vomiting
Potential chronic health eff	fects
General	 Causes damage to organs through prolonged or repeated exposure if inhaled. Prolonged or repeated contact can defat the skin and lead to irritation, cracking and/or dermatitis.
Carcinogenicity	: May cause cancer. Risk of cancer depends on duration and level of exposure.
Mutagenicity	: May cause genetic defects.
Teratogenicity	: Suspected of damaging the unborn child.
Developmental effects	: No known significant effects or critical hazards.
Fertility effects	: Suspected of damaging fertility.

Section 12. Ecological information

Toxicity

Product/ingredient name	Result	Species	Exposur
Toluene	Acute EC50 433 ppm Marine water	Algae - Skeletonema costatum	96 hours
	Acute EC50 12500 µg/l Fresh water	Algae - Pseudokirchneriella subcapitata	72 hours
	Acute EC50 11600 μg/l Fresh water	Crustaceans - Gammarus	48 hours
	Acute EC50 6000 µg/l Fresh water	pseudolimnaeus - Adult Daphnia - Daphnia magna - Juvenile (Fledgling, Hatchling, Weanling)	48 hours
	Acute LC50 5500 µg/l Fresh water	Fish - Oncorhynchus kisutch - Fry	96 hours
	Chronic NOEC 500000 µg/l Fresh water	Algae - Pseudokirchneriella subcapitata	96 hours
	Chronic NOEC 1000 µg/l Fresh water	Daphnia - Daphnia magna	21 days
ylenes, mixed isomers	Acute EC50 90 mg/l Fresh water	Crustaceans - Cypris subglobosa	48 hours
	Acute LC50 8.5 ppm Marine water	Crustaceans - Palaemonetes pugio - Adult	48 hours
	Acute LC50 8500 µg/l Marine water	Crustaceans - Palaemonetes	48 hours
	Acute LC50 15700 μg/l Fresh water	Fish - Lepomis macrochirus - Juvenile (Fledgling, Hatchling, Weanling)	96 hours
	Acute LC50 19000 µg/l Fresh water	Fish - Lepomis macrochirus	96 hours
	Acute LC50 13400 µg/l Fresh water	Fish - Pimephales promelas	96 hours
	Acute LC50 16940 µg/l Fresh water	Fish - Carassius auratus	96 hours
leptane, all isomers	Acute EC50 1.5 mg/l	Daphnia - Daphnia magna	48 hours
	Acute LC50 4 mg/l	Fish - Carassius auratus	24 hours
	Acute LC50 375000 µg/l Fresh water	Fish - Oreochromis mossambicus	96 hours
	Acute LC50 4924 ppm Fresh water	Fish - Gambusia affinis - Adult	96 hours
thanol	Acute EC50 17.921 mg/l Marine water	Algae - Ulva pertusa	96 hours
	Acute EC50 2000 µg/l Fresh water	Daphnia - Daphnia magna	48 hours
	Acute LC50 25500 µg/l Marine water	Crustaceans - Artemia franciscana - Larvae	48 hours
	Acute LC50 42000 µg/l Fresh water	Fish - Oncorhynchus mykiss	4 days
	Chronic NOEC 4.995 mg/l Marine water	Algae - Ulva pertusa	96 hours
	Chronic NOEC 0.375 ul/L Fresh water	Fish - Gambusia holbrooki - Larvae	12 weeks
Senzene	Acute EC50 29000 µg/l Fresh water	Algae - Pseudokirchneriella subcapitata	72 hours
	Acute EC50 1360000 µg/l Fresh water	Algae - Scenedesmus abundans	96 hours
	Acute EC50 9230 µg/l Fresh water	Daphnia - Daphnia magna - Neonate	48 hours

	Acute LC50 21000 µg/l Marine water	Crustaceans - Artemia salina - Nauplii	48 hours
	Acute LC50 5.28 ul/L Fresh water	Fish - Oncorhynchus gorbuscha - Fry	96 hours
	Chronic NOEC 1.5 to 5.4 ul/L Marine water	Fish - Morone saxatilis - Juvenile (Fledgling, Hatchling, Weanling)	4 weeks
Cumene	Acute EC50 2600 µg/l Fresh water	Algae - Pseudokirchneriella subcapitata	72 hours
	Acute EC50 7400 μg/l Fresh water	Crustaceans - Artemia sp Nauplii	48 hours
	Acute EC50 10600 µg/l Fresh water	Daphnia - Daphnia magna - Neonate	48 hours
	Acute LC50 2700 µg/l Fresh water	Fish - Oncorhynchus mykiss	96 hours
Ethylbenzene	Acute EC50 4600 μg/l Fresh water	Algae - Pseudokirchneriella subcapitata	72 hours
	Acute EC50 3600 µg/l Fresh water	Algae - Pseudokirchneriella subcapitata	96 hours
	Acute EC50 2930 µg/l Fresh water	Daphnia - Daphnia magna - Neonate	48 hours
	Acute LC50 5200 μg/l Marine water	Crustaceans - Americamysis bahia	48 hours
	Acute LC50 4200 µg/l Fresh water	Fish - Oncorhynchus mykiss	96 hours
	Chronic NOEC 1000 µg/l Fresh water	Algae - Pseudokirchneriella subcapitata	96 hours
n-Hexane	Acute LC50 2500 µg/l Fresh water	Fish - Pimephales promelas	96 hours
Cyclohexane	Acute LC50 4530 µg/l Fresh water	Fish - Pimephales promelas	96 hours
1,2,4-Trimethylbenzene	Acute LC50 17000 µg/l Marine water	Crustaceans - Cancer magister - Zoea	48 hours
	Acute LC50 4910 µg/l Marine water	Crustaceans - Elasmopus pectenicrus - Adult	48 hours
	Acute LC50 7720 µg/l Fresh water	Fish - Pimephales promelas	96 hours
	Acute LC50 22.4 mg/l Fresh water	Fish - Tilapia zillii	96 hours
Naphthalene	Acute EC50 1.6 ppm Fresh water	Daphnia - Daphnia magna	48 hours
	Acute LC50 2350 µg/l Marine water	Crustaceans - Palaemonetes pugio	48 hours
	Acute LC50 213 µg/l Fresh water	Fish - Melanotaenia fluviatilis - Larvae	96 hours
	Chronic NOEC 0.67 ppm Fresh water	Fish - Oncorhynchus kisutch	40 days
tetraethyllead	Acute LC50 85 µg/l Marine water	Crustaceans - Artemia salina	48 hours
leliaeli iyiieau			

Conclusion/Summary : N

: Not available.

Persistence and degradability

Conclusion/Summary

: Toluene: Rapidly biodegradable in aerobic conditions.

Bioaccumulative potential

Product/ingredient name	LogPow	BCF	Potential	
Pentane, all isomers	3.45	171	low	
Toluene	2.73	8.3	low	
Xylenes, mixed isomers	3.12	8.1 to 25.9	low	
Heptane, all isomers	4.66	552	high	
Ethanol	-0.35	-	low	
Butane	2.89	-	low	
Benzene	2.13	4.27	low	
Cumene	3.55	94.69	low	
Ethylbenzene	3.6	-	low	
n-Hexane	4	501.187	high	
Cyclohexane	3.44	167	low	
1,2,4-Trimethylbenzene	3.63	243	low	
Naphthalene	3.4	36.5 to 168	low	

Mobility in soil

Soil/water partition	:	Not available.
coefficient (Koc)		

Other adverse effects : No known significant effects or critical hazards.

Section 13. Disposal considerations

Disposal methods	: The generation of waste should be avoided or minimized wherever possible. Disposal of this product, solutions and any by-products should at all times comply with the requirements of environmental protection and waste disposal legislation and any regional local authority requirements. Dispose of surplus and non-recyclable products via a licensed waste disposal contractor. Waste should not be disposed of untreated to the sewer unless fully compliant with the requirements of all authorities with jurisdiction. Waste packaging should be recycled. This material and its container must be disposed of in a safe way. Care should be taken when handling emptied containers that have not been cleaned or rinsed out. Empty containers or liners may retain some product residues. Vapor from product residues may create a highly flammable or explosive atmosphere inside the container. Do not cut, weld or grind used containers unless they have been cleaned thoroughly internally. Avoid dispersal of spilled material and runoff
	and contact with soil, waterways, drains and sewers.

RCRA classification : D001, D008, D018

United States - RCRA Toxic hazardous waste "U" List

Ingredient	CAS #	Status	Reference number
Xylenes, mixed isomers	1330-20-7	Listed	U239
Toluene	108-88-3	Listed	U220
Benzene	71-43-2	Listed	U019
Cumene	98-82-8	Listed	U055
Cyclohexane	110-82-7	Listed	U056
Naphthalene	91-20-3	Listed	U165

Section 14. Transport information

	DOT Classification	IMDG	ΙΑΤΑ
UN number	UN1203	UN 1203	UN1203
UN proper shipping name	UN 1203, Gasoline, 3 PG II.	UN 1203, Gasoline, 3 PG II.	UN 1203, Gasoline, 3 PG II.
Transport hazard class(es)	3		3
Packing group	П	П	11
Environmental hazards	Yes.	Yes.	Yes.
Additional information	Packaging instruction Passenger aircraft Quantity limitation: 5 L Cargo aircraft Quantity limitation: 60 L	-	Cargo Aircraft OnlyQuantity limitation: 60 L Limited Quantities - Passenger AircraftQuantity limitation: 5 L

Section 14. Transport information

Special precautions for user : Transport within user's premises: always transport in closed containers that are upright and secure. Ensure that persons transporting the product know what to do in the event of an accident or spillage.

Section 15. Regulatory information

U.S. Federal regulations	: United States inventory (TSCA 8b): All components are listed or exempted.
	Clean Water Act (CWA) 307: Toluene; Benzene; Ethylbenzene; Naphthalene
	Clean Water Act (CWA) 311 : Xylenes, mixed isomers; Toluene; Benzene; Ethylbenzene; Cyclohexane; Naphthalene
	This material is classified as an oil under Section 311 of the Clean Water Act (CWA) and the Oil Pollution Act of 1990 (OPA). Discharges or spills which produce a visible sheen on waters of the United States, their adjoining shorelines, or into conduits leading to surface waters must be reported to the EPA's National Response Center at (800) 424-8802.
	Clean Air Act (CAA) 112 regulated flammable substances: Pentane; Butane
<u>SARA 302/304</u>	
Composition/information	on on ingredients
SARA 304 RQ	: 1111.1 lbs / 504.4 kg [178.9 gal / 677.1 L]
<u>SARA 311/312</u>	
Classification	: Fire hazard Immediate (acute) health hazard Delayed (chronic) health hazard

Composition/information on ingredients

Name	Fire hazard	Sudden release of pressure	Reactive	Immediate (acute) health hazard	Delayed (chronic) health hazard
Toluene	Yes.	No.	No.	Yes.	Yes.
Pentane, all isomers	Yes.	No.	No.	Yes.	No.
Xylenes, mixed isomers	Yes.	No.	No.	Yes.	Yes.
Hexane, other isomers	Yes.	No.	No.	Yes.	Yes.
Heptane, all isomers	Yes.	No.	No.	Yes.	No.
Ethanol	Yes.	No.	No.	Yes.	Yes.
Butane	Yes.	Yes.	No.	Yes.	No.
Benzene	Yes.	No.	No.	Yes.	Yes.
Cumene	Yes.	No.	No.	Yes.	Yes.
Ethylbenzene	Yes.	No.	No.	Yes.	Yes.
n-Hexane	Yes.	No.	No.	Yes.	Yes.
Cyclohexane	Yes.	No.	No.	Yes.	No.
1,2,4-Trimethylbenzene	Yes.	No.	No.	Yes.	No.
Naphthalene	Yes.	No.	No.	Yes.	Yes.
tetraethyllead	Yes.	No.	No.	Yes.	Yes.

SARA 313

	Product name	CAS number	%
Form R - Reporting	Toluene	108-88-3	<20
requirements	Xylenes, mixed isomers	1330-20-7	<20
requirements	Benzene	71-43-2	<5
	Ethylbenzene	100-41-4	<4
	Cumene	98-82-8	<4
	n-Hexane	110-54-3	<3
	Cyclohexane	110-82-7	<3
	1,2,4-Trimethylbenzene	95-63-6	<2
	Naphthalene	91-20-3	<2

Section 15. Regulatory information

Supplier notification	Toluene Xylenes, mixed isomers Benzene Ethylbenzene Cumene n-Hexane Cyclohexane 1,2,4-Trimethylbenzene Naphthalene	108-88-3 1330-20-7 71-43-2 100-41-4 98-82-8 110-54-3 110-82-7 95-63-6 91-20-3	<20 <20 <5 <4 <4 <3 <3 <3 <2 <2
-----------------------	--	---	--

SARA 313 notifications must not be detached from the SDS and any copying and redistribution of the SDS shall include copying and redistribution of the notice attached to copies of the SDS subsequently redistributed.

State regulations

Massachusetts	 The following components are listed: HEPTANE (N-HEPTANE); Xylenes, mixed isomers; Toluene; Octanes, all isomers; PENTANE; ETHYL ALCOHOL; BENZENE; Butane; Cumene; Ethylbenzene; Trimethylbenzene, all isomers; Methylcyclohexane; n- Hexane; Ethyltoluene; Cyclohexane; 2,2,4-Trimethylpentane; PSEUDOCUMENE; Cyclopentane
New York	 The following components are listed: Toluene; Benzene; Cumene; Benzene, 1-methylethyl-; Ethylbenzene; Hexane; Cyclohexane; Benzene, hexahydro-; 2,2, 4-Trimethylpentane; Naphthalene
New Jersey Pennsylvania	The following components are listed: GasolineThe following components are listed: Gasoline

California Prop. 65

WARNING: This product contains a chemical known to the State of California to cause cancer and birth defects or other reproductive harm.

Ingredient name	%	Cancer	Reproductive	No significant risk level	Maximum acceptable dosage level
Gasoline engine exhaust (condensates / extracts)	100	Yes.	No.	No.	No.
Toluene	<20	No.	Yes.	No.	7000 μg/day (ingestion)
Ethanol	<10	Yes.	Yes.	No.	No.
Benzene	<5	Yes.	Yes.	6.4 μg/day (ingestion) 13 μg/day (inhalation)	24 μg/day (ingestion) 49 μg/day (inhalation)
Ethylbenzene	<5	Yes.	No.	41 μg/day (ingestion) 54 μg/day (inhalation)	No.
Cumene	<5	Yes.	No.	No.	No.
Naphthalene	<2	Yes.	No.	Yes.	No.
tetraethyllead	<1	Yes.	Yes.	No.	No.

International regulations

International lists	 Australia inventory (AICS): All components are listed or exempted. China inventory (IECSC): All components are listed or exempted. Japan inventory: All components are listed or exempted. Korea inventory: All components are listed or exempted. Malaysia Inventory (EHS Register): All components are listed or exempted. New Zealand Inventory of Chemicals (NZIoC): All components are listed or exempted. Philippines inventory (PICCS): All components are listed or exempted. Taiwan inventory (CSNN): All components are listed or exempted.
Canada inventory	: All components are listed or exempted.
EU Inventory	: All components are listed or exempted.
WHMIS (Canada)	: Class B-2: Flammable liquid Class D-2A: Material causing other toxic effects (Very toxic). Class D-2B: Material causing other toxic effects (Toxic).

Section 16. Other information

National Fire Protection Association (U.S.A.)

Reprinted with permission from NFPA 704-2001, Identification of the Hazards of Materials for Emergency Response Copyright ©1997, National Fire Protection Association, Quincy, MA 02269. This reprinted material is not the complete and official position of the National Fire Protection Association, on the referenced subject which is represented only by the standard in its entirety.

Copyright ©2001, National Fire Protection Association, Quincy, MA 02269. This warning system is intended to be interpreted and applied only by properly trained individuals to identify fire, health and reactivity hazards of chemicals. The user is referred to certain limited number of chemicals with recommended classifications in NFPA 49 and NFPA 325, which would be used as a guideline only. Whether the chemicals are classified by NFPA or not, anyone using the 704 systems to classify chemicals does so at their own risk.

History	
Date of issue/Date of revision	: 5/29/2015.
Key to abbreviations	 ATE = Acute Toxicity Estimate BCF = Bioconcentration Factor GHS = Globally Harmonized System of Classification and Labelling of Chemicals IATA = International Air Transport Association IBC = Internediate Bulk Container IMDG = International Maritime Dangerous Goods LogPow = logarithm of the octanol/water partition coefficient MARPOL 73/78 = International Convention for the Prevention of Pollution From Ships, 1973 as modified by the Protocol of 1978. ("Marpol" = marine pollution) UN = United Nations

Notice to reader

Histow

THE INFORMATION IN THIS SAFETY DATA SHEET (SDS) WAS OBTAINED FROM SOURCES WHICH WE BELIEVE ARE RELIABLE. HOWEVER, THE INFORMATION IS PROVIDED WITHOUT ANY WARRANTY, EXPRESSED OR IMPLIED REGARDING ITS CORRECTNESS OR ACCURACY. SOME INFORMATION PRESENTED AND CONCLUSIONS DRAWN HEREIN ARE FROM SOURCES OTHER THAN DIRECT TEST DATA ON THE SUBSTANCE ITSELF. THIS SDS WAS PREPARED AND IS TO BE USED ONLY FOR THIS PRODUCT. IF THE PRODUCT IS USED AS A COMPONENT IN ANOTHER PRODUCT, THIS SDS INFORMATION MAY NOT BE APPLICABLE. USERS SHOULD MAKE THEIR OWN INVESTIGATIONS TO DETERMINE THE SUITABILITY OF THE INFORMATION OR PRODUCTS FOR THEIR PARTICULAR PURPOSE OR APPLICATION.

THE CONDITIONS OR METHODS OF HANDLING, STORAGE, USE, AND/OR DISPOSAL OF THE PRODUCT ARE BEYOND OUR CONTROL AND MAY BE BEYOND OUR KNOWLEDGE. FOR THIS AND OTHER REASONS, WE DO NOT ASSUME RESPONSIBILITY AND EXPRESSLY DISCLAIM LIABILITY FOR ANY LOSS, DAMAGE OR EXPENSE ARISING OUT OF OR IN ANY WAY CONNECTED WITH HANDLING, STORAGE, USE OR DISPOSAL OF THE PRODUCT.

CITGO is a registered trademark of CITGO Petroleum Corporation

Site-Specific Health and Safety Plan 400 East 2nd Street and Atlanta Street, Sheffield, Alabama PM Project Number R070.00818.00A Phase 0013

HASP Attachment D

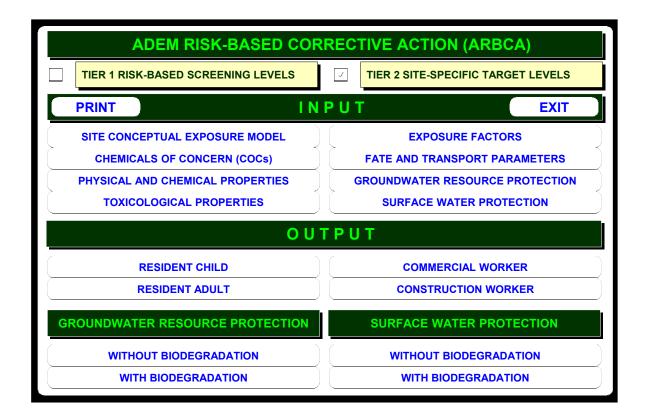
HASP Forms

Date of Occurrence:	Time of Occurrence:
Prepared By (full name):	
Project Number or Location of Near Miss:	
Subcontractor (if applicable):	
Safety Share Details	
Task Being Performed:	
Background:	
Details of Event:	
Response Action Taken:	

Root Cause (more than one can be used)	Description
Shortcuts Taken	
Lack of Skill/Training/Knowledge	
More Time or Effort Needed	
Procedures not followed previously,	
and no incident occurred	
Inadequate Procedures	
Poor or Lack of Communication	
Incorrect/Unavailable Tools or	
Equipment	
External Factors	

Near M	iss Form
--------	----------

Form Reviewed By :	Date:


Near Miss Discussed with Employee?

Further Discussion Needed?

Appendix D

MAIN

ADEM Tier II Risk Assessment Program

Location:

Former J.C. Box Texaco 400 East Second Street, Sheffield, Colbert County, Alabama Facility ID. #11732-033-04341 UST Incident #UST21-09-05

Point of Exposure (POE): POE = Southwest 510 feet (distance to property boundary =10 feet and >500 feet to POE = default of 510 feet)

> Source Area: MW-3, MW-5, & SB-8A

Point of Compliance (POC): MW-1 & MW-2 at 3 feet

SITE CONCEPTUAL EXPOSURE MODEL

Resident Child	Resident Adult	Commercial Worker	Construction Worker
	V		
	<u>र</u> र	<u>ा</u> रि	J
I	V V	V V	
		7	NA

COMPLETE PATHWAY(S) AND ROUTE(S) OF EXPOSURE

Other Routes of Exposure	
Groundwater Resource Protection	×
Stream Protection	<u>√</u>

CHEMICALS OF CONCERN,

HALF-LIFE AND UNSATURATED ZONE DAF

HAL	F-LIFE AND UN	SATURATED ZON	NE DAF	
CHEMICALS OF CONCERN	COC Concentrations Protective of Surface Water ¹ (C) [mg/L]	COC Concentrations Upstream of the Point of Discharge (C _{su}) [mg/L]	Half-Life [days]	Unsaturated Zone DAF []
ORGANICS	[mg/L]	[mg/L]	[uuy5]	
Benzene	0.011		1825	1
✓ Toluene	0.175		1825	1
Ethylbenzene	0.453		1825	1
✓ Xylenes (mixed)	NA		1825	1
Methyl-tert-butyl-ether (MTBE)*	NA		18250	1
Anthracene	7.241		1825	1
Benzo(a)anthracene	0.00002		1825	1
Benzo(a)pyrene	0.00002		1825	1
Benzo(b)fluoranthene	0.00002		1825	1
Benzo(g,h,i)perylene	NA		1825	1
Benzo(k)fluoranthene	0.00002		1825	1
Chrysene	0.00002		1825	1
Fluoranthene	0.0398		1825	1
Fluorene	0.966		1825	1
Naphthalene	0.62		1825	1
Phenanthrene	NA		1825	1
Pyrene	0.724		1825	1
METALS				
Arsenic	0.33		1	1
Barium	NA		1	1
Cadmium	0.0027		1	1
Chromium VI	0.011		1	1
Lead	0.0028		1	1
Zinc	0.18		1	1

Note:

I.

I

¹: Allowable stream concentration at the downstream edge of the stream's mixing zone

NA: Not available

*: To date, the biodegradation of MTBE in groundwater is inconclusive.

	Water	Henry's Law	Org. Carbon	Soil-Water	Diffusion	Coefficient
CHEMICALS OF CONCERN	Solubility	Constant	Ads. Coef.	Dist. Coeff.	in air	in water
I	(mg/L)	(L-water/L-air)	Koc (mL/g)	Kd (mL / g)	(cm^2/s)	(cm^2/s)
ORGANICS					1	
Benzene	1.75E+03	2.28E-01	6.17E+01	NA	8.80E-02	9.80E-06
Toluene	5.26E+02	2.72E-01	1.40E+02	NA	8.70E-02	8.60E-06
Ethylbenzene	1.69E+02	3.23E-01	2.04E+02	NA	7.50E-02	7.80E-06
Xylenes (mixed)	1.75E+02	2.76E-01	2.49E+02	NA	7.80E-02	8.75E-06
Methyl-tert-butyl-ether (MTBE)*	4.80E+04	2.27E-02	1.20E+01	NA	1.02E-01	1.05E-05
Anthracene	4.34E-02	2.67E-03	2.35E+04	NA	3.24E-02	7.74E-06
Benzo(a)anthracene	9.40E-03	1.37E-04	3.58E+05	NA	5.10E-02	9.00E-06
Benzo(a)pyrene	1.62E-03	4.63E-05	9.69E+05	NA	4.30E-02	9.00E-06
Benzo(b)fluoranthene	1.50E-03	4.55E-03	1.23E+06	NA	2.26E-02	5.56E-06
Benzo(g,h,i)perylene	7.00E-04	2.22E-06	1.58E+06	NA	2.16E-02	5.31E-06
Benzo(k)fluoranthene	8.00E-04	3.40E-05	1.23E+06	NA	2.26E-02	5.56E-06
Chrysene	1.60E-03	3.88E-03	3.98E+05	NA	2.48E-02	6.21E-06
Fluoranthene	2.06E-01	6.60E-04	4.91E+04	NA	3.02E-02	6.35E-06
Fluorene	1.98E+00	2.61E-03	7.71E+03	NA	3.63E-02	7.88E-06
Naphthalene	3.10E+01	1.98E-02	1.19E+03	NA	5.90E-02	7.50E-06
Phenanthrene	1.00E+00	6.61E-03	1.41E+04	NA	3.24E-02	7.74E-06
Pyrene	1.35E-01	4.51E-04	6.80E+04	NA	2.72E-02	7.24E-06
METALS						
Arsenic	0.00E+00	0.00E+00	0.00E+00	6.41E+01	0.00E+00	0.00E+00
Barium	0.00E+00	0.00E+00	0.00E+00	4.10E+01	0.00E+00	0.00E+00
Cadmium	0.00E+00	0.00E+00	0.00E+00	7.50E+01	0.00E+00	0.00E+00
Chromium VI	0.00E+00	0.00E+00	0.00E+00	1.90E+01	0.00E+00	0.00E+00
Lead	0.00E+00	0.00E+00	0.00E+00	1.22E+02	0.00E+00	0.00E+00
Zinc	0.00E+00	0.00E+00	0.00E+00	6.20E+01	0.00E+00	0.00E+00

PHYSICAL AND CHEMICAL PROPERTIES OF CHEMICALS OF CONCERN

Note:

	Slope	Factor	Referen	ice Dose	Oral RA	Dermal RA
CHEMICALS OF CONCERN	Oral (SFo)	Inh. (SFi)	Oral (RfDo)	Inh. (RfDi)	Factor	Factor
	[kg-day/mg]	[kg-day/mg]	(mg/kg-day)	(mg/kg-day)	(RAFo)	(RAFd)
ORGANICS		1	r			
Benzene	0.055	0.027	NA	0.0017	1	0.5
Toluene	NA	NA	0.2	0.11	1	0.5
Ethylbenzene	NA	NA	0.1	0.29	1	0.5
Xylenes (mixed)	NA	NA	2	0.086	1	0.5
Methyl-tert-butyl-ether (MTBE)*	NA	NA	0.005	0.86	1	0.5
Anthracene	NA	NA	0.3	0.3	1	0.05
Benzo(a)anthracene	0.73	0.61	NA	NA	1	0.05
Benzo(a)pyrene	7.3	6.1	NA	NA	1	0.05
Benzo(b)fluoranthene	0.73	0.61	NA	NA	1	0.05
Benzo(g,h,i)perylene	NA	NA	0.03	0.03	1	0.05
Benzo(k)fluoranthene	0.73	0.61	NA	NA	1	0.05
Chrysene	0.0073	0.0061	NA	NA	1	0.05
Fluoranthene	NA	NA	0.04	0.04	1	0.05
Fluorene	NA	NA	0.04	0.04	1	0.05
Naphthalene	NA	NA	0.02	9.00E-04	1	0.05
Phenanthrene	NA	NA	0.03	0.03	1	0.05
Pyrene	NA	NA	0.03	0.03	1	0.05
METALS						
Arsenic	1.5	15.05	0.0003	NA	1	0.001
Barium	NA	NA	0.07	0.000143	1	0.001
Cadmium	NA	6.3	0.0005	NA	1	0.001
Chromium VI	NA	42	0.003	2.00E-06	1	0.001
Lead	NA	NA	NA	NA	1	0.001
Zinc	NA	NA	0.3	0.01	1	0.001

TOXICOLOGICAL PROPERTIES OF CHEMICALS OF CONCERN

Note:

EXPOSURE FACTORS

(Page 1 of 2)

Parameter	Symbol	Unit	Tier 1 Values	Values Used	Source
Averaging Time for Carcinogen	ATc	year	70	70	Tier 1
Averaging Time for Non-Carcinogen	ATn	year	=ED	=ED	Tier 1
Body Weight					
Resident Child	BW	kg	15	15	Tier 1
Resident Adult	BW	kg	70	70	Tier 1
Commercial Worker	BW	kg	70	70	Tier 1
Construction Worker	BW	kg	70	70	Tier 1
Exposure Duration:					
Resident Child	ED	year	6	6	Tier 1
Resident Adult	ED	year	30	30	Tier 1
Commercial Worker	ED	year	25	25	Tier 1
Construction Worker	ED	year	1	1	Tier 1
Exposure Frequency:					
Resident Child	EF	day/year	350	350	Tier 1
Resident Adult	EF	day/year	350	350	Tier 1
Commercial Worker	EF	day/year	250	250	Tier 1
Construction Worker	EF	day/year	250	250	Tier 1
Soil Ingestion Rate:	-		-		
Resident Child	IRsoil	mg/day	200	200	Tier 1
Resident Adult	IRsoil	mg/day	100	100	Tier 1
Commercial Worker	IRsoil	mg/day	50	50	Tier 1
Construction Worker	IRsoil	mg/day	100	100	Tier 1
Groundwater Ingestion Rate:			-	-	
Resident Adult	IRw	L/day	2	2	Tier 1
Hourly Indoor Inhalation Rate:					
Resident Child	IRair-Indoor	m ³ /hr	0.417	0.417	Tier 1
Resident Adult	IRair-Indoor	m ³ /hr	0.633	0.633	Tier 1
Commercial Worker	IRair-Indoor	m ³ /hr	1.5	1.5	Tier 1
Construction Worker	IRair-Indoor	m ³ /hr	1.5	1.5	Tier 1
Exposure Time for Hourly Indoor In	halation Rate:				
Resident Child	ETin	hr/day	24	24	Tier 1
Resident Adult	ETin	hr/day	24	24	Tier 1
Commercial Worker	ETin	hr/day	10	10	Tier 1
Construction Worker	ETin	hr/day	10	10	Tier 1

EXPOSURE FACTORS

(Page 2 of 2)

Hourly Outdoor Inhalation Rate:					
Resident Child	IRair-outdoor	m ³ /hr	1	1	Tier 1
Resident Adult	IRair-outdoor	m ³ /hr	1.5	1.5	Tier 1
Commercial Worker	IRair-outdoor	m ³ /hr	1.5	1.5	Tier 1
Construction Worker	IRair-outdoor	m ³ /hr	1.5	1.5	Tier 1
Exposure Time for Hourly Outdoor	Inhalation Rate	2:			
Resident Child	ETout	hr/day	10	10	Tier 1
Resident Adult	ETout	hr/day	10	10	Tier 1
Commercial Worker	ETout	hr/day	10	10	Tier 1
Construction Worker	ETout	hr/day	10	10	Tier 1
Skin Surface Area:					
Resident Child	SA	cm ² /day	2500	2500	Tier 1
Resident Adult	SA	cm ² /day	5000	5000	Tier 1
Commercial Worker	SA	cm ² /day	5000	5000	Tier 1
Construction Worker	SA	cm ² /day	5000	5000	Tier 1
Soil to Skin Adherence Factor					
Resident Child	М	mg/cm ²	0.5	0.5	Tier 1
Resident Adult	М	mg/cm ²	0.5	0.5	Tier 1
Commercial Worker	М	mg/cm ³	0.5	0.5	Tier 1
Construction Worker	М	mg/cm ²	0.5	0.5	Tier 1
Target Risk Level	TR		1.00E-05	1.00E-05	Tier 1
Target Hazard Quotient	THQ		1	1	Tier 1

Parameter	Symbol	Unit	Tier 1 Values	Values Used	Source
SOIL PARAMETERS:	1	1			
Width of Soil Source Area Parallel to Wind	Wa	cm	1500	884	Site-Specific Value
Depth to Subsurface Soil Sources	Ls	cm	30.48	731.52	Site-Specific Value
Lower Depth of Surficial Soil Zone	d	cm	30.48	30.48	Tier 1
Thickness of Capillary Fringe	hcap	cm	5	82	Site-Specific Value
Thickness of Vadose Zone	hv	cm	295	963.11	Site-Specific Value
Unsaturated Zone Dry Soil Bulk Density	ρ _s	g/cm ³	1.8	1.55	Site-Specific Value
Fractional Organic Carbon Content in the Vadose Zone	foc	g-C/g-soil	0.01	0.063	Site-Specific Value
Total Soil Porosity in the Vadose Zone	$\theta_{\rm T}$	cm ³ /cm ³ -soil	0.3	0.42	Site-Specific Value
Volumetric Water Content in Capillary Fringe	θ _{wcap}	cm ³ /cm ³	0.27	0.38	Site-Specific Value
Volumetric Water Content in Vadose Zone	θ _{ws}	cm ³ /cm ³	0.1	0.1	Tier 1
Volumetric Water Content in Foundation or Wall Cracks	θ _{wcrack}	cm ³ /cm ³	0.1	0.1	Tier 1
Volumetric Air Content in Capillary Fringe	θ _{acap}	cm ³ /cm ³	0.03	0.043	Site-Specific Value
Volumetric Air Content in Vadose Zone	θ _{as}	cm ³ /cm ³	0.2	0.32	Site-Specific Value
Volumetric Air Content in Foundation/Wall Cracks	θ _{acrack}	cm ³ /cm ³	0.2	0.32	Site-Specific Value
GROUNDWATER PARAMETERS:	uonuon				
Depth to Groundwater	Lgw	cm	300	1045.11	Site-Specific Value
Width of GW Source Area Perpendicular to GW Flow Direction	Y	cm	1500	457	Site-Specific Value
Length of GW Source Area Parallel to GW Flow Direction	W	cm	1500	884	Site-Specific Value
Total Porosity in the Saturated Zone	θ _{TS}	cm ³ /cm ³	0.3	0.449	Site-Specific Value
Saturated Zone Dry Soil Bulk Density		g/cm ³	1.8	1.51	Site-Specific Value
Fractional Organic Carbon Content in the Saturated Zone	ρ _{ss} foc _s	g-C/g-soil	0.01	0.052	Site-Specific Value
Groundwater Mixing Zone Thickness	-	cm	200	200	Tier 1
Hydraulic Conductivity in the Saturated Zone	δ _{gw} K	cm/year	31536	31536	Tier 1
Hydraulic Gradient in the Saturated Zone	i		0.005	0.0118	Site-Specific Value
Groundwater Darcy Velocity	Ugw	cm/year	157.68	372.1248	Site-Specific Value
Infiltration Rate	I	cm/year	157.08	13.54	Site-Specific Value
	1	ciii/yeai	13.2	15.54	Site-Specific Value
AMBIENT AIR PARAMETERS:			200	200	
Breathing Zone Height	δ _a	cm	200	200	Tier 1
Wind Speed within the Breathing Zone	Ua	cm/s	225	225	Tier 1
ENCLOSED SPACE PARAMETERS:	1			1	1
Enclosed Space Air Exchange Rate:					Tier 1
Residential	ER	1/sec	0.00014	0.00014	Tier 1
Commercial/Construction Worker	ER	1/sec	0.00023	0.00023	Tier 1
Enclosed Space Volume/Infiltration Area Ratio:					
Residential	Lb	cm	200	200	Tier 1
Commercial/Construction Worker	Lb	cm	300	300	Tier 1
Enclosed Space Foundation or Wall Thickness:					
Residential	Lerack	cm	15	15	Tier 1
Commercial/Construction Worker	Lcrack	cm	15	15	Tier 1
Areal Fraction of Cracks in Foundation/Walls:					
Residential	η	cm ² /cm ²	0.01	0.01	Tier 1
Commercial/Construction Worker	η	cm ² /cm ²	0.01	0.01	Tier 1
PARTICULATE EMISSION RATE	· / · · · · · · ·	<u>т </u>		i	η
Residential and Commercial	Pe	g/cm ² sec	6.90E-14	6.90E-14	Tier 1
Construction Worker	Pe	g/cm ² sec	6.90E-09	6.90E-09	Tier 1
AVERAGING TIME FOR VAPOR FLUX	1			1	1
Resident Child	τ	sec	1.89E+08	1.89E+08	Tier 1
Resident Adult	τ	sec	9.46E+08	9.46E+08	Tier 1
Commercial Worker	τ	sec	7.88E+08	7.88E+08	Tier 1
Construction Worker	τ	sec	3.15E+07	3.15E+07	Tier 1

FATE AND TRANSPORT PARAMETERS

Note: The input values in red are calculated and cannot be changed.

GROUNDWATE	K RESOUR	CE PROTE	CHON		
Parameter	Symbol	Unit	Tier 1 Values	Values Used	Source
SITE PARAMETERS:			-		-
Distance from the Downgradient Edge of the Groundwater Source to the Point of Exposure (Xpoe)	Хрое	ft	variable	510	Site-specific
Longitudinal Dispersivity	$\alpha_{\rm x}$	ft	variable	51.000	Calculated
Transverse Dispersivity	α _y	ft	variable	17.000	Calculated
Vertical Dispersivity	α_z	ft	variable	2.550	Calculated
Distance from the Downgradient Edge of the Groundwater Source to the Point of Compliance (Xpoc)	Хрос	ft	variable	3	Site-specific
Longitudinal Dispersivity	$\alpha_{\rm x}$	ft	variable	0.300	Calculated
Transverse Dispersivity	α _y	ft	variable	0.100	Calculated
Vertical Dispersivity	αz	ft	variable	0.015	Calculated

GROUNDWATER RESOURCE PROTECTION

Note: The input values in red are calculated and cannot be changed.

T

			on Coefficient in		Soil Saturation
CHEMICALS OF CONCERN	Soil D _s ^{ett}	Fdn. Cracks D _{crack} ^{ett}	Cap. Fringe D _{cap} ^{ett}	Groundwater D _{ws} ^{eff}	Concentration Csat
	$D_{\rm s}$	D _{crack}	D_{cap}	$D_{\rm ws}$	Csat
ORGANICS					
Benzene	1.12E-02	1.12E-02	2.35E-05	2.92E-04	7.00E+03
Toluene	1.11E-02	1.11E-02	2.08E-05	2.60E-04	4.70E+03
Ethylbenzene	9.57E-03	9.57E-03	1.73E-05	2.16E-04	2.19E+03
Xylenes (mixed)	9.95E-03	9.95E-03	1.94E-05	2.42E-04	2.77E+03
Methyl-tert-butyl-ether (MTBE)*	1.30E-02	1.30E-02	1.18E-04	1.36E-03	3.96E+04
Anthracene	4.14E-03	4.14E-03	6.43E-04	2.90E-03	6.43E+01
Benzo(a)anthracene	6.68E-03	6.68E-03	1.45E-02	6.97E-03	2.12E+02
Benzo(a)pyrene	6.00E-03	6.00E-03	4.28E-02	6.43E-03	9.89E+01
Benzo(b)fluoranthene	2.89E-03	2.89E-03	2.73E-04	1.65E-03	1.16E+02
Benzo(g,h,i)perylene	9.10E-03	9.10E-03	5.27E-01	9.86E-03	6.97E+01
Benzo(k)fluoranthene	3.32E-03	3.32E-03	3.60E-02	3.57E-03	6.20E+01
Chrysene	3.17E-03	3.17E-03	3.56E-04	1.96E-03	4.01E+01
Fluoranthene	3.88E-03	3.88E-03	2.12E-03	3.64E-03	6.37E+02
Fluorene	4.64E-03	4.64E-03	6.70E-04	3.17E-03	9.62E+02
Naphthalene	7.53E-03	7.53E-03	9.28E-05	1.03E-03	2.33E+03
Phenanthrene	4.14E-03	4.14E-03	2.63E-04	1.92E-03	8.88E+02
Pyrene	3.51E-03	3.51E-03	3.54E-03	3.51E-03	5.78E+02
METALS		1	1	1	
Arsenic					
Barium					
Cadmium					
Chromium VI					
Lead					
Zinc					

EFFECTIVE DIFFUSION COEFFICIENTS

VOLATILIZATION F		lization Factors fro	CW CW						V	olatilization Factor	o from Soufficial S	all the							Valatilizati	ion Factors from St	kandaaa Sail		Leaching Factor
CHEMICALS OF CONCERN		(VFwesp)	OUTDOOR						OUTDO		s from Surficial S	011				Ambient Air - P	utimista VEa			ION Factors from St R (VFsesp)	bsuriace Soli	OUTDOOR	subsurface to gw
CHEMICALS OF CONCERN	Residential	Commercial	(VFwamb)	Child	VFss1	VFss2	Adult	VFss1	VFss2	Commercial	VFss1	VFss2	Construction	VFss1	VFss2	Resi, and Comm.		Child	Adult	Commercial	Construction	(VFsamb)	(LFsw)
ORGANICS			(11.0000)																			(
Benzene	2.20E-03	8.91E-04	1.25E-06	4.90E-06	5.08E-05	4.90E-06	9.81E-07	2.27E-05	9.81E-07	1.18E-06	2.49E-05	1.18E-06	2.95E-05	1.24E-04	2.95E-05	1.36E-12	1.36E-07	1.02E-02	1.02E-02	4.16E-03	4.16E-03	1.72E-05	3.46E-02
Toluene	2.20E-03 2.34E-03	9.48E-04	1.23E-06	4.90E-06	3.69E-05	4.90E-06	9.81E-07 9.81E-07	1.65E-05	9.81E-07 9.81E-07	1.18E-06	1.81E-05	1.18E-06	2.95E-05	9.03E-05	2.95E-05	1.36E-12 1.36E-12	1.36E-07 1.36E-07	5.40E-02	5.40E-03	4.16E-03 2.19E-03	4.16E-03 2.19E-03	9.07E-06	1.55E-02
Ethylbenzene	2.34E-03 2.31E-03	9.48E-04 9.36E-04	1.33E-06	4.90E-06	3.09E-05	4.90E-06	9.81E-07 9.81E-07	1.65E-05	9.81E-07 9.81E-07	1.18E-06	1.52E-05	1.18E-06	2.95E-05	9.03E-05 7.59E-05	2.95E-05	1.36E-12 1.36E-12	1.36E-07 1.36E-07	3.81E-03	3.81E-03	2.19E-03	2.19E-03	9.07E-06 6.39E-06	1.07E-02
Ethylbenzene Xylenes (mixed)	2.31E-03 2.21E-03	9.36E-04 8.95E-04	1.31E-06 1.26E-06	4.90E-06 4.90E-06	3.09E-05 2.64E-05	4.90E-06 4.90E-06	9.81E-07 9.81E-07	1.38E-05 1.18E-05	9.81E-07 9.81E-07	1.18E-06 1.18E-06	1.30E-05	1.18E-06 1.18E-06	2.95E-05 2.95E-05	7.59E-05 6.48E-05	2.95E-05 2.95E-05	1.36E-12 1.36E-12	1.36E-07 1.36E-07	3.81E-03 2.78E-03	3.81E-03 2.78E-03	1.55E-03 1.13E-03	1.55E-03 1.13E-03	6.39E-06 4.66E-06	8.76E-03
Methyl-tert-butyl-ether (MTBE)*	9.17E-04	8.95E-04 3.72E-04	5.80E-07	4.90E-06	2.64E-05 3.80E-05	4.90E-06	9.81E-07 9.81E-07	1.18E-05	9.81E-07 9.81E-07	1.18E-06	1.86E-05	1.18E-06	2.95E-05	9.30E-05	2.95E-05	1.36E-12 1.36E-12	1.36E-07 1.36E-07	2.78E-03 5.73E-03	5.73E-03	2.32E-03	2.32E-03	9.61E-06	8.76E-03
Anthracene	9.17E-04	5.36E-05	3.80E-07 1.46E-07	4.90E-06 1.73E-07	1.73E-07		9.81E-07 7.75E-08	7.75E-08	9.81E-07 9.81E-07	8.49E-08	8,49E-05		4.25E-07	9.30E-03 4.25E-07	2.95E-05	1.36E-12 1.36E-12	1.36E-07 1.36E-07	5.73E-03 1.19E-07	1.19E-07	4.85E-08	4.85E-08	2.00E-10	9.36E-05
						4.90E-06						1.18E-06											
Benzo(a)anthracene	1.31E-05	5.30E-06	1.80E-08	1.28E-08	1.28E-08	4.90E-06 4.90E-06	5.71E-09	5.71E-09	9.81E-07	6.26E-09	6.26E-09	1.18E-06	3.13E-08	3.13E-08	2.95E-05	1.36E-12	1.36E-07	6.49E-10	6.49E-10	2.63E-10	2.63E-10	1.09E-12	6.14E-06
Benzo(a)pyrene Benzo(b)fluoranthene	4.01E-06	1.63E-06 5.71E-05	5.60E-09 1.41E-07	4.28E-09 2.61E-08	4.28E-09 2.61E-08		1.91E-09 1.17E-08	1.91E-09	9.81E-07 9.81E-07	2.10E-09 1.28E-08	2.10E-09 1.28E-08	1.18E-06	1.05E-08	1.05E-08	2.95E-05 2.95E-05	1.36E-12 1.36E-12	1.36E-07 1.36E-07	7.28E-11 2.71E-09	7.28E-11 2.71E-09	2.96E-11	2.96E-11	1.22E-13 4.55E-12	2.27E-06 1.79E-06
	1.41E-04					4.90E-06		1.17E-08				1.18E-06	6.40E-08	6.40E-08						1.10E-09	1.10E-09		
Benzo(g,h,i)perylene	2.93E-07	1.19E-07	4.11E-10	9.04E-10	9.04E-10	4.90E-06	4.04E-10	4.04E-10	9.81E-07	4.43E-10	4.43E-10	1.18E-06	2.21E-09	2.21E-09	2.95E-05	1.36E-12	1.36E-07	3.25E-12	3.25E-12	1.32E-12	1.32E-12	5.45E-15	1.39E-06
Benzo(k)fluoranthene	1.63E-06	6.61E-07	2.28E-09	2.42E-09	2.42E-09	4.90E-06	1.08E-09	1.08E-09	9.81E-07	1.19E-09	1.19E-09	1.18E-06	5.93E-09	5.93E-09	2.95E-05	1.36E-12	1.36E-07	2.33E-11	2.33E-11	9.45E-12	9.45E-12	3.91E-14	1.79E-06
Chrysene	1.37E-04	5.58E-05 1.42E-05	1.43E-07	4.44E-08 5.77E-08	4.44E-08	4.90E-06	1.99E-08	1.99E-08 2.58E-08	9.81E-07 9.81E-07	2.18E-08	2.18E-08 2.83E-08	1.18E-06	1.09E-07 1.41E-07	1.09E-07 1.41E-07	2.95E-05	1.36E-12	1.36E-07	7.84E-09	7.84E-09	3.18E-09 5.37E-09	3.18E-09	1.32E-11	5.53E-06 4.48E-05
Fluoranthene	3.50E-05 1.43E-04	1.42E-05 5.79E-05	4.52E-08 1.55E-07	5.77E-08 3.17E-07	5.77E-08 3.17E-07	4.90E-06	2.58E-08	2.58E-08 1.42E-07	9.81E-07 9.81E-07	2.83E-08		1.18E-06	1.41E-0/ 7.76E-07	1.41E-07 7.76E-07	2.95E-05 2.95E-05	1.36E-12	1.36E-07	1.32E-08 3.99E-07	1.32E-08 3.99E-07	5.3/E-09 1.62E-07	5.37E-09 1.62E-07	2.22E-11 6.69E-10	4.48E-05 2.85E-04
Fluorene						4.90E-06	1.42E-07			1.55E-07	1.55E-07	1.18E-06				1.36E-12	1.36E-07						
Naphthalene	5.84E-04	2.37E-04	3.85E-07	2.83E-06	2.83E-06	4.90E-06	9.81E-07	1.26E-06	9.81E-07	1.18E-06	1.39E-06	1.18E-06	6.93E-06	6.93E-06	2.95E-05	1.36E-12	1.36E-07	3.18E-05	3.18E-05	1.29E-05	1.29E-05	5.33E-08	1.85E-03
Phenanthrene	2.60E-04	1.06E-04	2.38E-07 2.98E-08	3.52E-07	3.52E-07 3.86E-08	4.90E-06	1.57E-07 1.73E-08	1.57E-07 1.73E-08	9.81E-07	1.72E-07 1.89E-08	1.72E-07	1.18E-06	8.63E-07	8.63E-07 9.45E-08	2.95E-05 2.95E-05	1.36E-12	1.36E-07	4.92E-07	4.92E-07	2.00E-07	2.00E-07	8.26E-10 9.93E-12	1.56E-04
Pyrene	2.22E-05	9.02E-06	2.98E-08	3.86E-08	3.86E-08	4.90E-06	1./3E-08	1.73E-08	9.81E-07	1.89E-08	1.89E-08	1.18E-06	9.45E-08	9.45E-08	2.95E-05	1.36E-12	1.36E-07	5.92E-09	5.92E-09	2.40E-09	2.40E-09	9.93E-12	3.23E-05
METALS																							
Arsenic	-	-	-	0.00E+00		0.00E+00	1.36E-12	1.36E-07	-					2.16E-03									
Barium	-	-	-	0.00E+00		0.00E+00	0.00E+00		0.00E+00	0.00E+00		0.00E+00	0.00E+00	-	0.00E+00	1.36E-12	1.36E-07	-				-	3.37E-03
Cadmium	-	-	-	0.00E+00	-	0.00E+00	0.00E+00	-	0.00E+00	0.00E+00		0.00E+00	0.00E+00		0.00E+00	1.36E-12	1.36E-07	-				-	1.85E-03
Chromium VI	-	-	-	0.00E+00		0.00E+00	0.00E+00		0.00E+00	0.00E+00		0.00E+00	0.00E+00	-	0.00E+00	1.36E-12	1.36E-07	-				-	7.27E-03
Lead	-	-	-	0.00E+00		0.00E+00	0.00E+00		0.00E+00	0.00E+00		0.00E+00	0.00E+00	-	0.00E+00	1.36E-12	1.36E-07	-				-	1.14E-03
Zinc	-	-	-	0.00E+00		0.00E+00	1.36E-12	1.36E-07						2.23E-03									

	AIR INH	ALATION	SURFICIAL SOIL	SUBSURF	ACE SOIL		GROUNDWATER	
CHEMICALS OF CONCERN	Indoor	Outdoor	Ingestion, Inhalation (Vapor Emissions and Particulates), and Dermal Contact	Indoor Inhalation of Vapor Emissions	Outdoor Inhalation of Vapor Emissions	Indoor Inhalation of Vapor Emissions	Outdoor Inhalation of Vapor Emissions	Ingestion of Water
	[mg/m ³ -air]	[mg/m ³ -air]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/L]	[mg/L]	[mg/L]
ORGANICS								
Benzene	2.66E-03	2.66E-03	3.91E+01	2.59E-01	1.55E+02	1.21E+00	1.75E+03 #	5.00E-03
Toluene	1.72E-01	1.72E-01	3.42E+03	3.18E+01	4.70E+03 *	7.36E+01	5.26E+02 #	1.00E+00
Ethylbenzene	4.53E-01	4.54E-01	1.86E+03	1.19E+02	2.19E+03 *	1.69E+02 #	1.69E+02 #	7.00E-01
Xylenes (mixed)	1.34E-01	1.35E-01	2.77E+03 *	4.84E+01	2.77E+03 *	6.09E+01	1.75E+02 #	1.00E+01
Methyl-tert-butyl-ether (MTBE)*	1.34E+00	1.35E+00	9.48E+01	2.35E+02	3.96E+04 *	1.47E+03	4.80E+04 #	2.00E-02
Anthracene	NA	NA						
Benzo(a)anthracene	NA	NA						
Benzo(a)pyrene	NA	NA			-			
Benzo(b)fluoranthene	NA	NA						
Benzo(g,h,i)perylene	NA	NA			-			
Benzo(k)fluoranthene	NA	NA			-			
Chrysene	NA	NA			-			
Fluoranthene	NA	NA			-			
Fluorene	NA	NA			-			
Naphthalene	1.41E-03	1.41E-03	3.51E+02	4.43E+01	2.33E+03 *	2.41E+00	3.10E+01 #	2.00E-02
Phenanthrene	NA	NA						
Pyrene	NA	NA						
METALS								
Arsenic	NA	NA		NA	NA	NA	NA	
Barium	NA	NA		NA	NA	NA	NA	
Cadmium	NA	NA		NA	NA	NA	NA	
Chromium VI	NA	NA		NA	NA	NA	NA	
Lead	NA	NA	4.00E+02	NA	NA	NA	NA	1.50E-02
Zinc	NA	NA		NA	NA	NA	NA	

SITE-SPECIFIC TARGET LEVELS FOR A RESIDENT CHILD

NC: Pathway is not complete

--: Not a chemical of concern

NA: Not Applicable

*: Calculated RBSLs exceeded saturated soil concentration and hence saturated soil concentrations are listed RBSLs.

#: Calculated RBSLs exceeded pure component water solubility and hence water solubilities are listed as RBSLs.

	AIR INH	ALATION	SURFICIAL SOIL	SUBSURF	ACE SOIL		GROUNDWATER	
CHEMICALS OF CONCERN	Indoor	Outdoor	Ingestion, Inhalation (Vapor Emissions and Particulates), and Dermal Contact	Indoor Inhalation of Vapor Emissions	Outdoor Inhalation of Vapor Emissions	Indoor Inhalation of Vapor Emissions	Outdoor Inhalation of Vapor Emissions	Ingestion of Water
	[mg/m ³ -air]	[mg/m ³ -air]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/L]	[mg/L]	[mg/L]
ORGANICS								
Benzene	4.15E-03	4.21E-03	2.28E+01	4.06E-01	2.45E+02	1.89E+00	1.75E+03 #	5.00E-03
Toluene	5.29E-01	5.35E-01	4.70E+03 *	9.79E+01	4.70E+03 *	2.26E+02	5.26E+02 #	1.00E+00
Ethylbenzene	1.39E+00	1.41E+00	2.19E+03 *	3.66E+02	2.19E+03 *	1.69E+02 #	1.69E+02 #	7.00E-01
Xylenes (mixed)	4.13E-01	4.19E-01	2.77E+03 *	1.49E+02	2.77E+03 *	1.75E+02 #	1.75E+02 #	1.00E+01
Methyl-tert-butyl-ether (MTBE)*	4.13E+00	4.19E+00	2.70E+02	7.22E+02	3.96E+04 *	4.50E+03	4.80E+04 #	2.00E-02
Anthracene	NA	NA						
Benzo(a)anthracene	NA	NA						
Benzo(a)pyrene	NA	NA						
Benzo(b)fluoranthene	NA	NA						
Benzo(g,h,i)perylene	NA	NA						
Benzo(k)fluoranthene	NA	NA						
Chrysene	NA	NA						
Fluoranthene	NA	NA						
Fluorene	NA	NA						
Naphthalene	4.32E-03	4.38E-03	2.33E+03 *	1.36E+02	2.33E+03 *	7.41E+00	3.10E+01 #	2.00E-02
Phenanthrene	NA	NA						
Pyrene	NA	NA						
METALS								
Arsenic	NA	NA		NA	NA	NA	NA	
Barium	NA	NA		NA	NA	NA	NA	
Cadmium	NA	NA		NA	NA	NA	NA	
Chromium VI	NA	NA		NA	NA	NA	NA	
Lead	NA	NA	4.0E+02	NA	NA	NA	NA	1.50E-02
Zinc	NA	NA		NA	NA	NA	NA	

SITE-SPECIFIC TARGET LEVELS FOR A RESIDENT ADULT

NC: Pathway is not complete

--: Not a chemical of concern

NA: Not Applicable

*: Calculated RBSLs exceeded saturated soil concentration and hence saturated soil concentrations are listed RBSLs.

#: Calculated RBSLs exceeded pure component water solubility and hence water solubilities are listed as RBSLs.

	AIR INH	ALATION	SURFICIAL SOIL	SUBSURF	ACE SOIL		GROUNDWATER		
CHEMICALS OF CONCERN	Indoor	Outdoor	Ingestion, Inhalation (Vapor Emissions and Particulates), and Dermal Contact	Indoor Inhalation of Vapor Emissions	Outdoor Inhalation of Vapor Emissions	Indoor Inhalation of Vapor Emissions	Outdoor Inhalation of Vapor Emissions	Ingestion of Water	
	[mg/m ³ -air]	[mg/m ³ -air]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/L]	[mg/L]	[mg/L]	
ORGANICS									
Benzene	7.07E-03	7.07E-03	3.98E+01	1.70E+00	4.11E+02	7.93E+00	1.75E+03 #	5.00E-03	
Toluene	7.49E-01	7.49E-01	4.70E+03 *	3.42E+02	4.70E+03 *	5.26E+02 #	5.26E+02 #	1.00E+00	
Ethylbenzene	1.98E+00	1.98E+00	2.19E+03 *	1.28E+03	2.19E+03 *	1.69E+02 #	1.69E+02 #	7.00E-01	
Xylenes (mixed)	5.86E-01	5.86E-01	2.77E+03 *	5.19E+02	2.77E+03 *	1.75E+02 #	1.75E+02 #	1.00E+01	
Methyl-tert-butyl-ether (MTBE)*	5.86E+00	5.86E+00	3.93E+02	2.52E+03	3.96E+04 *	1.57E+04	4.80E+04 #	2.00E-02	
Anthracene	NA	NA							
Benzo(a)anthracene	NA	NA							
Benzo(a)pyrene	NA	NA							
Benzo(b)fluoranthene	NA	NA							
Benzo(g,h,i)perylene	NA	NA							
Benzo(k)fluoranthene	NA	NA							
Chrysene	NA	NA							
Fluoranthene	NA	NA							
Fluorene	NA	NA							
Naphthalene	6.13E-03	6.13E-03	2.33E+03 *	4.75E+02	2.33E+03 *	2.59E+01	3.10E+01 #	2.00E-02	
Phenanthrene	NA	NA							
Pyrene	NA	NA							
METALS									
Arsenic	NA	NA		NA	NA	NA	NA		
Barium	NA	NA		NA	NA	NA	NA		
Cadmium	NA	NA		NA	NA	NA	NA		
Chromium VI	NA	NA		NA	NA	NA	NA		
Lead	NA	NA	4.0E+02	NA	NA	NA	NA	1.50E-02	
Zinc	NA	NA		NA	NA	NA	NA		

SITE-SPECIFIC TARGET LEVELS FOR A COMMERCIAL WORKER

NC: Pathway is not complete

--: Not a chemical of concern

NA: Not Applicable

*: Calculated RBSLs exceeded saturated soil concentration and hence saturated soil concentrations are listed RBSLs.

#: Calculated RBSLs exceeded pure component water solubility and hence water solubilities are listed as RBSLs.

	AIR INH	LATION	SURFICIAL S	SOIL	SUBSURF.	ACE SOIL		(ROUNI	OWATER	
CHEMICALS OF CONCERN	Indoor	Outdoor	Emissions and Part	ngestion, Inhalation (Vapor Emissions and Particulates), and Dermal Contact Indoor Inhalation of Vapor Emissions Outdoor Inhalation Vapor Emissions			Indoor Inhalation o Emissions	f Vapor	Outdoor Inhalation of Vapor Emissions		
	[mg/m ³ -air]	[mg/m ³ -air]	[mg/kg]		[mg/kg]	[mg/kg]		[mg/L]		[mg/L]	
ORGANICS											
Benzene	1.16E-02	1.16E-02	3.91E+02		2.79E+00	6.74E+02		1.30E+01		1.75E+03	#
Toluene	7.49E-01	7.49E-01	4.70E+03	*	3.42E+02	4.70E+03	*	5.26E+02	#	5.26E+02	#
Ethylbenzene	1.98E+00	1.98E+00	2.19E+03	*	1.28E+03	2.19E+03	*	1.69E+02	#	1.69E+02	#
Xylenes (mixed)	5.86E-01	5.86E-01	2.77E+03	*	5.19E+02	2.77E+03	*	1.75E+02	#	1.75E+02	#
Methyl-tert-butyl-ether (MTBE)*	5.86E+00	5.86E+00	3.78E+02		2.52E+03	3.96E+04	*	1.57E+04		4.80E+04	#
Anthracene	NA	NA									
Benzo(a)anthracene	NA	NA									
Benzo(a)pyrene	NA	NA									
Benzo(b)fluoranthene	NA	NA									
Benzo(g,h,i)perylene	NA	NA									
Benzo(k)fluoranthene	NA	NA									
Chrysene	NA	NA									
Fluoranthene	NA	NA									
Fluorene	NA	NA									
Naphthalene	6.13E-03	6.13E-03	7.92E+02		4.75E+02	2.33E+03	*	2.59E+01		3.10E+01	#
Phenanthrene	NA	NA									
Pyrene	NA	NA									
METALS											
Arsenic	NA	NA			NA	NA		NA		NA	
Barium	NA	NA			NA	NA		NA		NA	
Cadmium	NA	NA			NA	NA		NA		NA	
Chromium VI	NA	NA			NA	NA		NA		NA	
Lead	NA	NA	4.00E+02		NA	NA		NA		NA	
Zinc	NA	NA			NA	NA		NA		NA	

SITE-SPECIFIC TARGET LEVELS FOR A CONSTRUCTION WORKER

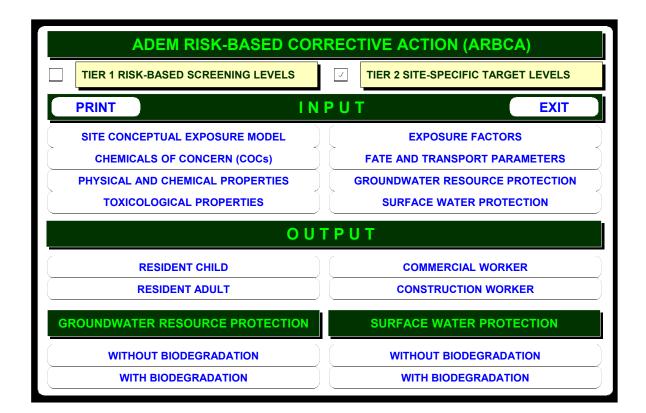
NC: Pathway is not complete

--: Not a chemical of concern

NA: Not Applicable

*: Calculated RBSLs exceeded saturated soil concentration and hence saturated soil concentrations are listed RBSLs.

#: Calculated RBSLs exceeded pure component water solubility and hence water solubilities are listed as RBSLs.


CHEMICALS OF CONCERN	Target	Dry Leaching	User Specified	Saturated	Zone DAF	Allowable Soil	Allowable	GW Conc.
	Groundwater Conc.at POE	Factor to Groundwater (LFsw)	Unsaturated Zone DAF	for POC	for POE	Conc. Protective of GW at the POE	at a POC Protective of a POE	at the Source Protective of a POE
	[mg/L]	[mg/L]/[mg/kg]	[]	[]	[]	[mg/kg]	[mg/L]	[mg/L]
ORGANICS								
Benzene	5.00E-03	3.46E-02	1	1.00E+00	2.15E+02	3.10E+01	1.08E+00	1.08E+00
Toluene	1.00E+00	1.55E-02	1	1.00E+00	2.15E+02	4.70E+03 *	2.15E+02	2.15E+02
Ethylbenzene	7.00E-01	1.07E-02	1	1.00E+00	2.15E+02	2.19E+03 *	1.51E+02	1.51E+02
Xylenes (mixed)	1.00E+01	8.76E-03	1	1.00E+00	2.15E+02	2.77E+03 *	1.75E+02 #	1.75E+02 #
Methyl-tert-butyl-ether (MTBE)*	2.00E-02	1.68E-01	1	1.00E+00	2.15E+02	2.56E+01	4.30E+00	4.30E+00
Anthracene		9.36E-05	1	1.00E+00	2.15E+02	6.43E+01 *	4.34E-02 #	4.34E-02 #
Benzo(a)anthracene		6.14E-06	1	1.00E+00	2.15E+02	2.12E+02 *	9.40E-03 #	9.40E-03 #
Benzo(a)pyrene		2.27E-06	1	1.00E+00	2.15E+02	9.89E+01 *	1.62E-03 #	1.62E-03 #
Benzo(b)fluoranthene		1.79E-06	1	1.00E+00	2.15E+02	1.16E+02 *	1.50E-03 #	1.50E-03 #
Benzo(g,h,i)perylene		1.39E-06	1	1.00E+00	2.15E+02	6.97E+01 *	7.00E-04 #	7.00E-04 #
Benzo(k)fluoranthene		1.79E-06	1	1.00E+00	2.15E+02	6.20E+01 *	8.00E-04 #	8.00E-04 #
Chrysene		5.53E-06	1	1.00E+00	2.15E+02	4.01E+01 *	1.60E-03 #	1.60E-03 #
Fluoranthene		4.48E-05	1	1.00E+00	2.15E+02	6.37E+02 *	2.06E-01 #	2.06E-01 #
Fluorene		2.85E-04	1	1.00E+00	2.15E+02	9.62E+02 *	1.98E+00 #	1.98E+00 #
Naphthalene	2.00E-02	1.85E-03	1	1.00E+00	2.15E+02	2.33E+03 *	4.30E+00	4.30E+00
Phenanthrene		1.56E-04	1	1.00E+00	2.15E+02	8.88E+02 *	1.00E+00 #	1.00E+00 #
Pyrene		3.23E-05	1	1.00E+00	2.15E+02	5.78E+02 *	1.35E-01 #	1.35E-01 #
METALS								
Arsenic		2.16E-03	1	1.00E+00	2.15E+02		NA	NA
Barium		3.37E-03	1	1.00E+00	2.15E+02		NA	NA
Cadmium		1.85E-03	1	1.00E+00	2.15E+02		NA	NA
Chromium VI		7.27E-03	1	1.00E+00	2.15E+02		NA	NA
Lead	1.50E-02	1.14E-03	1	1.00E+00	2.15E+02	2.84E+03	3.23E+00	3.23E+00
Zinc		2.23E-03	1	1.00E+00	2.15E+02		NA	NA

GROUNDWATER RESOURCE PROTECTION - WITHOUT BIODEGRADATION

*: Calculated concentrations exceeded saturated soil concentration and hence saturated soil concentrations are listed soil concentrations protective of groundwater.

#: Calculated concentrations exceeded pure component water solubility and hence water solubilities are listed as allowable groundwater concentrations at the POE and/or POC. Soil concentrations are presented on a dry weight basis.

MAIN

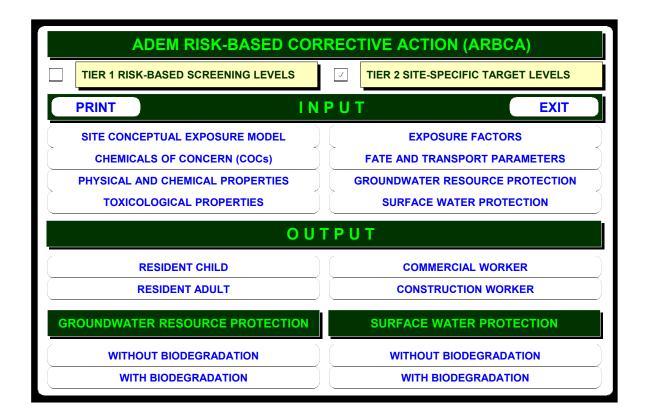
ADEM Tier II Risk Assessment Program Location: Former J.C. Box Texaco 400 East Second Street, Sheffield, Colbert County, Alabama Facility ID. #11732-033-04341 UST Incident #UST21-09-05 Point of Exposure (POE): POE = Southwest 510 feet (distance to property boundary =10 feet and >500 feet to POE = default of 510 feet) Source Area: MW-3, MW-5, & SB-8A Point of Compliance (POC): MW-4 at 5 feet

GROUNDWATE	X RESUUR	CE PROTE			
Parameter	Symbol	Unit	Tier 1 Values	Values Used	Source
SITE PARAMETERS:					-
Distance from the Downgradient Edge of the Groundwater Source to the Point of Exposure (Xpoe)	Хрое	ft	variable	510	Site-specific
Longitudinal Dispersivity	$\alpha_{\rm x}$	ft	variable	51.000	Calculated
Transverse Dispersivity	α_{y}	ft	variable	17.000	Calculated
Vertical Dispersivity	α_z	ft	variable	2.550	Calculated
Distance from the Downgradient Edge of the Groundwater Source to the Point of Compliance (Xpoc)	Хрос	ft	variable	5	Site-specific
Longitudinal Dispersivity	$\alpha_{\rm x}$	ft	variable	0.500	Calculated
Transverse Dispersivity	α_{y}	ft	variable	0.167	Calculated
Vertical Dispersivity	αz	ft	variable	0.025	Calculated

GROUNDWATER RESOURCE PROTECTION

Note: The input values in red are calculated and cannot be changed.

T


CHEMICALS OF CONCERN	Target	Dry Leaching	User Specified	Saturated	Zone DAF	Allowable Soil	Allowable	GW Conc.
	Groundwater Conc.at POE	Factor to Groundwater (LFsw)	Unsaturated Zone DAF	for POC	for POE	Conc. Protective of GW at the POE	at a POC Protective of a POE	at the Source Protective of a POE
	[mg/L]	[mg/L]/[mg/kg]	[]	[]	[]	[mg/kg]	[mg/L]	[mg/L]
ORGANICS								
Benzene	5.00E-03	3.46E-02	1	1.00E+00	2.15E+02	3.10E+01	1.08E+00	1.08E+00
Toluene	1.00E+00	1.55E-02	1	1.00E+00	2.15E+02	4.70E+03 *	2.15E+02	2.15E+02
Ethylbenzene	7.00E-01	1.07E-02	1	1.00E+00	2.15E+02	2.19E+03 *	1.51E+02	1.51E+02
Xylenes (mixed)	1.00E+01	8.76E-03	1	1.00E+00	2.15E+02	2.77E+03 *	1.75E+02 #	1.75E+02 #
Methyl-tert-butyl-ether (MTBE)*	2.00E-02	1.68E-01	1	1.00E+00	2.15E+02	2.56E+01	4.30E+00	4.30E+00
Anthracene		9.36E-05	1	1.00E+00	2.15E+02	6.43E+01 *	4.34E-02 #	4.34E-02 #
Benzo(a)anthracene		6.14E-06	1	1.00E+00	2.15E+02	2.12E+02 *	9.40E-03 #	9.40E-03 #
Benzo(a)pyrene		2.27E-06	1	1.00E+00	2.15E+02	9.89E+01 *	1.62E-03 #	1.62E-03 #
Benzo(b)fluoranthene		1.79E-06	1	1.00E+00	2.15E+02	1.16E+02 *	1.50E-03 #	1.50E-03 #
Benzo(g,h,i)perylene		1.39E-06	1	1.00E+00	2.15E+02	6.97E+01 *	7.00E-04 #	7.00E-04 #
Benzo(k)fluoranthene		1.79E-06	1	1.00E+00	2.15E+02	6.20E+01 *	8.00E-04 #	8.00E-04 #
Chrysene		5.53E-06	1	1.00E+00	2.15E+02	4.01E+01 *	1.60E-03 #	1.60E-03 #
Fluoranthene		4.48E-05	1	1.00E+00	2.15E+02	6.37E+02 *	2.06E-01 #	2.06E-01 #
Fluorene		2.85E-04	1	1.00E+00	2.15E+02	9.62E+02 *	1.98E+00 #	1.98E+00 #
Naphthalene	2.00E-02	1.85E-03	1	1.00E+00	2.15E+02	2.33E+03 *	4.30E+00	4.30E+00
Phenanthrene		1.56E-04	1	1.00E+00	2.15E+02	8.88E+02 *	1.00E+00 #	1.00E+00 #
Pyrene		3.23E-05	1	1.00E+00	2.15E+02	5.78E+02 *	1.35E-01 #	1.35E-01 #
METALS								
Arsenic		2.16E-03	1	1.00E+00	2.15E+02		NA	NA
Barium		3.37E-03	1	1.00E+00	2.15E+02		NA	NA
Cadmium		1.85E-03	1	1.00E+00	2.15E+02		NA	NA
Chromium VI		7.27E-03	1	1.00E+00	2.15E+02		NA	NA
Lead	1.50E-02	1.14E-03	1	1.00E+00	2.15E+02	2.84E+03	3.23E+00	3.23E+00
Zinc		2.23E-03	1	1.00E+00	2.15E+02		NA	NA

GROUNDWATER RESOURCE PROTECTION - WITHOUT BIODEGRADATION

*: Calculated concentrations exceeded saturated soil concentration and hence saturated soil concentrations are listed soil concentrations protective of groundwater.

#: Calculated concentrations exceeded pure component water solubility and hence water solubilities are listed as allowable groundwater concentrations at the POE and/or POC. Soil concentrations are presented on a dry weight basis.

MAIN

ADEM Tier II Risk Assessment Program

Location:

Former J.C. Box Texaco 400 East Second Street, Sheffield, Colbert County, Alabama Facility ID. #11732-033-04341 UST Incident #UST21-09-05

Point of Exposure (POE): POE = Southwest 510 feet (distance to property boundary =10 feet and >500 feet to POE = default of 510 feet)

> Source Area: MW-3, MW-5, & SB-8A

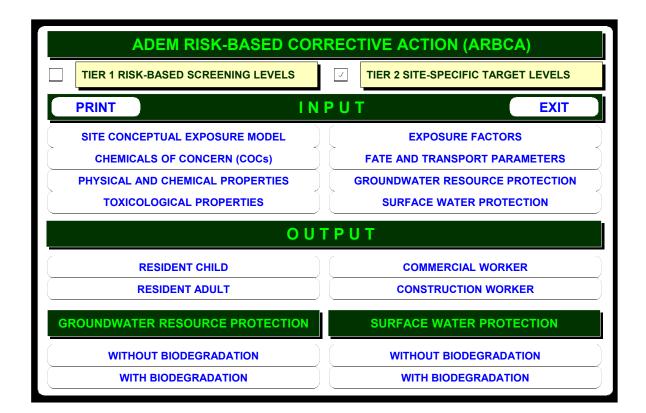
Point of Compliance (POC): MW-6 at 38 feet

GROUNDWATE	X RESUUR	CE PROTE			
Parameter	Symbol	Unit	Tier 1 Values	Values Used	Source
SITE PARAMETERS:					-
Distance from the Downgradient Edge of the Groundwater Source to the Point of Exposure (Xpoe)	Хрое	ft	variable	510	Site-specific
Longitudinal Dispersivity	α _x	ft	variable	51.000	Calculated
Transverse Dispersivity	α_{y}	ft	variable	17.000	Calculated
Vertical Dispersivity	α_z	ft	variable	2.550	Calculated
Distance from the Downgradient Edge of the Groundwater Source to the Point of Compliance (Xpoc)	Хрос	ft	variable	38	Site-specific
Longitudinal Dispersivity	$\alpha_{\rm x}$	ft	variable	3.800	Calculated
Transverse Dispersivity	α_{y}	ft	variable	1.267	Calculated
Vertical Dispersivity	αz	ft	variable	0.190	Calculated

GROUNDWATER RESOURCE PROTECTION

Note: The input values in red are calculated and cannot be changed.

T


CHEMICALS OF CONCERN	Target	Dry Leaching	User Specified	Saturated	Zone DAF	Allowable Soil	Allowable	GW Conc.
	Groundwater Conc.at POE	Factor to Groundwater (LFsw)	Unsaturated Zone DAF	for POC	for POE	Conc. Protective of GW at the POE	at a POC Protective of a POE	at the Source Protective of a POE
	[mg/L]	[mg/L]/[mg/kg]	[]	[]	[]	[mg/kg]	[mg/L]	[mg/L]
ORGANICS								
Benzene	5.00E-03	3.46E-02	1	1.97E+00	2.15E+02	3.10E+01	5.47E-01	1.08E+00
Toluene	1.00E+00	1.55E-02	1	1.97E+00	2.15E+02	4.70E+03 *	1.09E+02	2.15E+02
Ethylbenzene	7.00E-01	1.07E-02	1	1.97E+00	2.15E+02	2.19E+03 *	7.66E+01	1.51E+02
Xylenes (mixed)	1.00E+01	8.76E-03	1	1.97E+00	2.15E+02	2.77E+03 *	1.75E+02 #	1.75E+02 #
Methyl-tert-butyl-ether (MTBE)*	2.00E-02	1.68E-01	1	1.97E+00	2.15E+02	2.56E+01	2.19E+00	4.30E+00
Anthracene		9.36E-05	1	1.97E+00	2.15E+02	6.43E+01 *	4.34E-02 #	4.34E-02 #
Benzo(a)anthracene		6.14E-06	1	1.97E+00	2.15E+02	2.12E+02 *	9.40E-03 #	9.40E-03 #
Benzo(a)pyrene		2.27E-06	1	1.97E+00	2.15E+02	9.89E+01 *	1.62E-03 #	1.62E-03 #
Benzo(b)fluoranthene		1.79E-06	1	1.97E+00	2.15E+02	1.16E+02 *	1.50E-03 #	1.50E-03 #
Benzo(g,h,i)perylene		1.39E-06	1	1.97E+00	2.15E+02	6.97E+01 *	7.00E-04 #	7.00E-04 #
Benzo(k)fluoranthene		1.79E-06	1	1.97E+00	2.15E+02	6.20E+01 *	8.00E-04 #	8.00E-04 #
Chrysene		5.53E-06	1	1.97E+00	2.15E+02	4.01E+01 *	1.60E-03 #	1.60E-03 #
Fluoranthene		4.48E-05	1	1.97E+00	2.15E+02	6.37E+02 *	2.06E-01 #	2.06E-01 #
Fluorene		2.85E-04	1	1.97E+00	2.15E+02	9.62E+02 *	1.98E+00 #	1.98E+00 #
Naphthalene	2.00E-02	1.85E-03	1	1.97E+00	2.15E+02	2.33E+03 *	2.19E+00	4.30E+00
Phenanthrene		1.56E-04	1	1.97E+00	2.15E+02	8.88E+02 *	1.00E+00 #	1.00E+00 #
Pyrene		3.23E-05	1	1.97E+00	2.15E+02	5.78E+02 *	1.35E-01 #	1.35E-01 #
METALS								
Arsenic		2.16E-03	1	1.97E+00	2.15E+02		NA	NA
Barium		3.37E-03	1	1.97E+00	2.15E+02		NA	NA
Cadmium		1.85E-03	1	1.97E+00	2.15E+02		NA	NA
Chromium VI		7.27E-03	1	1.97E+00	2.15E+02		NA	NA
Lead	1.50E-02	1.14E-03	1	1.97E+00	2.15E+02	2.84E+03	1.64E+00	3.23E+00
Zinc		2.23E-03	1	1.97E+00	2.15E+02		NA	NA

GROUNDWATER RESOURCE PROTECTION - WITHOUT BIODEGRADATION

*: Calculated concentrations exceeded saturated soil concentration and hence saturated soil concentrations are listed soil concentrations protective of groundwater.

#: Calculated concentrations exceeded pure component water solubility and hence water solubilities are listed as allowable groundwater concentrations at the POE and/or POC. Soil concentrations are presented on a dry weight basis.

MAIN

ADEM Tier II Risk Assessment Program

Location:

Former J.C. Box Texaco 400 East Second Street, Sheffield, Colbert County, Alabama Facility ID. #11732-033-04341 UST Incident #UST21-09-05

Point of Exposure (POE): POE = Southwest 510 feet (distance to property boundary =10 feet and >500 feet to POE = default of 510 feet)

> Source Area: MW-3, MW-5, & SB-8A

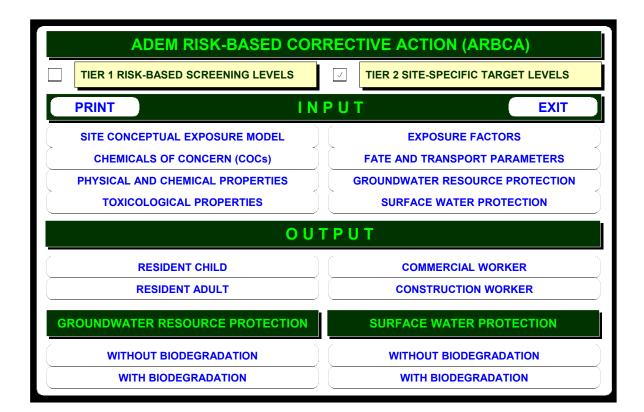
Point of Compliance (POC): MW-7 at 82 feet

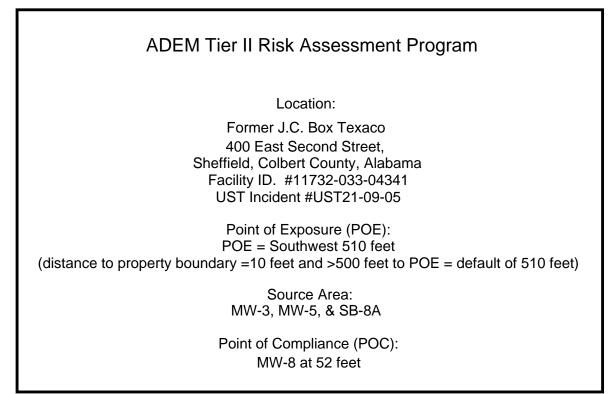
GROUNDWATE	K KESUUK	CE PROTE	CHON		
Parameter	Symbol	Unit	Tier 1 Values	Values Used	Source
SITE PARAMETERS:					-
Distance from the Downgradient Edge of the Groundwater Source to the Point of Exposure (Xpoe)	Хрое	ft	variable	510	Site-specific
Longitudinal Dispersivity	α_{x}	ft	variable	51.000	Calculated
Transverse Dispersivity	α_{y}	ft	variable	17.000	Calculated
Vertical Dispersivity	αz	ft	variable	2.550	Calculated
Distance from the Downgradient Edge of the Groundwater Source to the Point of Compliance (Xpoc)	Хрос	ft	variable	82	Site-specific
Longitudinal Dispersivity	$\alpha_{\rm x}$	ft	variable	8.200	Calculated
Transverse Dispersivity	α_{y}	ft	variable	2.733	Calculated
Vertical Dispersivity	α_z	ft	variable	0.410	Calculated

GROUNDWATER RESOURCE PROTECTION

Note: The input values in red are calculated and cannot be changed.

I


CHEMICALS OF CONCERN	Target	Dry Leaching	User Specified	Saturated	Zone DAF	Allowable Soil	Allowable	GW Conc.
	Groundwater Conc.at POE	Factor to Groundwater (LFsw)	Unsaturated Zone DAF	for POC	for POE	Conc. Protective of GW at the POE	at a POC Protective of a POE	at the Source Protective of a POE
	[mg/L]	[mg/L]/[mg/kg]	[]	[]	[]	[mg/kg]	[mg/L]	[mg/L]
ORGANICS								
Benzene	5.00E-03	3.46E-02	1	6.27E+00	2.15E+02	3.10E+01	1.72E-01	1.08E+00
Toluene	1.00E+00	1.55E-02	1	6.27E+00	2.15E+02	4.70E+03 *	3.43E+01	2.15E+02
Ethylbenzene	7.00E-01	1.07E-02	1	6.27E+00	2.15E+02	2.19E+03 *	2.40E+01	1.51E+02
Xylenes (mixed)	1.00E+01	8.76E-03	1	6.27E+00	2.15E+02	2.77E+03 *	1.75E+02 #	1.75E+02 #
Methyl-tert-butyl-ether (MTBE)*	2.00E-02	1.68E-01	1	6.27E+00	2.15E+02	2.56E+01	6.86E-01	4.30E+00
Anthracene		9.36E-05	1	6.27E+00	2.15E+02	6.43E+01 *	4.34E-02 #	4.34E-02 #
Benzo(a)anthracene		6.14E-06	1	6.27E+00	2.15E+02	2.12E+02 *	9.40E-03 #	9.40E-03 #
Benzo(a)pyrene		2.27E-06	1	6.27E+00	2.15E+02	9.89E+01 *	1.62E-03 #	1.62E-03 #
Benzo(b)fluoranthene		1.79E-06	1	6.27E+00	2.15E+02	1.16E+02 *	1.50E-03 #	1.50E-03 #
Benzo(g,h,i)perylene		1.39E-06	1	6.27E+00	2.15E+02	6.97E+01 *	7.00E-04 #	7.00E-04 #
Benzo(k)fluoranthene		1.79E-06	1	6.27E+00	2.15E+02	6.20E+01 *	8.00E-04 #	8.00E-04 #
Chrysene		5.53E-06	1	6.27E+00	2.15E+02	4.01E+01 *	1.60E-03 #	1.60E-03 #
Fluoranthene		4.48E-05	1	6.27E+00	2.15E+02	6.37E+02 *	2.06E-01 #	2.06E-01 #
Fluorene		2.85E-04	1	6.27E+00	2.15E+02	9.62E+02 *	1.98E+00 #	1.98E+00 #
Naphthalene	2.00E-02	1.85E-03	1	6.27E+00	2.15E+02	2.33E+03 *	6.86E-01	4.30E+00
Phenanthrene		1.56E-04	1	6.27E+00	2.15E+02	8.88E+02 *	1.00E+00 #	1.00E+00 #
Pyrene		3.23E-05	1	6.27E+00	2.15E+02	5.78E+02 *	1.35E-01 #	1.35E-01 #
METALS								
Arsenic		2.16E-03	1	6.27E+00	2.15E+02		NA	NA
Barium		3.37E-03	1	6.27E+00	2.15E+02		NA	NA
Cadmium		1.85E-03	1	6.27E+00	2.15E+02		NA	NA
Chromium VI		7.27E-03	1	6.27E+00	2.15E+02		NA	NA
Lead	1.50E-02	1.14E-03	1	6.27E+00	2.15E+02	2.84E+03	5.15E-01	3.23E+00
Zinc		2.23E-03	1	6.27E+00	2.15E+02		NA	NA


GROUNDWATER RESOURCE PROTECTION - WITHOUT BIODEGRADATION

*: Calculated concentrations exceeded saturated soil concentration and hence saturated soil concentrations are listed soil concentrations protective of groundwater.

#: Calculated concentrations exceeded pure component water solubility and hence water solubilities are listed as allowable groundwater concentrations at the POE and/or POC. Soil concentrations are presented on a dry weight basis.

MAIN

GROUNDWATE	X RESUUR	CE PROTE			
Parameter	Symbol	Unit	Tier 1 Values	Values Used	Source
SITE PARAMETERS:					-
Distance from the Downgradient Edge of the Groundwater Source to the Point of Exposure (Xpoe)	Хрое	ft	variable	510	Site-specific
Longitudinal Dispersivity	α_{x}	ft	variable	51.000	Calculated
Transverse Dispersivity	α_{y}	ft	variable	17.000	Calculated
Vertical Dispersivity	α_z	ft	variable	2.550	Calculated
Distance from the Downgradient Edge of the Groundwater Source to the Point of Compliance (Xpoc)	Хрос	ft	variable	52	Site-specific
Longitudinal Dispersivity	α_{x}	ft	variable	5.200	Calculated
Transverse Dispersivity	α_{y}	ft	variable	1.733	Calculated
Vertical Dispersivity	αz	ft	variable	0.260	Calculated

GROUNDWATER RESOURCE PROTECTION

Note: The input values in red are calculated and cannot be changed.

T

CHEMICALS OF CONCERN	Target	Dry Leaching	User Specified	Saturated	Zone DAF	Allowable Soil	Allowable	GW Conc.
	Groundwater Conc.at POE	Factor to Groundwater (LFsw)	Unsaturated Zone DAF	for POC	for POE	Conc. Protective of GW at the POE	at a POC Protective of a POE	at the Source Protective of a POE
	[mg/L]	[mg/L]/[mg/kg]	[]	[]	[]	[mg/kg]	[mg/L]	[mg/L]
ORGANICS								
Benzene	5.00E-03	3.46E-02	1	2.98E+00	2.15E+02	3.10E+01	3.61E-01	1.08E+00
Toluene	1.00E+00	1.55E-02	1	2.98E+00	2.15E+02	4.70E+03 *	7.22E+01	2.15E+02
Ethylbenzene	7.00E-01	1.07E-02	1	2.98E+00	2.15E+02	2.19E+03 *	5.06E+01	1.51E+02
Xylenes (mixed)	1.00E+01	8.76E-03	1	2.98E+00	2.15E+02	2.77E+03 *	1.75E+02 #	1.75E+02 #
Methyl-tert-butyl-ether (MTBE)*	2.00E-02	1.68E-01	1	2.98E+00	2.15E+02	2.56E+01	1.44E+00	4.30E+00
Anthracene		9.36E-05	1	2.98E+00	2.15E+02	6.43E+01 *	4.34E-02 #	4.34E-02 #
Benzo(a)anthracene		6.14E-06	1	2.98E+00	2.15E+02	2.12E+02 *	9.40E-03 #	9.40E-03 #
Benzo(a)pyrene		2.27E-06	1	2.98E+00	2.15E+02	9.89E+01 *	1.62E-03 #	1.62E-03 #
Benzo(b)fluoranthene		1.79E-06	1	2.98E+00	2.15E+02	1.16E+02 *	1.50E-03 #	1.50E-03 #
Benzo(g,h,i)perylene		1.39E-06	1	2.98E+00	2.15E+02	6.97E+01 *	7.00E-04 #	7.00E-04 #
Benzo(k)fluoranthene		1.79E-06	1	2.98E+00	2.15E+02	6.20E+01 *	8.00E-04 #	8.00E-04 #
Chrysene		5.53E-06	1	2.98E+00	2.15E+02	4.01E+01 *	1.60E-03 #	1.60E-03 #
Fluoranthene		4.48E-05	1	2.98E+00	2.15E+02	6.37E+02 *	2.06E-01 #	2.06E-01 #
Fluorene		2.85E-04	1	2.98E+00	2.15E+02	9.62E+02 *	1.98E+00 #	1.98E+00 #
Naphthalene	2.00E-02	1.85E-03	1	2.98E+00	2.15E+02	2.33E+03 *	1.44E+00	4.30E+00
Phenanthrene		1.56E-04	1	2.98E+00	2.15E+02	8.88E+02 *	1.00E+00 #	1.00E+00 #
Pyrene		3.23E-05	1	2.98E+00	2.15E+02	5.78E+02 *	1.35E-01 #	1.35E-01 #
METALS								
Arsenic		2.16E-03	1	2.98E+00	2.15E+02		NA	NA
Barium		3.37E-03	1	2.98E+00	2.15E+02		NA	NA
Cadmium		1.85E-03	1	2.98E+00	2.15E+02		NA	NA
Chromium VI		7.27E-03	1	2.98E+00	2.15E+02		NA	NA
Lead	1.50E-02	1.14E-03	1	2.98E+00	2.15E+02	2.84E+03	1.08E+00	3.23E+00
Zinc		2.23E-03	1	2.98E+00	2.15E+02		NA	NA

GROUNDWATER RESOURCE PROTECTION - WITHOUT BIODEGRADATION

*: Calculated concentrations exceeded saturated soil concentration and hence saturated soil concentrations are listed soil concentrations protective of groundwater.

#: Calculated concentrations exceeded pure component water solubility and hence water solubilities are listed as allowable groundwater concentrations at the POE and/or POC. Soil concentrations are presented on a dry weight basis.

MAIN

ADEM RISK-BASED CORRECTIVE ACTION (ARBCA)						
TIER 1 RISK-BASED SCREENING LEVELS	TIER 2 SITE-SPECIFIC TARGET LEVELS					
PRINT I N	PUT EXIT					
SITE CONCEPTUAL EXPOSURE MODEL	EXPOSURE FACTORS					
CHEMICALS OF CONCERN (COCs)	FATE AND TRANSPORT PARAMETERS					
PHYSICAL AND CHEMICAL PROPERTIES	GROUNDWATER RESOURCE PROTECTION					
TOXICOLOGICAL PROPERTIES	SURFACE WATER PROTECTION					
O U [.]	TPUT					
RESIDENT CHILD						
RESIDENT ADULT	CONSTRUCTION WORKER					
GROUNDWATER RESOURCE PROTECTION	SURFACE WATER PROTECTION					
WITHOUT BIODEGRADATION	WITHOUT BIODEGRADATION					
WITH BIODEGRADATION	WITH BIODEGRADATION					

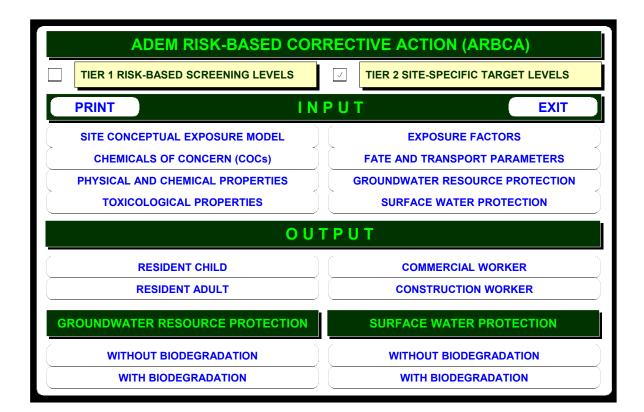
ADEM Tier II Risk Assessment Program								
Location:								
Former J.C. Box Texaco 400 East Second Street, Sheffield, Colbert County, Alabama Facility ID. #11732-033-04341 UST Incident #UST21-09-05								
Point of Exposure (POE): POE = Southwest 510 feet (distance to property boundary =10 feet and >500 feet to POE = default of 510 feet)								
Source Area: MW-3, MW-5, & SB-8A								
Point of Compliance (POC): MW-9 at 110 feet								

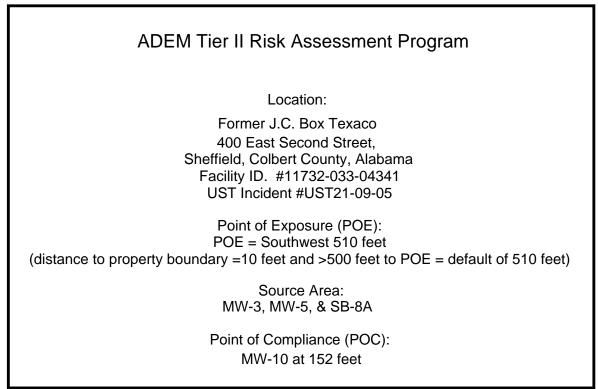
GROUNDWATER RESOURCE PROTECTION								
Parameter	Symbol	Unit	Tier 1 Values	Values Used	Source			
SITE PARAMETERS:					-			
Distance from the Downgradient Edge of the Groundwater Source to the Point of Exposure (Xpoe)	Хрое	ft	variable	510	Site-specific			
Longitudinal Dispersivity	α _x	ft	variable	51.000	Calculated			
Transverse Dispersivity	α_{y}	ft	variable	17.000	Calculated			
Vertical Dispersivity	α_z	ft	variable	2.550	Calculated			
Distance from the Downgradient Edge of the Groundwater Source to the Point of Compliance (Xpoc)	Хрос	ft	variable	110	Site-specific			
Longitudinal Dispersivity	$\alpha_{\rm x}$	ft	variable	11.000	Calculated			
Transverse Dispersivity	α_{y}	ft	variable	3.667	Calculated			
Vertical Dispersivity	αz	ft	variable	0.550	Calculated			

GROUNDWATER RESOURCE PROTECTION

Note: The input values in red are calculated and cannot be changed.

T


CHEMICALS OF CONCERN	Target	Dry Leaching	User Specified	Saturated	Zone DAF	Allowable Soil	Allowable	GW Conc.
	Groundwater Conc.at POE	Factor to Groundwater (LFsw)	Unsaturated Zone DAF	for POC	for POE	Conc. Protective of GW at the POE	at a POC Protective of a POE	at the Source Protective of a POE
	[mg/L]	[mg/L]/[mg/kg]	[]	[]	[]	[mg/kg]	[mg/L]	[mg/L]
ORGANICS								
Benzene	5.00E-03	3.46E-02	1	1.07E+01	2.15E+02	3.10E+01	1.01E-01	1.08E+00
Toluene	1.00E+00	1.55E-02	1	1.07E+01	2.15E+02	4.70E+03 *	2.01E+01	2.15E+02
Ethylbenzene	7.00E-01	1.07E-02	1	1.07E+01	2.15E+02	2.19E+03 *	1.41E+01	1.51E+02
Xylenes (mixed)	1.00E+01	8.76E-03	1	1.07E+01	2.15E+02	2.77E+03 *	1.75E+02 #	1.75E+02 #
Methyl-tert-butyl-ether (MTBE)*	2.00E-02	1.68E-01	1	1.07E+01	2.15E+02	2.56E+01	4.02E-01	4.30E+00
Anthracene		9.36E-05	1	1.07E+01	2.15E+02	6.43E+01 *	4.34E-02 #	4.34E-02 #
Benzo(a)anthracene		6.14E-06	1	1.07E+01	2.15E+02	2.12E+02 *	9.40E-03 #	9.40E-03 #
Benzo(a)pyrene		2.27E-06	1	1.07E+01	2.15E+02	9.89E+01 *	1.62E-03 #	1.62E-03 #
Benzo(b)fluoranthene		1.79E-06	1	1.07E+01	2.15E+02	1.16E+02 *	1.50E-03 #	1.50E-03 #
Benzo(g,h,i)perylene		1.39E-06	1	1.07E+01	2.15E+02	6.97E+01 *	7.00E-04 #	7.00E-04 #
Benzo(k)fluoranthene		1.79E-06	1	1.07E+01	2.15E+02	6.20E+01 *	8.00E-04 #	8.00E-04 #
Chrysene		5.53E-06	1	1.07E+01	2.15E+02	4.01E+01 *	1.60E-03 #	1.60E-03 #
Fluoranthene		4.48E-05	1	1.07E+01	2.15E+02	6.37E+02 *	2.06E-01 #	2.06E-01 #
Fluorene		2.85E-04	1	1.07E+01	2.15E+02	9.62E+02 *	1.98E+00 #	1.98E+00 #
Naphthalene	2.00E-02	1.85E-03	1	1.07E+01	2.15E+02	2.33E+03 *	4.02E-01	4.30E+00
Phenanthrene		1.56E-04	1	1.07E+01	2.15E+02	8.88E+02 *	1.00E+00 #	1.00E+00 #
Pyrene		3.23E-05	1	1.07E+01	2.15E+02	5.78E+02 *	1.35E-01 #	1.35E-01 #
METALS								
Arsenic		2.16E-03	1	1.07E+01	2.15E+02		NA	NA
Barium		3.37E-03	1	1.07E+01	2.15E+02		NA	NA
Cadmium		1.85E-03	1	1.07E+01	2.15E+02		NA	NA
Chromium VI		7.27E-03	1	1.07E+01	2.15E+02		NA	NA
Lead	1.50E-02	1.14E-03	1	1.07E+01	2.15E+02	2.84E+03	3.02E-01	3.23E+00
Zinc		2.23E-03	1	1.07E+01	2.15E+02		NA	NA


GROUNDWATER RESOURCE PROTECTION - WITHOUT BIODEGRADATION

*: Calculated concentrations exceeded saturated soil concentration and hence saturated soil concentrations are listed soil concentrations protective of groundwater.

#: Calculated concentrations exceeded pure component water solubility and hence water solubilities are listed as allowable groundwater concentrations at the POE and/or POC. Soil concentrations are presented on a dry weight basis.

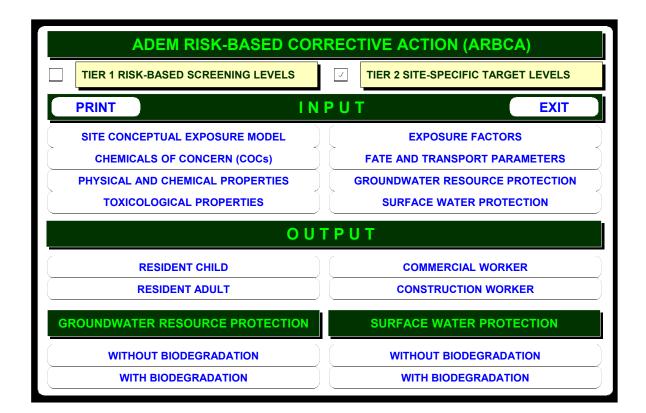
MAIN

GROUNDWATER RESOURCE PROTECTION									
Parameter	Symbol	Unit	Tier 1 Values	Values Used	Source				
SITE PARAMETERS:					-				
Distance from the Downgradient Edge of the Groundwater Source to the Point of Exposure (Xpoe)	Хрое	ft	variable	510	Site-specific				
Longitudinal Dispersivity	α _x	ft	variable	51.000	Calculated				
Transverse Dispersivity	α_{y}	ft	variable	17.000	Calculated				
Vertical Dispersivity	α_z	ft	variable	2.550	Calculated				
Distance from the Downgradient Edge of the Groundwater Source to the Point of Compliance (Xpoc)	Хрос	ft	variable	152	Site-specific				
Longitudinal Dispersivity	$\alpha_{\rm x}$	ft	variable	15.200	Calculated				
Transverse Dispersivity	α_{y}	ft	variable	5.067	Calculated				
Vertical Dispersivity	αz	ft	variable	0.760	Calculated				

GROUNDWATER RESOURCE PROTECTION

Note: The input values in red are calculated and cannot be changed.

T


CHEMICALS OF CONCERN	Target	Dry Leaching	User Specified	Saturated	Zone DAF	Allowable Soil	Allowable	GW Conc.
	Groundwater Conc.at POE	Factor to Groundwater (LFsw)	Unsaturated Zone DAF	for POC	for POE	Conc. Protective of GW at the POE	at a POC Protective of a POE	at the Source Protective of a POE
	[mg/L]	[mg/L]/[mg/kg]	[]	[]	[]	[mg/kg]	[mg/L]	[mg/L]
ORGANICS								
Benzene	5.00E-03	3.46E-02	1	1.98E+01	2.15E+02	3.10E+01	5.44E-02	1.08E+00
Toluene	1.00E+00	1.55E-02	1	1.98E+01	2.15E+02	4.70E+03 *	1.09E+01	2.15E+02
Ethylbenzene	7.00E-01	1.07E-02	1	1.98E+01	2.15E+02	2.19E+03 *	7.62E+00	1.51E+02
Xylenes (mixed)	1.00E+01	8.76E-03	1	1.98E+01	2.15E+02	2.77E+03 *	1.09E+02	1.75E+02 #
Methyl-tert-butyl-ether (MTBE)*	2.00E-02	1.68E-01	1	1.98E+01	2.15E+02	2.56E+01	2.18E-01	4.30E+00
Anthracene		9.36E-05	1	1.98E+01	2.15E+02	6.43E+01 *	4.34E-02 #	4.34E-02 #
Benzo(a)anthracene		6.14E-06	1	1.98E+01	2.15E+02	2.12E+02 *	9.40E-03 #	9.40E-03 #
Benzo(a)pyrene		2.27E-06	1	1.98E+01	2.15E+02	9.89E+01 *	1.62E-03 #	1.62E-03 #
Benzo(b)fluoranthene		1.79E-06	1	1.98E+01	2.15E+02	1.16E+02 *	1.50E-03 #	1.50E-03 #
Benzo(g,h,i)perylene		1.39E-06	1	1.98E+01	2.15E+02	6.97E+01 *	7.00E-04 #	7.00E-04 #
Benzo(k)fluoranthene		1.79E-06	1	1.98E+01	2.15E+02	6.20E+01 *	8.00E-04 #	8.00E-04 #
Chrysene		5.53E-06	1	1.98E+01	2.15E+02	4.01E+01 *	1.60E-03 #	1.60E-03 #
Fluoranthene		4.48E-05	1	1.98E+01	2.15E+02	6.37E+02 *	2.06E-01 #	2.06E-01 #
Fluorene		2.85E-04	1	1.98E+01	2.15E+02	9.62E+02 *	1.98E+00 #	1.98E+00 #
Naphthalene	2.00E-02	1.85E-03	1	1.98E+01	2.15E+02	2.33E+03 *	2.18E-01	4.30E+00
Phenanthrene		1.56E-04	1	1.98E+01	2.15E+02	8.88E+02 *	1.00E+00 #	1.00E+00 #
Pyrene		3.23E-05	1	1.98E+01	2.15E+02	5.78E+02 *	1.35E-01 #	1.35E-01 #
METALS								
Arsenic		2.16E-03	1	1.98E+01	2.15E+02		NA	NA
Barium		3.37E-03	1	1.98E+01	2.15E+02		NA	NA
Cadmium		1.85E-03	1	1.98E+01	2.15E+02		NA	NA
Chromium VI		7.27E-03	1	1.98E+01	2.15E+02		NA	NA
Lead	1.50E-02	1.14E-03	1	1.98E+01	2.15E+02	2.84E+03	1.63E-01	3.23E+00
Zinc		2.23E-03	1	1.98E+01	2.15E+02		NA	NA

GROUNDWATER RESOURCE PROTECTION - WITHOUT BIODEGRADATION

*: Calculated concentrations exceeded saturated soil concentration and hence saturated soil concentrations are listed soil concentrations protective of groundwater.

#: Calculated concentrations exceeded pure component water solubility and hence water solubilities are listed as allowable groundwater concentrations at the POE and/or POC. Soil concentrations are presented on a dry weight basis.

MAIN

ADEM Tier II Risk Assessment Program Location: Former J.C. Box Texaco 400 East Second Street, Sheffield, Colbert County, Alabama Facility ID. #11732-033-04341 UST Incident #UST21-09-05 Point of Exposure (POE): POE = Southwest 510 feet (distance to property boundary =10 feet and >500 feet to POE = default of 510 feet) Source Area: MW-3, MW-5, & SB-8A Point of Compliance (POC): MW-11 at 10 feet

GROUNDWATER RESOURCE PROTECTION									
Parameter	Symbol	Unit	Tier 1 Values	Values Used	Source				
SITE PARAMETERS:					-				
Distance from the Downgradient Edge of the Groundwater Source to the Point of Exposure (Xpoe)	Хрое	ft	variable	510	Site-specific				
Longitudinal Dispersivity	$\alpha_{\rm x}$	ft	variable	51.000	Calculated				
Transverse Dispersivity	α_{y}	ft	variable	17.000	Calculated				
Vertical Dispersivity	α_z	ft	variable	2.550	Calculated				
Distance from the Downgradient Edge of the Groundwater Source to the Point of Compliance (Xpoc)	Хрос	ft	variable	10	Site-specific				
Longitudinal Dispersivity	$\alpha_{\rm x}$	ft	variable	1.000	Calculated				
Transverse Dispersivity	α_{y}	ft	variable	0.333	Calculated				
Vertical Dispersivity	αz	ft	variable	0.050	Calculated				

GROUNDWATER RESOURCE PROTECTION

Note: The input values in red are calculated and cannot be changed.

T

CHEMICALS OF CONCERN	Target	Dry Leaching	User Specified	Saturated	Zone DAF	Allowable Soil	Allowable	GW Conc.
	Groundwater Conc.at POE	Factor to Groundwater (LFsw)	Unsaturated Zone DAF	for POC	for POE	Conc. Protective of GW at the POE	at a POC Protective of a POE	at the Source Protective of a POE
	[mg/L]	[mg/L]/[mg/kg]	[]	[]	[]	[mg/kg]	[mg/L]	[mg/L]
ORGANICS								
Benzene	5.00E-03	3.46E-02	1	1.00E+00	2.15E+02	3.10E+01	1.07E+00	1.08E+00
Toluene	1.00E+00	1.55E-02	1	1.00E+00	2.15E+02	4.70E+03 *	2.14E+02	2.15E+02
Ethylbenzene	7.00E-01	1.07E-02	1	1.00E+00	2.15E+02	2.19E+03 *	1.50E+02	1.51E+02
Xylenes (mixed)	1.00E+01	8.76E-03	1	1.00E+00	2.15E+02	2.77E+03 *	1.75E+02 #	1.75E+02 #
Methyl-tert-butyl-ether (MTBE)*	2.00E-02	1.68E-01	1	1.00E+00	2.15E+02	2.56E+01	4.29E+00	4.30E+00
Anthracene		9.36E-05	1	1.00E+00	2.15E+02	6.43E+01 *	4.34E-02 #	4.34E-02 #
Benzo(a)anthracene		6.14E-06	1	1.00E+00	2.15E+02	2.12E+02 *	9.40E-03 #	9.40E-03 #
Benzo(a)pyrene		2.27E-06	1	1.00E+00	2.15E+02	9.89E+01 *	1.62E-03 #	1.62E-03 #
Benzo(b)fluoranthene		1.79E-06	1	1.00E+00	2.15E+02	1.16E+02 *	1.50E-03 #	1.50E-03 #
Benzo(g,h,i)perylene		1.39E-06	1	1.00E+00	2.15E+02	6.97E+01 *	7.00E-04 #	7.00E-04 #
Benzo(k)fluoranthene		1.79E-06	1	1.00E+00	2.15E+02	6.20E+01 *	8.00E-04 #	8.00E-04 #
Chrysene		5.53E-06	1	1.00E+00	2.15E+02	4.01E+01 *	1.60E-03 #	1.60E-03 #
Fluoranthene		4.48E-05	1	1.00E+00	2.15E+02	6.37E+02 *	2.06E-01 #	2.06E-01 #
Fluorene		2.85E-04	1	1.00E+00	2.15E+02	9.62E+02 *	1.98E+00 #	1.98E+00 #
Naphthalene	2.00E-02	1.85E-03	1	1.00E+00	2.15E+02	2.33E+03 *	4.29E+00	4.30E+00
Phenanthrene		1.56E-04	1	1.00E+00	2.15E+02	8.88E+02 *	1.00E+00 #	1.00E+00 #
Pyrene		3.23E-05	1	1.00E+00	2.15E+02	5.78E+02 *	1.35E-01 #	1.35E-01 #
METALS								
Arsenic		2.16E-03	1	1.00E+00	2.15E+02		NA	NA
Barium		3.37E-03	1	1.00E+00	2.15E+02		NA	NA
Cadmium		1.85E-03	1	1.00E+00	2.15E+02		NA	NA
Chromium VI		7.27E-03	1	1.00E+00	2.15E+02		NA	NA
Lead	1.50E-02	1.14E-03	1	1.00E+00	2.15E+02	2.84E+03	3.22E+00	3.23E+00
Zinc		2.23E-03	1	1.00E+00	2.15E+02		NA	NA

GROUNDWATER RESOURCE PROTECTION - WITHOUT BIODEGRADATION

*: Calculated concentrations exceeded saturated soil concentration and hence saturated soil concentrations are listed soil concentrations protective of groundwater.

#: Calculated concentrations exceeded pure component water solubility and hence water solubilities are listed as allowable groundwater concentrations at the POE and/or POC. Soil concentrations are presented on a dry weight basis.