McNeill, Catherine

From: Wilson, Leslie A <Leslie.Wilson@boem.gov>

Sent: Thursday, May 1, 2025 11:16 AM **To:** Mickle, Sarila A; Mobile Coastal Mail

Subject: AL CZM Review and Comment of Plan Control N-10256

Attachments: N10256ALCZMltr.pdf

You don't often get email from leslie.wilson@boem.gov. Learn why this is important

Good morning,

Attached is the BOEM, Plans Section letter. For your convenience, the link of the public plan placed on the BOEM website of the submitted plan Control N-10256

is: https://www.data.boem.gov/PDFDocs/Scan/PLANS/58/58322.pdf

Please email if there are any questions or issues.

Thank you, Leslie

Leslie W. Wilson

Lead Regulatory Specialist, Plans Section
Office of Leasing and Plans
Gulf of America Region
(504) 736-2588

BUREAU OF OCEAN
ENERGY MANAGEMENT

United States Department of the Interior

BUREAU OF OCEAN ENERGY MANAGEMENT

Gulf of Mexico OCS Region 1201 Elmwood Park Boulevard New Orleans, LA 70123 2394

In Reply Refer To: GM 235D May 1, 2025

Alabama Department of Environmental Management Attn: Ms. Sarila Mickle Coastal Section 3664 Dauphin Street, Suite B Mobile, Alabama 36608-1211

Dear Ms. Mickle,

In accordance with 30 CFR 550.232(a)(2), enclosed for your review and coastal zone consistency determination is the following plan and its accompanying documents:

Control # -N-10256

Initial Development Operations Coordination Document Type OCS-G 25792, Block 292, Keathley Canyon Area (KC) Lease(s)

Operator - BP Exploration & Production Inc.

Description - Subsea Wells DC1, DC1 A, DC1 B, DC1 C, DC1 D, DC1 E,

DC2, DC2 A, DC2 B, DC2 C, DC2 D, and DC2 E

Please refer to the above control number in all communication and correspondence concerning the subject plan.

Your review and comments are requested by June 13, 2025.

Sincerely,

Leslie Wilson Plan Coordinator Office of Leasing and Plans, Plans Section

Enclosure

UNITED STATES GOVERNMENT MEMORANDUM

April 30, 2025

To: Public Information (MS 5030)

From: Plan Coordinator, FO, Plans Section (MS

5231)

Subject: Public Information copy of plan

Control # - N-10256

Type - Initial Development Operations Coordinations Document

Lease(s) - OCS-G25792 Block - 292 Keathley Canyon Area

OCS- Block - 293 Keathley Canyon Area

Operator - BP Exploration & Production Inc.

Description - Kaskida FPU, DC1, DC1 A, DC1 B, DC1 C, DC1 D, DC1 E, DC2, DC2

Rig Type - A,DC2 B, DC2 C,DC2 D, DC2 E

Not Found

Attached is a copy of the subject plan.

It has been deemed submitted as of this date and is under review for approval.

Leslie Wilson Plan Coordinator

Site Type/Name	Botm Lse/Area/Blk	Surface Location	on	Surf Lse/Area/Blk
????/DC1		2777 FSL, 6834	FEL	G25792/KC/292
????/DC2		2910 FSL, 3920	FWL	G25792/KC/292
FPSO/KASKIDA		6359 FSL, 3574	FWL	/KC/293
WELL/DC1 A	G25792/KC/292	2859 FSL, 6773	FEL	G25792/KC/292
WELL/DC1 B	G25792/KC/292	2737 FSL, 6740	FEL	G25792/KC/292
WELL/DC1 C	G25792/KC/292	2726 FSL, 6923	FEL	G25792/KC/292
WELL/DC1 D	G25792/KC/292	2800 FSL, 6734	FEL	G25792/KC/292
WELL/DC1 E	G25792/KC/292	2788 FSL, 6936	FEL	G25792/KC/292
WELL/DC2 A	G25792/KC/292	2992 FSL, 3981	FWL	G25792/KC/292
WELL/DC2 B	G25792/KC/292	2870 FSL, 4014	FWL	G25792/KC/292
WELL/DC2 C	G25792/KC/292	2859 FSL, 3831	FWL	G25792/KC/292
WELL/DC2 D	G25792/KC/292	2933 FSL, 4020	FWL	G25792/KC/292
WELL/DC2 E	G25792/KC/292	3921 FSL, 3818	FWL	G25792/KC/292

Betsy Cleland

Regulatory Lead - Paleogene Gulf of America Region

BP Exploration & Production Inc.

501 Westlake Park Blvd – WL1 Houston, Texas 77079 Telephone: 281-773-9088 Email: Betsy.Cleland@bp.com

February 14, 2025

Via Email

Ms. Michelle Uli Picou Plans Section Chief MS GM 1053C Bureau of Ocean Energy Management 1201 Elmwood Park Blvd. New Orleans, LA 70123-2394

Reference: Initial Development Operations Coordination Document

Kaskida Project

Keathley Canyon Blocks 292 and 293 Lease OCS-G 25792 and 26739 (Expired)

Keathley Canyon Block 292 Unit Agreement 754307002

Dear Ms. Picou:

BP Exploration & Production Inc. (bp) submits for your review and approval an Initial Development Operations Coordination Document (DOCD) for the Kaskida project, to drill six development wells with four back-up wells at two different well centers (DC1 and DC2), install a semi-submersible floating production unit (FPU) with 12 mooring lines, and associated subsea infrastructure in KC 292 and KC 293. Enclosed please find the following:

 One digital copy each of the Initial DOCD proprietary and public information versions for BOEM and CZM reviews.

Please note that the supporting documentation for the DOCD was developed before issuance of Executive Order 14172 (January 20, 2025) changing the name from Gulf of Mexico to Gulf of America. Although the name Gulf of America has been applied (where appropriate) in the body of the DOCD submittal, references to Gulf of Mexico in the supporting documentation have not been changed.

If you have any questions or need additional information, please don't hesitate to contact the undersigned at Betsy. Cleland@bp.com, or at (281) 773-9088.

Sincerely,

Betsy Cleland

Regulatory Lead - Paleogene

P&O – projects Kaskida

Initial DOCD Keathley Canyon Blocks 292 and 293 OCS-G 25792 and 26739 (Expired) Public Copy

Applicability: P&O – Kaskida

Approver: John Boyle

Approval Date: 14 February 2023 2025 Dogue Dogue

Author: Betsy Cleland

Checker: Vashtie Bajnath

Checker Date: 06-02-2025

Security Classification: General

Document Number: GM060-IR-PRM-000-00008

Revision Code: B01
Reason for Issue: IFU

Sector Code: 10

Next Review Date: N/A

Use and Interpretation of this document

This document is classified as General unless labelled otherwise. It contains bp proprietary information. bp's Code of Conduct requires you to protect that information. Refer to the <u>Protecting our Information Policy</u> for more details.

Outside bp, you can only distribute and use this document in accordance with the terms of any agreement under which it was supplied or received. bp accepts no liability or responsibility for the use of this document outside bp, unless an agreement with bp says otherwise.

This document applies only if it is consistent with applicable legal and regulatory requirements. If you are within bp and you identify an apparent conflict with those requirements, you should consult bp Legal.

This document has been approved for by's purposes only and not to describe or establish an industry standard or practice. Any recommendations or guidance are to help users to consider and evaluate potential options. Another approach may be appropriate.

The authoritative, English version of this document is held online at

https://gpo.bpglobal.com/Library/Pages/default.aspx. It takes precedence over any prior version and any non-English version.

Copyright © 2020. bp International Ltd. All rights reserved.

Revision History

Rev	Reason for Issue/Revisions	Author	Checker	Checker Date	Approver	Approval Date
B01	Issued for Use	ВС	VB	02/06/25	JB	02/12/25

Operating Management System

OMS Sub- Element	OMS Sub-Element Title
7.1	Privilege to Operate
7.1	Privilege to Operate

Reviewers

Name	Role	Date Reviewed
Walid Soliman	Subsea Engineering Manager	02/11/2025
Shanna Singh	Sr. Drilling Engineer	02/07/2025
Brandon James	Sr. Completions Engineer	02/07/2025
Werner Schinagl	Area Development Manager - Paleogene	02/11/2025
Janie Zhang	Geologist	02/07/2025
		7

TABLE OF CONTENTS

Plan Contents	6
1.1	Description of Activities6
1.2	History of Unit Leases6
1.3	Location
1.4	Safety and Pollution Prevention Measures
1.5	Storage Tanks and Production Vessels
1.5.1	Storage Tanks - DP Drillship
1.5.2	Storage Tanks Support Vessels - Updated 8
1.6	Additional Measures9
General Inform	nation10
2.1	Applications and Permits 10
2.2	Drilling Fluids
2.3	New or Unusual Technology
2.4	Bonding Information
2.5	Oil Spill Financial Responsibility (OSFR)
2.6	Deepwater Well Control Statement 11
2.7	Suspensions of Production
2.8	Blowout Scenario
2.8.1	Blowout Scenario
2.8.2	The Potential for the Well to Bridge Over12
2.8.3	The Likelihood for Surface Intervention to Stop the Blowout 12
2.8.4	The Availability and Timing of a Rig to Drill a Relief Well12
2.8.5	Measures That Would Enhance the Ability to Prevent a Blowout 12
2.8.6	Measures That Would Reduce the Likelihood of a Blowout 13
2.8.7	Measures Which Would Enhance the Ability to Conduct Early
	Intervention
2.8.8	Other Measures
Geological and	Geophysical Information15
3.1	Geological Description15
3.2	Structure Contour Maps
3.3	Interpreted 2-D and/or 3D Seismic Lines
3.4	Geological Structure Cross-Section Maps 15
3.5	Shallow Hazards Report15
3.6	Shallow Hazards Assessments (Site Clearance Letters) 15
3.7	High Resolution Seismic Lines
Hydrogen Sulf	ide (H ₂ S) Information16
4.1	Hydrogen Sulfide (H ₂ S) Information
4.2	H ₂ S Contingency Plan
4.3	Modeling Report
Mineral Desou	rce Conservation Information 17

5.1	Technology and Reservoir Engineering Practices and Procedure	es 17
5.2	Technology and Recovery Practices and Procedures	17
5.3	Reservoir Developments	17
Biological a	and Physical Information	18
6.1	Benthic Communities Report	18
6.2	Topographic Features Map	18
6.3	Topographic Features Statement (Shunting)	18
6.4	Live Bottom (Pinnacle Trend) Information	18
6.5	Live Bottom (Low Relief) Map	18
6.6	Biologically Sensitive Underwater Features and Areas	18
6.7	Remotely Operated Vehicle (ROV) Monitoring Survey Plan	19
6.8	Threatened or Endangered Species, Critical Habitat and Marine Mammal Information	
Waste and	Discharge Information	23
7.1	Projected Generated Wastes	
7.2	Projected Ocean Discharges	23
7.3	Modeling Report	23
Air Emissio	ons Information	24
8.1	Screening Questions	24
8.2	Emissions Worksheet	24
8.3	Emission Reductions Measures	24
8.4	Verification of Non-Default Emission Factors	24
8.5	Distance to Shore for Emission Exemption Thresholds (EET)	25
8.6	Non-Exempt Activities	25
8.7	Hydrogen Sulfide	25
8.8	Environmental Impact Analysis (EIA)	25
Oil Spill Inf	formation	26
9.1	Oil Spill Response Planning	26
9.1.1	Regional OSRP Information	26
9.1.2	Spill Response Sites	26
9.1.3	OSRO Information	26
9.1.4	Worst-case Scenario Determination	27
9.2	Oil Spill Response Discussion	27
9.3	Modeling Report	28
Environme	ntal Monitoring and Mitigation Measures	29
10.1	Monitoring Systems	29
10.2	Incidental Takes	29
10.3	Flower Garden Banks National Marine Sanctuary	29
Lease Stipu	ılations	30
11.1	Lease Stipulation Information	30
Related Fac	cilities and Operations Information	31
12.1	Related OCS Facilities and Operations	31

12.2	Transportation Systems	31
12.3	Produced Liquid Hydrocarbons Transportation Vessels	31
Support Vess	els and Aircraft Information	32
13.1	Support Vessel and Aircraft Information Table	32
13.2	Diesel Oil Supply Vessels	32
13.3	Solid and Liquid Wastes Transportation and Disposal	32
13.4	Vicinity Map	32
Onshore Supp	oort Facilities Information	33
14.1	General	
14.2	Support Base Construction or Expansion	33
Coastal Zone	Management Act (CZMA) Information	34
15.1	Consistency Certification	34
Environment	al Impact Analysis (EIA)	35
16.1	Environmental Impact Analysis	35
Administrativ	ve Information	36
17.1	Exempted Information Description	36
17.2	Bibliography	36
17.3	Other Reference Items	36
17.4	Recovery Fees	36
Appendixes		37
Appendix A:	Plan Information Forms – Form BOEM-0137	38
Appendix B:	Vicinity Maps, Location Plats, and Bathymetry Maps	39
Appendix C:	Shallow Hazards Assessments for Wells, Mooring Pre-Lay & Wei	t
	Parking Risers (Site Clearance Letters)	40
Appendix D:	Wastes and Discharges Tables (Projected Generated Wastes and	t
	Projected Ocean Discharges)	41
Appendix E:	Air Emissions Information – Form BOEM-0139	42
Appendix F:	PROPRIETARY COPIES ONLY - WCD Modeling Report for KC292	DC1-A
		43
Appendix G:	Oil Spill Response Discussion	44
Appendix H:	Coastal Zone Management Act (CZMA) Consistency Certification	ıs45
Appendix I:	Environmental Impact Analysis (EIA)	46
Appendix J:	New Technology	47
Appendix K:	Fee Recovery	48

Plan Contents

1.1 Description of Activities

BP Exploration & Production Inc. (bp) is submitting an Initial Development Operations Coordination Document (DOCD) for Keathley Canyon (KC) Blocks 292 (KC 292) and 293 (KC 293), Gulf of America (GoA, formerly known as the Gulf of Mexico), Outer Continental Shelf (OCS) G25792 (KC 292). The lease for KC 293 has expired and a Right of Use and Easement will be submitted under separate cover for activities proposed on Lease OCS G26739, KC 293. Under this DOCD, bp proposes to drill six development wells with four back-up wells at two different well centers (DC1 and DC2), install a semi-submersible floating production unit (FPU) with 12 mooring lines, and associated subsea infrastructure. The FPU is planned for production handling for up to 110 MBOPD from subsea tieback wells, and accommodations for 50 POB with 12 chain-polyester-chain mooring lines (no drilling rig). The FPU is located in the Keathley Canyon Area Block 293 in approximately 5,561' water depth, 220 miles southwest of Fourchon and 190 miles to the nearest shore point.

This DOCD is being submitted to drill, complete and produce six (6) development wells with four (4) re-spud wells in KC 292 at DC1 and DC2. A dynamically positioned (DP) drillship is anticipated to be on site for approximately 125 days per well for well drilling and 75 days for completion activities. Installation of the FPU and subsea infrastructure will be accomplished with a DP installation vessel. The installation of the proposed FPU and subsea equipment is estimated to be conducted between 2027 and 2028 with production commencing as early as 4Q 2028 and continuing until approximately 2053. There are 12 mooring anchors associated with this plan.

The information in this DOCD includes:

- At DC1, this DOCD is to include:
 - Three (3) development wells (DC1 A, DC1 B, DC1 C)
 - Two (2) re-spud wells (DC1 D, DC1 E)
 - Four (4) well/manifold jumpers
 - One (1) subsea pump system
 - Four (4) flowline jumpers
 - Four (4) PLETS and holdback system
- o At DC2, this DOCD is to include:
 - Three (3) development wells (DC2 A, DC2 B, DC2 C)
 - Two (2) re-spud wells (DC2 D. DC2 E)
 - Four (4) well/manifold jumpers
 - One (1) flowline jumpers

1.2 History of Unit Leases

Keathley Canyon Area Block 292 Unit, Agreement 754307002, first became effective May 1, 2006, consisting of all of KC 335 OCS-G 17603, KC 290 OCS-G 19544, KC 291 OCS-G 19545, KC 336 OCS-G 19555, KC 246 OCS-G 25789, KC 247 OCS-G 25790, and KC 292 OCS-G 25792.

The KC 292 Plans history is as follows:

- bp received approval of an Initial Exploration Plan (N-8245) in December 2004 and received approval of a Supplemental Exploration Plan (S-7364) in December 2009. In those plans, bp proposed to drill Wells A, B, C, D, and E in Keathley Canyon Area Block 292, OCS-G 25792, Gulf of Mexico (GoM).
- bp received approval of an Initial Exploration Plan (N-8338) in March 2005. In that plan, bp proposed
 to drill Wells A, B, and C in Keathley Canyon Area Block 336, OCS-G 19555, GoM. These wells will be
 temporarily abandoned and a well cap will be installed on the wellhead.
- bp received approval of a Supplemental Exploration Plan (S-7451) to move location B and its mirror location C, and add location F and its mirror location G.

1.3 Location

Well Location Plats at a scale of 1-in = 2,000-feet on 8.5-in X 11-in sheets of paper that depicts the surface locations and water depths of the proposed wells are included in **Appendix B**. The Vicinity Maps and Bathymetry Plats are also included in **Appendix B**.

1.4 Safety and Pollution Prevention Measures

Safety and pollution prevention features utilized during drilling operations will include the use of appropriately designed casing and cement programs; appropriate subsea blowout preventers, diverters, and other associated well equipment, appropriate mud monitoring equipment and sufficient mud volumes for well control; and properly trained personnel as described in 30 CFR Part 250, Sub Parts C, D, E, F and O, 30 CFR Part 550, Sub Parts B and C, and as further described by Notices to Lessees (NTLs). Appropriate fire drills and abandon ship drills will be conducted, and navigational aids, lifesaving equipment, and all other shipboard safety equipment will be installed and maintained as mandated by the U.S. Coast Guard regulations contained in 33 CFR Part 144.

1.5 Storage Tanks and Production Vessels

Information regarding the storage tanks and production vessels located on the drilling rig and support vessels that will store oil, as defined at 30 CFR Part 254.6 are provided in the tables below. Only those tanks with a capacity of 25 barrels or more are included.

1.5.1 Storage Tanks - DP Drillship

Transocean Invictus Drillship

Type of Storage Tank	Type of Facility	Tank Capacity (bbls)	Tank Capacity (m3)	Number of Tanks	Fluid Gravity (API)
Port Storage	Drillship	14247	2268.5	1	38.2
Port Settling	Drillship	1411	224.7	1	38.2
Port Service	Drillship	1144	182.1	1	38.2
Center Storage	Drillship	14937	2378.5	1	38.2
Center Settling	Drillship	1334	212.4	1	38.2
Center Service	Drillship	1334	212.4	1	38.2
STBD Storage	Drillship	14247	2268.5	1	38.2
STBD Settling	Drillship	1411	224.7	1	38.2
STBD Service	Drillship	1144	182.1	1	38.2
Emergency Storage	Drillship	121	19.2	1	38.2
MDG L.O. Storage	Drillship	371	59	1	32
MDG L.O. Settling	Drillship	124	19.6	1	32
FWD Thr. L.O. Storage	Drillship	183	29,1	1	32

Page 7 of 48

Rev: B01

AFT Thr. L.O. Storage	Drillship	164	26.1	1	32
Base Oil	Drillship	5050	804.1	1	41

Atlas Drillship

Type of Storage Tank	Type of Facility	Tank Capacity (bbls)	Tank Capacity (m3)	Number of Tanks	Fluid Gravity (API)
Fwd Storage 1P	Drillship	12725.3	2023.2	1	35.0
Fwd Storage 1S	Drillship	12984.6	2064.4	1	35.0
Port Storage 2P	Drillship	1675.7	266.4	1	35.0
Port Storage 3P	Drillship	1322.9	210.3	1	35.0
Port Storage 4P	Drillship	2295.8	365.0	1	35.0
Port Settling	Drillship	612.4	97.4	1	35.0
Port Service 5	Drillship	309.9	49.3	1	35.0
Port Service 6	Drillship	277.0	44.0	1	35.0
Center Storage 2C	Drillship	6208.5	987.1	1	35.0
Center Storage 3C	Drillship	6208.5	987.1	1	35.0
Center Storage 4C	Drillship	4351.4	691.8	1	35.0
Center Settling	Drillship	681.9	108.4	1	35.0
Center Service 3	Drillship	479.2	76.2	1	35.0
Center Service 4	Drillship	374.4	59.5	1	35.0
STBD Storage 2S	Drillship	1675.7	266.4	1	35.0
STBD Storage 3S	Drillship	1322.9	210.3	1	35.0
STBD Storage 4S	Drillship	2295.8	365.0	1	35.0
STBD Settling	Drillship	612.4	97.4	1	35.0
STBD Service 1	Drillship	277.0	44.0	1	35.0
STBD Service 2	Drillship	309.9	49.3	1	35.0
Fuel Oil Overflow 1	Drillship	259.3	41.2	1	35.0
Fuel Oil Overflow 2P	Drillship	119.6	19.0	1	35.0
Fuel Oil Overflow 2C	Drillship	129.7	20.6	1	35.0
Fuel Oil Overflow 1	Drillship	119.6	19.0	1	35.0
EGEN Service Tank	Drillship	62.0	9.9	1	35.0
MDG L.O. Storage 1	Drillship	80.9	12.9	1	25.7
MDG L.O. Storage 2	Drillship	85.4	13.6	1	25.7
MDG L.O. Storage 3	Drillship	80.9	12.9	1	25.7
Mud Pump L.O. Storage	Drillship	42.2	6.7	1	25.7
FWD Thr. L.O. Storage	Drillship	162.7	25.9	1	25.7
AFT Thr. L.O. Storage	Drillship	68.4	10.9	1	25.7
Base Oil	Drillship	3,140.1	499.2	2	35.0

1.5.2 Storage Tanks Support Vessels - Updated

Type of	Type of	Tank Capacity	No. of Tanks	Total Capacity	Fluid Gravity
Storage Tank	Facility	(bbls)		(bbls)	(API)
Fuel Oil	Supply Boat (Typical 280-feet)	450	16	7,200 bbls dependent on other cargo carried	31.14

1.6 Additional Measures

In addition to the safety, pollution prevention and early spill detection measures that may be required by applicable regulations, bp will rely on its Operating Management System (OMS) to help deliver safe and reliable operations. OMS is a system of interdependent activities that drive how bp will perform work and comply with internal and external standards and regulations. Within OMS, bp has also implemented a Safety Environmental Management System (SEMS) in accordance with 30 CFR 250 Subpart S, which provides a systematic way to identify risks, potential impacts, and compliance requirements that need to be managed.

The platform structure will be designed, fabricated and installed according to 30 CFR Part 250 Subpart I, and subsea pipeline architecture according to requirements in Subpart J. Pollution prevention systems include curbs, gutters, drip pans, and drains in deck areas to collect contaminants and oil drainage that is then piped to sump systems to reduce the risk of discharge of oil into offshore waters. The platform is protected by an automated shutdown system including SCSSV, and USV integrated with pipeline SDVs. The system is designed to shut in a well following a system shutdown signal. The wells and pipelines will be monitored by pressure sensors and automatic shut in systems. Wells will be monitored for casing pressure according to BSEE guidelines. Production Safety Systems are designed and will be installed according to 30 CFR Part 250 Subpart H, with further clarifications by Notices to Lessees. The systems will include the safety and environmental analysis procedures afforded by SAFDs and SAFE Charts developed according to requirements of API RP 14C, and other API Recommended Practices. Pollution prevention systems are developed to adhere to EPA NPDES permit discharge requirements and 30 CFR Part 250 Subpart C. Appropriate fire and abandon drills will be conducted, and navigational aids, lifesaving equipment, and other safety equipment are installed and maintained as mandated by the U.S. Coast Guard regulations contained in 33 CFR Part 144.

General Information

2.1 Applications and Permits

The table below provides information on the filing or approval status of the individual and/or site-specific Federal, State and local application approvals or permits that must be obtained to conduct the proposed activities.

Application / Permit	Issuing Agency	Status
General NPDES Permit	EPA	Pending Submittal
Initial Conceptual Plan	BSEE	Reviewed
Right of Use and Easement Application	BOEM	Pending Submittal
Conservation Information Document	BOEM	Pending Submittal
Applications for Permit to Drill (APD)	BSEE	Pending Submittal
Radioactive Tracer Permit/License	NRC	Pending Submittal
Deepwater Operations Plan	BSEE	Pending Submittal
Lease Term Pipeline Applications	BSEE	Pending Submittal
Measurement Surface Commingle Application	BSEE	Pending Submittal
Downhole Commingling Applications	BSEE	Pending Submittal
Applications for Permit to Modify (APM)	BSEE	Pending Submittal

2.2 Drilling Fluids

A table providing information on the types (including chemical constituents) and amounts of the drilling fluids that are planned to be used to drill the proposed wells is included below:

Drilling Fluids per Well (125 days/well)

Type of Drilling Fluid	Estimated Volume of Drilling Fluid to be Used Per Well		
Water based (seawater, freshwater, barite)	165,000 bbls		
Oil based (diesel, mineral oil)	NA		
Synthetic based (internal olefin, ester)	30,000 bbls		

NOTE: Water based mud (WBM) calculations include the option to re-spud the well. WBM volume is twice the anticipated amount required to drill to the TD of the surface casing. This value includes WBM and seawater as needed. Estimated volume is 82,500 bbls without re-spud.

2.3 New or Unusual Technology

In accordance with the definition of "new or unusual technology" set forth in 30 CFR § 550.200, activities in Keathley Canyon Blocks 292 and 293 will utilize the following:

- An installed Stemless Gate Valve (SGV) as a part of the riser or LMRP to trap pressure with MPD as required during well construction. The SGV will reduce BOP element cycles when trapping applied surface back pressure.
- Radioactive tracer beads and specifically, ProTechnic's ZeroWash™ beads, have been used extensively for tracing oil wells in the Gulf of America for over 20 years, and they were designed to mimic the operating characteristics of proppant. Radioactive material use and discharge are under the jurisdiction of the U.S. Nuclear Regulatory Commission who has licensed ProTechnics, in radioactive material license no. 42-26928-01, for 3 specific ZeroWash™ isotopes, namely Scandium-46, Iridium-192, and Antimony-124, all with half-lives of less than 120 days and of which only Scandium-46 and Iridium-192 are used in GoA.

The tracer beads are injected into the client proppant fluid while it gets pumped into the wellbore for uniform distribution throughout the formation. A spectral gamma logging tool is then used to detect where the isotope tagged fluid flowed. Analysis and processing of the detector data results in a representative picture of the formation. Any tracers that return in proppant fluids to MODU are properly disposed onshore as per the subcontractor NRC License under 10 CFR Chapter 1 and Section 1302(b)(2) compliance with NRC regulations for waste disposal.

• The Kaskida field is not classified as a high-pressure (HP) with a shut-in tubing pressure (SITP) of 14,927 psi nor a high-temperature (HT) application with a flowing temperature range of 270° - 275°F. However, the subsea equipment pressure rating with consideration to the bullhead (BH) margin will be greater than 15,000psi. In this regard, the subsea equipment pressure rating is defined as an HP application and in accordance with the HP/HT definition in 30 CFR 250.105. Therefore, bp intends to apply the HP/HT technology development and qualification in accordance with the applicable 30 CFR 250 regulations and BSEE NTLs 2019-G02 and 2019-G03. The Kaskida Project Conceptual Plan outlining the HP/HT plan has been reviewed by BSEE letter dated February 15, 2024, and will submit the individual New and Unusual Technology Barrier Equipment (NUTBE) Plans per the letter in Appendix J. The upper completion system, subsea BOP for the Atlas drillship, OWIR intervention and subsea well response (capping stack) will be rated as 20K equipment.

2.4 Bonding Information

The bonding requirements for the activities proposed in this DOCD are satisfied by an area-wide bond, furnished and maintained according to 30 CFR Part 556, Subpart I, and NTL No. 2015-N04 "General Financial Assurance" and to the extent under 30 CFR 556.901.

2.5 Oil Spill Financial Responsibility (OSFR)

BP Exploration & Production Inc., Operator No. 02481, has demonstrated oil spill financial responsibility for the facilities proposed in this DOCD according to 30 CFR Part 553 and NTL 2008-N05, "Guidelines for Oil Spill Financial Responsibility for Covered Facilities."

2.6 Deepwater Well Control Statement

BP Exploration & Production Inc., Operator No. 02481, has the financial capability to drill a relief well and conduct other emergency well control operations.

2.7 Suspensions of Production

Keathley Canyon Area Block 292 Unit, Agreement 754307002, is held by an SOP approval dated July 22, 2024.

2.8 Blowout Scenario

2.8.1 Blowout Scenario

The blowout scenario assumes that the pipe has been tripped out of the hole when a problem with the wellhead connector develops, resulting in the removal of the BOP stack. Due to the loss of riser margin, the well flows unrestrictedly. Day 1 worst case discharge (WCD) is 45,000 bopd and is included in **Appendix F** of this DOCD. The maximum duration of the blowout is estimated at 90 days (see relief well timing below). The rate profile associated with the well blowout over this 90-day period (also included in Appendix F) results in a potential worst case spill volume estimated at 4 mmbo.

2.8.2 The Potential for the Well to Bridge Over

While bridging is possible due to generally low formation strengths in the Gulf of America, no bridging was assumed in the 'worst case scenario' calculations. The open hole intervals experienced on each well have multiple formations open simultaneously. The modeling of the failure point of the weakest interval includes many variables, and using no bridging yields a maximum flow potential.

2.8.3 The Likelihood for Surface Intervention to Stop the Blowout

The likelihood for above-mudline intervention to stop a blowout is dependent on the failure mechanism. Depending on the circumstances, bp may address a failure of the BOP stack by repairing the control system via ROVs, replacing the BOPs, or adding a BOP on top of the current BOP stack. Failure of the wellhead or casing would be more difficult and require clear access to the well below the failure point in order to run drill pipe and/or tools in the well.

In addition to bp's internal well containment and emergency response planning, bp has contracted resources to assist in the event of a blowout. Further, bp is a member of the Marine Well Containment Company ("MWCC"), currently has access to MWCC's Interim Containment Response System ("ICRS") and will have full access to MWCC's Expanded Containment Response System when it is available.

2.8.4 The Availability and Timing of a Rig to Drill a Relief Well

The table below lists the Mobile Offshore Drilling Units (MODUs) capable of drilling a relief well. The estimated time to spud is 3 to 10 days, pending requirements to safely secure the current operations of the MODU, required material logistics, mobilization to location, and regulatory approvals. The possibility of drilling a relief well from a neighboring platform or land is not applicable to operations proposed in this DOCD; there is no existing infrastructure in the vicinity of Keathley Canyon Block 292.

Parameters	Black Lion (Main Derrick)	Black Hornet (Main Derrick)	
Proposed Utility in Response	Wellbore Capping / Relief Well	Wellbore Capping / Relief Well	
Current Location	GoA	GoA	
Contract Expire Date	11/15/2027	06/15/2027	
Rated WD (ft)	12K	12K	
Rated TD (ft)	40K	40K	
Rated BOPs (psi)	15K	15K	
Derrick Capacity	4MM	4MM	
Moor Type	DP	DP	
Relevant Drill Package Limitations	SHDH4 connector	SHDH4 connector	

The estimated time to drill a relief well is: 3 to 10 days to mobilize and spud, 60 days from spud to casing shoe above WCD zone, plus 30 days for ranging, intersection, and kill operation--for a total of 90 days.

2.8.5 Measures That Would Enhance the Ability to Prevent a Blowout

Measures employed to prevent a blowout include compliance with applicable regulations (30 CFR Parts 250 and 550), and current NTLs. Additional measures include the following:

- 1. Volume measurements relative to the well will be monitored at all times during all operations.
- 2. Flow checks before leaving bottom, after pulling into shoe, and before BHA enters stack.
- BP representative shall observe well conditions prior to each trip and after well kills or testing.
 Page 12 of 48

 Rev: B01

Purious Internal

- 4. BP representative shall be the only person authorized to initiate opening the well as part or at the conclusion of well control measures.
- 5. On rig JSA/contingency plan before running any non-shearable tools or pipe through the BOP stack.
- 6. BP has a 24/7 monitoring center, Regional Collaboration Center (RCC) (formerly referred to as the 'Houston Monitoring Center (HMC)'), located at bp's Westlake Campus. Through continuous monitoring, onshore staff have the ability to communicate issues they observe on the well with the Wells Superintendent and Wells Engineer, as well as the rig. The rig team can then make corrective actions as necessary.

In addition to the additional measures listed above, bp has adopted the following performance standards:

- bp will use and will require its contractors involved in drilling operations to use, subsea blowout preventers (BOPs) equipped with no fewer than two blind shear rams and a casing shear ram on all drilling rigs under contract to BP for deepwater service operating in dynamic position mode. With respect to moored drilling rigs under contract to bp for deepwater drilling service using subsea BOPs, the subsea BOP will be equipped with two shear rams, which will include at least one blind shear ram and either an additional blind shear ram or a casing shear ram. The 20K BOP MODU used for completion operations has 2 blind shear rams.
- Each time a subsea BOP from a moored or dynamically positioned drilling rig is brought to the surface and testing and maintenance on the BOP are conducted, bp will require that a third party verify that the testing and maintenance of the BOP were performed in accordance with manufacturer recommendations and API Std 53.

2.8.6 Measures That Would Reduce the Likelihood of a Blowout

Measures to reduce the likelihood of a blowout include compliance with applicable regulations (30 CFR Parts 250 and 550) and current NTLs. Additional measures:

- 1. Minimize any influx events to the wellbore by using the best pore pressure / fracture gradient predictions available, using down-hole tools when appropriate, such as PWD and/or LWD to monitor the wellbore and update pore pressure / fracture gradient predictions;
- 2. Management of change process is in place for all procedure changes;
- 3. A Well Control Response Guide is in place; and
- 4. With the integration of the Regional Collaboration Center (RCC) (formerly referred to as the 'HMC'), BP has staff monitoring wells 24/7. Having a monitoring center away from the rig in a controlled environment gives BP the opportunity to evaluate data real time and communicate issues to the Wells Superintendent and Wells Engineer, as well as the rig.

2.8.7 Measures Which Would Enhance the Ability to Conduct Early Intervention

Measures to enhance the ability to conduct early intervention in addition to the regulation and NTL requirements include:

- Possible relief well locations have been identified and screened for general acceptability. In the event
 of a blow out or other event necessitating a relief well, data will be collected post-event to ensure that
 previously identified relief well locations are still valid, or to assist in determining alternate relief well
 locations if required.
- 2. Wellhead equipment and sufficient casing is identified and available for a relief well.
- 3. A rig(s) is identified and available for a relief well.
- 4. A Well Control Response Guide is in place.
- 5. An Incident Management System (IMS) is in place.
 - The BP IMS is comprised of government-approved plans covering various scenarios; Incident Management Teams are trained annually in the Incident Command System, which is a part of the National Incident Management System; bp has access to response capability through various contractors and technical specialists; and to predesignated facilities, where the teams can provide adequate oversight to the response.

2.8.8 Other Measures

All proposed activities and facilities in this DOCD will be covered by the GoM Regional OSRP filed by BP America Inc. (Operator No. 21372) under cover letter dated October 7, 2024, on behalf of several companies listed in the plan including BP Exploration & Production Inc. (Operator No. 02481). The OSRP was confirmed in compliance and approved by BSEE on January 10, 2025.

Geological and Geophysical Information

3.1 Geological Description

A brief geological description of Kaskida region is included in **Appendix C** in the "Proprietary Information" copies of this DOCD.

3.2 Structure Contour Maps

Current structure contour maps are included in Appendix C in the "Proprietary Information" copies of this DOCD.

3.3 Interpreted 2-D and/or 3D Seismic Lines

Migrated and annotated 3-D seismic lines with depth scale within 152 meters (500 feet) of the proposed surface locations are enclosed with the site clearance letters included in **Appendix C** in the "Proprietary Information" copies of this DOCD.

3.4 Geological Structure Cross-Section Maps

Interpreted geological structure cross-section maps of each proposed well location are included in **Appendix C** in the "Proprietary Information" copies of this DOCD.

3.5 Shallow Hazards Report

Autonomous Unmanned Vehicle (AUV) site surveys were conducted in 2008 over Blocks 246-248, 290-292, 335-336, and in 2023 over Blocks 249 and 293 and portions of Blocks 248, 250, 292, 294, and 336-338, Keathley Canyon Area.

An AUV Hazard Survey Report of Blocks 246-248, 290-292, and 335-336, Keathley Canyon Area, was submitted with the previously filed Supplemental Exploration Plan (S-7364).

A geohazards assessment was generated in 2024 based on the 2023 acquisition data to support FPU placement, entitled "Geohazards and Archaeological Assessment, Blocks 249, 293, and Vicinity, Keathley Canyon Area, Gulf of Mexico", by Geoscience Earth & Marine Services (GEMS), Project No. 1223-3229, and is included in **Appendix C** of this DOCD.

An integrated AUV and 3D seismic shallow hazards study was prepared in 2024, "Integrated Shallow Hazards Assessment, Blocks 246-248, 290-292, and 335-336, Keathley Canyon Area, Gulf of Mexico", by Geoscience Earth & Marine Services (GEMS), Project No. GHZ3282, and is included in **Appendix C** of this DOCD.

3.6 Shallow Hazards Assessments (Site Clearance Letters)

The shallow hazards assessments (site clearance letters) that evaluate the seafloor and subsurface geologic and manmade features and conditions, prepared in accordance with NTL 2022-G01, for the proposed surface locations for the five (5) DC1 wells: A, B, C, D and E locations and five (5) DC2 wells: A, B, C, D and E locations along with the site clearance for the mooring pre-lay are included in **Appendix C** of this DOCD.

3.7 High Resolution Seismic Lines

Seismic sections through the proposed well locations for the proposed ten (10) wells from DC1 and DC2 are included in **Appendix C** in the "Proprietary Information" copies of this DOCD.

Page 15 of 48 Rev: B01
Project Internal

Hydrogen Sulfide (H2S) Information

4.1 Hydrogen Sulfide (H₂S) Information

Anticipated H_2S concentration is 0 ppm. Kaskida project had the estimated H2S concentration and area classification in the KC292-336 Supplemental Exploration Plan (S-7451), approved October 21, 2011, as " H_2S absent".

4.2 H₂S Contingency Plan

Based on previous drilling, no H_2S is known to occur in the project area. It is not expected that H2S will be encountered during the operations proposed in this DOCD. Based on previous BOEM " H_2S absent" classification (October 21, 2011 - KC292-336 Supplemental Exploration Plan approval letter, S-7451), it is not anticipated that a contingency plan will be required.

4.3 Modeling Report

Based on previous drilling, no H_2S is known to occur in the project area. Therefore, no modeling report is required.

Mineral Resource Conservation Information

5.1 Technology and Reservoir Engineering Practices and Procedures

Technology and reservoir engineering practices and procedures are included in the "Proprietary Information" copies of this DOCD.

5.2 Technology and Recovery Practices and Procedures

Technology and recovery practices and procedures are included in the "Proprietary Information" copies of this DOCD.

5.3 Reservoir Developments

Reservoir developments are included in the "Proprietary Information" copies of this DOCD.

Biological and Physical Information

6.1 Benthic Communities Report

The BOEM requires site-specific surveys and reviews for proposed bottom-disturbing actions in water depths greater than 300-m to judge the potential of the region for supporting high density benthic communities. NTL No. 2009–G40 formalized the process. bp has conformed to this requirement and has located wells, pipeline routes, and mooring anchor piles to avoid potential sites for benthic communities during the deepwater development project described by this plan.

The Kaskida project is located in water depths greater than 300-m; therefore, there is the potential for high-density benthic communities to be present. Site Clearance Letters in **Appendix C** provide a current review of available data confirming the absence of high-density benthic communities within the prescribed distances from the proposed well locations for Drill Centers 1 and 2, and FPU anchor mooring piles.

6.2 Topographic Features Map

Activities proposed in this DOCD do not fall within 305 meters (1000 feet) of a topographic "No Activity Zone;" therefore, no map is required per NTL No. 2009-G39, "Biologically Sensitive Underwater Features and Areas."

6.3 Topographic Features Statement (Shunting)

Activities proposed under this DOCD will be conducted outside all Topographic Feature Protective Zones; therefore, shunting of drill cuttings and drilling fluids is not required per NTL No. 2009-G39, "Biologically Sensitive Underwater Features and Areas."

6.4 Live Bottom (Pinnacle Trend) Information

Live Bottom (Pinnacle Trend) Stipulation in NTL No. 2009-G39 does not apply to these leases; therefore, a map is not required.

6.5 Live Bottom (Low Relief) Map

Live Bottom (low relief) Stipulation in NTL No. 2009-G39 does not apply to these leases; therefore, a map is not required.

6.6 Biologically Sensitive Underwater Features and Areas

The intent of NTL No. 2009-G39 is to protect biologically sensitive features and areas in water depths less than 300-meters (984-feet). The proposed well locations in Keathley Canyon Area Block 292 are in water depths greater than 6,000-ft. The Site Clearance Analysis conducted by bp, based on data from an Autonomous Underwater Vehicle (AUV) survey, did not identify any similar features within a 2,000-ft radius of the proposed well locations (Map 6, Hazard Map, Fugro 2009). All proposed bottom-disturbing activities will therefore occur outside 30-meters (100-feet) of any potentially sensitive biological features.

6.7 Remotely Operated Vehicle (ROV) Monitoring Survey Plan

Keathley Canyon Area Blocks 292 and 293 fall within Grid 7. It has been determined by the BOEM that sufficient remotely operated vehicle (ROV) information has been gathered in Grid 7; therefore, no ROV monitoring survey is required.

6.8 Threatened or Endangered Species, Critical Habitat and Marine Mammal Information

Endangered or Threatened species that may occur in the project area and/or along the northern Gulf Coast are listed in the table below. The table also indicates the location of critical habitat (if designated in the Gulf of America (GoA). Critical habitat is defined as (1) specific areas within the geographical area occupied by the species at the time of listing, if they contain physical or biological features essential to conservation, and those features may require special management considerations or protection; and (2) specific areas outside the geographical area occupied by the species if the agency determines that the area itself is essential for conservation. The NMFS has jurisdiction for ESA-listed marine mammals (cetaceans), sea turtles, and fishes in the Gulf of America. The USFWS has jurisdiction for ESA-listed birds, the West Indian manatee (Trichechus manatus), and sea turtles while on their nesting beaches.

Federally listed Endangered and Threatened species potentially occurring in the project area and along the northern Gulf Coast. Adapted from: U.S. Fish and Wildlife Service (2020) and National and Oceanic Atmospheric Administration Fisheries (2020).

Species	Scientific Name	Status	Potential Presence		Critical Habitat Designated in Gulf
Species	Scientific Name	Status	Project Area	Coastal	of America
	M	arine Ma	mmals		
Rice's whale ¹	Balaenoptera ricei	Е	X	4-1	None
Sperm whale	Physeter macrocephalus	Е	X	. 9-6	None
West Indian manatee	Trichechus manatus ²	T		X	Florida (Peninsular)
		Sea Tur	tles		
Loggerhead turtle	Caretta caretta	T,E³	X	X	Nesting beaches and nearshore reproductive habitat in Mississippi, Alabama, and Florida (Panhandle); Sargassum habitat including most of the central & western Gulf of Mexico.
Green turtle	Chelonia mydas	T	X	X	None
Leatherback turtle	Dermochelys coriacea	Е	X	X	None
Hawksbill turtle	Eretmochelys imbricata	E	X	X	None
Kemp's ridley turtle	Lepidochelys kempii	E	X	X	None
		Bird	S		
Piping Plover	Charadrius melodus	T	- 34	X	Coastal Texas, Louisiana, Mississippi, Alabama, and Florida (Panhandle)
Whooping Crane	Grus americana	E		Х	Coastal Texas (Aransas National Wildlife Refuge)
Black-capped Petrel	Pterodroma hasitata	Е	X		None
Rufa Red Knot	Calidris canutus rufa	T		X	None
		Fishe	es		
Oceanic whitetip shark	Carcharhinus longimanus	Т	X		None

ă	Scientific Name	Charter	Potential Presence		Critical Habitat Designated in Gulf
Species		Status	Project Area	Coastal	of America
Giant manta ray	Mobula birostris	T	X	X	None
Gulf sturgeon	Acipenser oxyrinchus desotoi	Т	3-	х	Coastal Louisiana, Mississippi, Alabama, and Florida (Panhandle)
Nassau grouper	Epinephelus striatus	T	79-	X	None
Smalltooth sawfish	Pristis pectinata	E	1 1/4 C	X	Southwest Florida
		Inverteb	rates		
Elkhorn coral	Acropora palmata	T	- 144	X	Florida Keys and the Dry Tortugas
Staghorn coral	Acropora cervicornis	T	44-7	Х	Florida Keys and the Dry Tortugas
Pillar coral	Dendrogyra cylindrus	T	1.94	X	Southeast Florida and Florida Keys, Puerto Rico, St. Thomas, St. John, St. Croix, and Navassa Island
Rough cactus coral	Mycetophyllia ferox	Т	- 5	Х	Southeast Florida and Florida Keys, Puerto Rico, St. Thomas, St. John, St. Croix, and Navassa Island
Lobed star coral	Orbicella annularis	T	÷	X	Southeast Florida and Florida Keys, Puerto Rico, St. Thomas, St. John, St. Croix, Navassa Island, East and West Flower Garden Banks, Rankin Bright Bank, Geyer Bank, and McGrail Bank
Mountainous star coral	Orbicella faveolata	T	- 54	х	Southeast Florida and Florida Keys, Puerto Rico, St. Thomas, St. John, St. Croix, Navassa Island, East and West Flower Garden Banks, Rankin Bright Bank, Geyer Bank, and McGrail Bank
Boulder star coral	Orbicella franksi	T	9	Х	Southeast Florida and Florida Keys, Puerto Rico, St. Thomas, St. John, St. Croix, Navassa Island, East and West Flower Garden Banks, Rankin Bright Bank, Geyer Bank, and McGrail Bank
Panama City crayfish	Procambarus econfinae	T	- 27	X	South-central Bay County, Florida
Queen conch	Aliger gigas	T		X	None
	Ter	restrial N	Iammals		
Beach mice (Alabama, Choctawhatchee, Perdido Key, St. Andrew)	Peromyscus polionotus subsp. Ammobates, allophrys, trissyllepsis, and peninsularis, respectively	Е	.21	X	Alabama and Florida (Panhandle) beaches
Florida salt marsh vole	Microtus pennsylvanicus dukecampbelli	Е		Х	None

E = Endangered; T = Threatened; X = potentially present; -- = not present.

1 In 2021, the National Marine Fisheries Service recognized that what had previously been accepted as a subspecies of the Bryde's whale is actually a separate species. The reclassification is formerly recognized under 86 FR 47022 effective date 22 October 2021 as the Rice's whale (*Balaenoptera ricei*).

2 There are two subspecies of West Indian manatee: the Florida manatee (T. m. latirostris), which ranges from the northern Gulf of America to Virginia, and the Antillean manatee (T. m. manatus), which ranges from northern Mexico to eastern Brazil. Only the Florida manatee subspecies is likely to be found in the northern Gulf of America.

3 The Northwest Atlantic Ocean Distinct Population Segment (DPS) of loggerhead turtles is designated as Threatened (76 Federal Register [FR] 58868). The National Marine Fisheries Service and the U.S. Fish and Wildlife Service designated critical habitat for this DPS, including beaches and nearshore reproductive habitat in Mississippi, Alabama, and the Florida Panhandle as well as Sargassum spp. habitat throughout most of the central and western Gulf of America (79 FR 39756 and 79 FR 39856)

Coastal Endangered or Threatened species that may occur along the U.S. Gulf Coast include the West Indian manatee, Piping Plover (Charadrius melodus), Ruda Red Knot (Calidris canutus rufa) Florida salt marsh vole, Panama City crayfish, Whooping Crane (Grus americana), Gulf sturgeon (Acipenser oxyrinchus desotoi), smalltooth sawfish (Pristis pectinata), Queen conch (Aliger gigas) and four subspecies of beach mouse. Critical habitat has been designated for all of these species (except the Florida salt marsh vole, Rufa Red Knot, and Queen conch) as indicated in Table 6 and discussed in individual sections. Two other coastal bird species (Bald Eagle [Haliaeetus leucocephalus] and Brown Pelican [Pelecanus occidentalis]) are no longer federally listed as Endangered or Threatened.

Five sea turtle species, the Rice's whale (Balaenoptera ricei), sperm whale (Physeter macrocephalus), oceanic whitetip shark (Carcharhinus longimanus), and giant manta ray (Mobula birostris), and the Black-capped Petrel (Pteredroma hasitata) are the only Endangered or Threatened species that could potentially occur within the project area. The listed sea turtles include the leatherback turtle (Dermochelys coriacea), Kemp's ridley turtle (Lepidochelys kempii), hawksbill turtle (Eretmochelys imbricata), loggerhead turtle (Caretta caretta), and green turtle (Chelonia mydas) (Pritchard, 1997). Effective 11 August 2014, NMFS has designated certain marine areas as critical habitat for the Northwest Atlantic Distinct Population Segment (DPS) of the loggerhead sea turtle. No critical habitat has been designated in the Gulf of America for the leatherback turtle, Kemp's ridley turtle, hawksbill turtle, green turtle, or the sperm whale.

Four Endangered mysticetes (blue whale [Balaenoptera musculus], fin whale [Balaenoptera physalus], North Atlantic right whale [Eubalaena glacialis], and sei whale [Balaenoptera borealis]) have been reported in the Gulf of America, and are considered rare or extralimital (Würsig et al., 2017). These species are not included in the most recent NMFS stock assessment report (Hayes et al., 2022) nor in the most recent BOEM multisale EIS (BOEM, 2017); therefore, they are not considered further in the EIA.

The Rice's whale exists in the Gulf of America as a small, resident population. This species was formally known as a subspecies to the Bryde's whale (*Balaenoptera edeni brydei*) until a DNA study identified it as a separate species (Rosel et al., 2021). It is the only baleen whale known to be resident to the Gulf of America. The species is severely restricted in range, being found only in the northeastern Gulf in the waters of the DeSoto Canyon (Waring et al., 2016, Rosel et al., 2021). However, recent work by Soldevilla et al. (2022a) suggests the range may be broader than previously thought.

In several recent acoustic studies in the Gulf of America (Soldevilla et al., 2022a,b; 2024), all Bryde's whale complex individuals are assumed to be Rice's whales. However, Bryde's whales have a global tropical and sub-tropical range that can include the Gulf of America. Moreover, in the latest NMFS Rice's whale Marine Mammal Stock Assessment Report (Hayes et al., 2023), all previous data of Gulf of America Bryde's whales from studies that pre-dated the Rosel et al. (2021) study that determined that Rice's whales are a distinct species were now assumed to all be Rice's whales. However, it is unclear on what percentage of Bryde's whale complex individuals that live or previously lived in Gulf of America are Rice's whales vs Bryde's whales due to having no DNA studies that analyzed a representative population of Gulf of America Bryde's whale complex individuals.

The giant manta ray could occur in the project area but is most commonly observed in the Gulf of America at the Flower Garden Banks. The Nassau grouper (*Epinephelus striatus*) has been observed in the Gulf of America at the Flower Garden Banks but is most commonly observed in shallow tropical reefs of the Caribbean and is not expected to occur in the project area. The smalltooth sawfish is a coastal species limited to shallow areas off the west coast of Florida and is not expected to occur in the project area. The Panama City crayfish (Procambarus econfinae) is a coastal species in south-central Bay County, Florida and is not expected to occur in the project area.

Page 21 of 48 Rev: B01
Project Internal

Seven Threatened coral species are known from the northern Gulf of America: elkhorn coral (*Acropora palmata*), staghorn coral (*Acropora cervicronis*), lobed star coral (*Orbicella annularis*), mountainous star coral (*Orbicella faveolata*), boulder star coral (*Orbicella franksi*), pillar coral (*Dendrogyra cylindrus*), and rough cactus coral (*Mycetophyllia ferox*). These corals are shallow water, zooxanthellate species (containing symbiotic photosynthetic zooxanthellae which contribute to their nutritional needs) and so are not present in the deepwater project area.

There are no other Threatened or Endangered species in the Gulf of America that are likely to be adversely affected by either routine or accidental events. Additional information can be found in BP's Environmental Impact Analysis attached as **Appendix I**. Archaeological Report

With the recent Archaeological Resource Protection CFR changes, all blocks in the Kaskida DOCD area have an Archaeological assessment and are included in **Appendix C** of this DOCD.

Waste and Discharge Information

7.1 Projected Generated Wastes

A table providing information on the projected solid and liquid wastes likely to be generated by the proposed activities is included in **Appendix D**.

7.2 Projected Ocean Discharges

A table providing information on the projected ocean discharges likely to be generated during the proposed activities is included in Appendix D.

7.3 Modeling Report

No waste modeling report is required for this DOCD.

Air Emissions Information

8.1 Screening Questions

Yes	No	Screening Questions for DOCD's
X		Is any calculated Complex Total (CT) Emission amount (tons) associated with your proposed development and production activities more than 90% of the amounts calculated using the following formulas: CT = 3400D2/3 for CO, and CT = 33.3D for the other air pollutants (where D = distance to shore in miles)?
	X	Do your emission calculations include any emission reduction measures or modified emission factors?
X		Does or will the facility complex associated with your proposed development and production activities process production from eight or more wells?
	X	Do you expect to encounter H2S at concentrations greater than 20 parts per million (ppm)?
X		Do you propose to flare or vent natural gas in excess of the criteria set forth under 30 CFR 250.1105(a)(2) and (3)?
	X	Do you propose to burn produced hydrocarbon liquids?
	X	Are your proposed development and production activities located within 25 miles (40 kilometers) from shore?
	X	Are your proposed development and production activities located within 124 miles (200 kilometers) of the Breton Wilderness Area?

8.2 Emissions Worksheet

BOEM's Form-0139 has been populated with the Kaskida project's emissions scenarios and is provided in **Appendix E**. These tables list the equipment associated with each operation, the fuel feed rate and the calculated maximum short term (hourly) and annual mass emission rates. The final page of the spreadsheet includes a calculation of the modeling exemption thresholds based on project information. A summary of the Kaskida project's proposed annual emissions for each year and pollutant are provided in Table 1-1. The data presented indicate that the calculated emissions for the project are below the exemption thresholds for all BOEM listed pollutants, except NOx. The calculated NOx emissions for the years 2028 through 2035 are projected to be above the exemption formula threshold (shown as "Allowable" row in the table), thus requiring further analyses of potential emissions impacts. The year 2028 is projected to represent the maximum annual emissions and served as the highest evaluation year for the analyses described herein.

8.3 Emission Reductions Measures

BP did not utilize any emission reduction measures in calculating emissions for the project. All emissions were calculated using the default values in the BOEM Form 0139.

8.4 Verification of Non-Default Emission Factors

No non-default emissions factors were used.

8.5 Distance to Shore for Emission Exemption Thresholds (EET)

The distance to shore in statute miles is based on the same coordinate system used in the lease sale documents for the lease.

8.6 Non-Exempt Activities

The summary Table below shows proposed emissions calculated per the exemption threshold formulas in 30 CFR 550.303(d). BP proposes NOx emissions higher than the exemption levels in 30 CFR 550.303(d).

COMPANY		AREA	BLOCK	LEASE	FACILITY	WELL DC1-A, DC1-B, DC1-C, DC1-D, DC1-E, DC2-A, DC2-B, DC2-D, DC2-E			
BP Exploration	n & Production c.	Keathley Canyon	KC 292, 293	OCS-G-25792, OCS-G 26739- Expired	OCS-G 26739- Kaskida			C2-B, DC2-C,	
Year				Facility	Emitted Su	bstance			
	TSP	PM10	PM2.5	sox	NOx	voc	Pb	со	NH3
2026	91.14	54.99	53.34	1.33	2183.64	488.09	0.01	342.50	0.64
2027	215.88	130.24	126.34	3.14	5172.25	574.02	0.02	811.25	1.51
2028	447.39	271.09	263.16	10.55	11935.44	894.35	0.04	3178.26	3.02
2029	295.12	181.49	176.35	9.09	8769.13	802.10	0.03	2739.30	1.91
2030	295.12	181.49	176.35	9.09	8769.13	802.10	0.03	2739.30	1.91
2031	295.12	181.49	176.35	9.09	8769.13	802.10	0.03	2739.30	1.91
2032	295.12	181.49	176.35	9.09	8769.13	802.10	0.03	2739.30	1.91
2033	295.12	181.49	176.35	9.09	8769.13	802.10	0.03	2739.30	1.91
2034	295.12	181.49	176.35	9.09	8769.13	802.10	0.03	2739.30	1.91
2035	295.12	181.49	176.35	9.09	8769.13	802.10	0.03	2739.30	1.91
Allowable	6193.80			6193.80	6193.80	6193.80		110786.68	

(maximum year highlighted in yellow)

The calculated NOx emissions for the years 2028 through 2035 are projected to be above the exemption formula threshold (shown as "Allowable" row in the table), thus requiring further analyses of potential emissions impacts. BP used an approved air quality model to demonstrate that worst case total complex modeled impacts of NOx/NO2 did not exceed relevant thresholds (i.e.- Significance Impact Levels (SIL) and/or National Ambient Air Quality Standards (NAAQS). This modeling study was updated using the revised assumptions in this plan. Year 2028 is projected to represent the maximum annual emissions and served as the highest evaluation year. The full modeling assessment in **Appendix E**.

The updated modeling analyses performed and available in **Appendix E**. demonstrate that the Kaskida project with the projected emissions sources operating at their assumed maximum emission rates will comply with the applicable NO2 NAAQS at the coastline receptors and will not exceed the annual Significant Impact Level at any modeled receptor location.

8.7 Hydrogen Sulfide

The requirements related to hydrogen sulfide (H2S) are not repeated here as they are addressed in section 4 of the Plan.

8.8 Environmental Impact Analysis (EIA)

The requirements related to EIA are not repeated here as they are addressed in **Appendix** I of this Plan.

Page 25 of 48 Rev: 801
Project Internal

Oil Spill Information

9.1 Oil Spill Response Planning

9.1.1 Regional OSRP Information

All proposed activities and facilities in this DOCD will be covered by the GoM Regional OSRP submitted by BP America Inc (Operator No. 21372) under cover letter dated October 7, 2024, on behalf of several companies listed in the plan including BP Exploration & Production Inc. (Operator No. 02481). The OSRP was confirmed in compliance and approved by BSEE on January 10, 2025.

BP has adopted additional performance standards:

- a. Provisions to maintain access to a supply of dispersant and fire boom for use in the event of an uncontrolled long-term blowout for the length of time required to drill a relief well;
- Contingencies for maintaining an ongoing response for the length of time required to drill a relief well;
- Description of measures and equipment necessary to maximize the effectiveness and efficiency of the response equipment used to recover the discharge on the water's surface, including methods to increase encounter rates;
- Information regarding remote sensing technology and equipment to be used to track oil slicks, including oil spill detection systems and remote thickness detection systems (e.g., Xband/infrared systems);
- e. Information regarding the use of communication systems between response vessels and spotter personnel;
- f. Shoreline protection strategy that is consistent with applicable area contingency plans; and
- g. For operations using a subsea BOP or a surface BOP on a floating facility, a discussion regarding strategies and plans related to source abatement and control for blowouts from drilling.

9.1.2 Spill Response Sites

Primary Response Equipment Location	Preplanned Staging Location(s)
Tampa, FL; Pascagoula, MS; Houma, LA.; Leeville, LA; Morgan City, LA; Lake Charles, LA.; Venice, LA; Galveston, TX; Ingleside, TX.	Fourchon, LA.

9.1.3 OSRO Information

bp is a member of the Marine Spill Response Corporation (MSRC) and Clean Gulf Associates (CGA) and would utilize said Oil Spill Response Organization (OSRO) personnel and equipment in the event of an oil spill at the Kaskida project Keathley Canyon area.

9.1.4 Worst-case Scenario Determination

Category	Regional OSRP approved 01/10//2025 Drilling	Kaskida Drilling	Regional OSRP approved 01/10/2025 Production	Kaskida DP Drillship Plan Production
Type of Activity	Drilling > 10 miles	Plan Drilling WCD > 10 miles	Production > 10 miles	Plan Production WCD > 10 miles
Facility Location	MC 778	KC 292 DC1-A	MC 822	KC 293
Facility Designation	Thunder Horse Well MC 778 #15	MODU KC292 DC1 Well A	Thunder Horse PDQ - MC822 #11	Kaskida FPU Semisubmersible
Distance to Nearest Shoreline	68-miles	191 miles	68-miles	190 miles
Volume Facility Storage:	0-bbls	0-bbls	0-bbls	0-bbls
Max Tanks /Vessels & Flowlines	50,000-bbls	0-bbls	50,000-bbls	1,529-bbls
Lease Term pipelines	13,000-bbls	0-bbls	13,000-bbls	1,571bbls
Daily Production Volume	0-bbls	0-bbls	55,000-bbls	80,000-bbls
Volume Uncontrolled Blowout (Day 1)	360,000-bbls	45,000-bbls	0-bbls	0-bbls
Total Volume	423,000-bbls	45,000-bbls	118,000-bbls	83,100-bbls
Type of Oil(s) – (Crude Oil, Condensate, Diesel)	Crude	Crude	Crude	Crude
API Gravity(s)	32	24.4	33	24.4

bp has determined that the worst-case scenario from the activities proposed in this plan does not supersede the worst-case scenario in bp's GoM Regional OSRP filed by BP America, Inc. (Operator 21372), under cover letter dated October 7, 2022 on behalf of several companies listed in the plan including BP Exploration & Production Inc. (Operator No. 02481). The OSRP was confirmed in compliance and approved by BSEE on January 10, 2025. Pursuant to NTL No. 2008-G04, bp makes the following statement:

Since BP Exploration & Production Inc. has the capability to respond to the worst case spill scenario included in its regional Oil Spill Response Plan approved on January 10, 2025, and since the worst case scenario determined for this DOCD does not replace the worst-case scenario in our regional or subregional OSRP, bp certifies that it has the capability to respond, to the maximum extent practicable, to a worst case discharge, or a substantial threat of such a discharge, resulting from the activities proposed in this DOCD.

Wellbore data, geologic data, reservoir data, and fluid data used in modeling and developing the WCD determination for KC 292 DC1 Well A, are provided in **Appendix F** of the "Proprietary Information" copies of this DOCD.

9.2 Oil Spill Response Discussion

A detailed discussion of a response to an oil spill in the Kaskida Field in the Keathley Canyon Blocks is included in **Appendix G.** This Appendix addresses topics such as resource identification, release modeling, response technologies, and source containment / control.

9.3 Modeling Report

No report is required for this DOCD.

Environmental Monitoring and Mitigation Measures

10.1 Monitoring Systems

In addition to rig control engineered systems, operational personnel have been instructed to check for pollution frequently during their tour of duty and, if pollution is spotted, to identify and shut-off the source and make immediate notifications as per instructions provided in Section 8 of bp's certified OSRP. In accordance with the measures described in Appendices A, B, C and J of the NMFS 2020 Biological Opinion, as amended on April 26, 2021 [Biological Opinion on the Federally Regulated Oil and Gas Program Activities in the Gulf of Mexico. Office of Protected Resources, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, U.S. Department of Commerce (March 13, 2020, amended April 26, 2021)], a person onboard the vessel(s) will visually monitor the moonpool(s) using a remote camera system. Logs will be kept for each shift documenting the observed presence/absence of marine animals in the moonpool(s). If a protected species is observed in the moonpool(s), required reporting to the appropriate agencies will be made and bp will comply with ensuing guidance.

Also, in accordance with the provisions of Title 30 CFR § 250.713(g) and NTL 2018-G01 "Ocean Current Monitoring" dated August 7, 2018, the MODU will be equipped with an Acoustic Doppler Current Profile (ADCP) current monitoring system onboard to allow continuous monitoring and gathering of ocean current data on a real-time basis from 30 - 1000 meters.

10.2 Incidental Takes

Mitigation measures described in Appendices A, B, C and J of the NMFS 2020 Biological Opinion, as amended in 2021, will be implemented to the extent they are applicable to the activities outlined in this plan. Monitoring activities are conducted by personnel on vessels to prevent accidental loss of materials overboard, and to report sightings of injured/dead protected species. Reporting of dead/injured protected species is addressed in Annex 2 of BP's "Incident Notification and Investigation Procedure - Attachment 1". Additionally, to mitigate against incidental takes, activities will be conducted in adherence to 2020 revisions of BSEE NTL 2015-G03 "Marine Trash and Debris Awareness Training and Elimination"; BOEM NTL 2016-G01 "Vessel Strike Avoidance and Injured/Dead Protected Species Reporting" and BOEM NTL 2016-G02 "Implementation of Seismic Survey Mitigation Measures and Protected Species Observer Program", as necessary. As required by BSEE NTL 2015-G03, bp submits an annual certification letter for its Marine Debris Awareness Training Process. The marine debris awareness training is required annually by the BSEE and is identified by "bp's Gulf of America (GoA) Environmental Training Matrix" and "bp's GoA Health, Safety, and Environmental (HSE) Training Needs Assessment", both of which are located on bp's GoA HSE website.

Further mitigation measures can be found throughout the supporting EIA found in Appendix I.

10.3 Flower Garden Banks National Marine Sanctuary

All proposed activities will occur outside of the Protective Zones of the Flower Garden Banks National Marine Sanctuary boundaries.

Page 29 of 48 Rev: B01
Project Internal

Lease Stipulations

Oil and gas exploration activities on the OCS are sometimes subject to mitigations in the form of lease stipulations.

11.1 Lease Stipulation Information

Lease Stipulation for Protected Species

Mitigation measures described in Appendices A, B, C and J of the NMFS 2020 Biological Opinion, as amended in 2021, will be implemented to the extent they are applicable to the activities outlined in this plan. Additionally, all activities will be conducted in adherence to 2020 revisions of NTL 2015-G03 "Marine Trash and Debris Awareness Training and Elimination"; BOEM NTL 2016-G01 "Vessel Strike Avoidance and Injured/Dead Protected Species Reporting" and BOEM NTL 2016-G02 "Implementation of Seismic Survey Mitigation Measures and Protected Species Observer Program", as necessary. Mitigation to prevent takes varies based on the activity underway and it can include worker training on waste management and trash and debris containment procedures to avoid accidental loss overboard and its potential impact on protected species, and training on reporting of dead/injured protected species addressed in bp's Incident Notification and Investigation Procedure.

Page 30 of 48 Rev: B01
Project Internal

Related Facilities and Operations Information

12.1 Related OCS Facilities and Operations

bp chose to conform to the requirements of the American Bureau of Shipping (ABS) Class Floating Offshore Installation (FOI) for the Kaskida project Kaskida Floating Production Unit (FPU). The decision to "Class" the facility ensures conformance with statutory requirements and due diligence will be exercised during the service life of the facility. bp executed a contract with ABS which provided the required services through its design, fabrication, and installation activities for assurance that the facility complied with world-recognized and respected Standards. All marine systems are classified by ABS as required for FOI Class. Marine systems are those which are required to conduct marine operations and include ballast, vents, sounds, a center well and all equipment required to operate and support these systems in or on the hull. This is a manned platform which will process produced hydrocarbons from six (6) currently planned wet tree producers from two (2) drill centers.

The subject wells will be equipped with subsea trees and will flow through subsea manifolds, connected via proposed flowlines with associated umbilicals and jumpers to bp's Kaskida semi-submersible floating platform in Keathley Canyon 293.

bp will apply for a Right-of-Use and Easement application for the expired lease on Keathley Canyon Block 293 for the installed Kaskida semi-submersible FPU and for portions of the platform anchorage system.

bp has contracted Enbridge Offshore Facilities, LLC to build, own and operate the Gas Export Pipeline (GEP) and the Oil Export Pipeline (OEP) from the Kaskida FPU in KC 293. The GEP will tie into existing Magnolia Gas Gathering system. The OEP will tie into a new Oil system from Shell's Boxer platform in GC 19 facility to onshore, called the Rome pipeline.

The proposed operations are not located within the Protective Zones of the State of Florida, Flower Garden Banks National Marine Sanctuary boundaries.

12.2 Transportation Systems

Kaskida FPU production will be transported by two DOT Right-of-Way pipelines to shore. The 24/26-in bi-directional ROW Oil Export pipeline will transport to a new riser on Shell Boxer fixed platform, GC 19, in Green Canyon, OCS-G 37258, and continue through a new pipeline, Rome, to shore in Fourchon, LA. The 12-in bi-directional ROW Gas Export pipeline will transport to a new PLET in Garden Banks 695 and then continue through the existing Magnolia Gas pipeline and then into Garden Backs Pipeline system, ROW G25309, Segment No. 14351.

12.3 Produced Liquid Hydrocarbons Transportation Vessels

Transport Method	Vessel Capacity	Average Volume to be Loaded (per transfer)	No. of Transfers (Yearly Average)
Shuttle Tanker	50,000-bbls	40,000-bbls	52

Support Vessels and Aircraft Information

13.1 Support Vessel and Aircraft Information Table

Туре	Maximum Fuel Tank Storage Capacity	Maximum No. in Area at Any Time	Trip Frequency or Duration
Helicopter	760-gals	1	7 / week
Crew Boats	1,000-bbls	1	2 / week
Supply Boats	1,000-bbls	1	4 / week

13.2 Diesel Oil Supply Vessels

Size of Fuel Supply	Capacity of Fuel Supply	Frequency of	Route Fuel Supply
Vessel	Vessel	Fuel Transfers	Vessel will Take
240-feet to 280-feet	50,000-gallons (boat fuel) 150-K to 250-K gallons of transferable fuel (rig fuel)	Weekly / as needed	From the shorebase in Fourchon, LA, to KC 292

13.3 Solid and Liquid Wastes Transportation and Disposal

The project will utilize existing waste facilities. Wastes generated from the proposed activities will be transported and disposed of at permitted sites, as determined by bp's contracted Waste Management Company. All offshore generated wastes are classified, and if needed, characterized, and all are properly containerized, labeled, marked and shipped in either directly to the onshore disposal facility, or to the bp shorebase facility. A table providing information on solid and liquid wastes generated by the proposed activities is included in Table 2 found in **Appendix D**.

13.4 Vicinity Map

A vicinity map depicting the location of the proposed activities is included in **Appendix B**. In accordance with Appendices A, B, C, and J of the NMFS 2020 Biological Opinion, as amended in 2021, transit routes will avoid the Rice's whale core distribution area. As outlined in the table above, vessels will transit from shorebases in Louisiana to the blocks where activities will occur under this plan.

Onshore Support Facilities Information

14.1 General

The onshore support base for the proposed operations will be in Fourchon, Louisiana. Keathley Canyon Block 292 is located approximately 191 miles from the nearest Louisiana shoreline and approximately 222 miles from the onshore support base located in Fourchon, Louisiana, as indicated on the vicinity map in **Appendix B**.

The following table provides information about the onshore facility that will be used to provide supply and service support for the activities proposed in this plan.

Name	Location	Existing/New/Modified
C-port	Fourchon, LA	Existing
Heliport	Houma, LA	Existing

bp will primarily use the existing C-Port Fourchon Shorebase located in Fourchon, Lafourche Parish, Louisiana to support general vessel operations. No expansion of these physical facilities is expected to result from the proposed activities. The C-Port Fourchon facility is located approximately 222-miles from the general activity area, provides a vehicle parking lot, office space, radio communication equipment, outside and warehouse storage space, crane, forklifts, water and fueling facilities, and boat dock space. The base is in operation 24 hours each day. Helicopters will be based out of Houma, Louisiana.

A small amount of vessel and helicopter traffic may originate from bases other those described above in order to address changes in weather conditions. It is expected that this vessel traffic will originate from bases and locations that are in the near vicinity of the bases previously described.

14.2 Support Base Construction or Expansion

bp will utilize existing support bases for the proposed activities and will not require the construction or expansion of additional support bases.

Coastal Zone Management Act (CZMA) Information

15.1 Consistency Certification

Coastal Zone Management Act consistency certifications for the States of Louisiana, Texas and Alabama, according to 15 CFR Part 930.76(b), are included in **Appendix H**.

Environmental Impact Analysis (EIA)

16.1 Environmental Impact Analysis

Attached as **Appendix I** is an Environmental Impact Analysis (EIA) prepared for the proposed project by Continental Shelf Associates (CSA) Ocean Sciences Inc. 8502 Sw Kansas Ave, Stuart, FL 34997.

Mitigation measures described in Appendices A, B, C and J of the NMFS 2020 Biological Opinion, as amended in 2021, will be implemented to the extent they are applicable to the activities outlined in this plan. Additionally, BOEM (or its predecessor, the Minerals Management Service) has conducted extensive environmental analyses examining the possible impacts produced by oil and gas exploration and production activities, which evaluated impacts from similar activities on the areas in the Gulf of America covered by the present plan.

The EIA addresses potential impacts to environmental resources found in the deepwater Gulf of America, coastal habitats, protected areas, and onshore. Based on the activity set of the project, these included:

 Drilling rig presence, physical disturbance to the seafloor, air emissions, effluent discharges, water intake, onshore waste disposal, marine debris, support vessel/helicopter traffic, and unintended releases to the marine environment.

The EIA outlines high level mitigation measures that will be in place to reduce associated potential impacts.

Administrative Information

17.1 Exempted Information Description

In accordance with 43 CFR Part 2, Appendix E, sections (4) and (9), the following information has been determined by the BOEM Gulf of Mexico Region exempt from public disclosure:

- · Geologic Objectives (BHL, TVD and MD) on Form BOEM-0137
- Production rates and life of reservoirs
- Proprietary New or Unusual Technology
- Geological and Geophysical Information (except for non-proprietary Shallow Hazard Assessment)
- Hydrogen Sulfide Correlative Well Information

This information is excluded from the "Public Information" copies of the submitted plan.

17.2 Bibliography

Any previously submitted EP, DPP, DOCD, study report, survey report, or any other material referenced in this DOCD is listed below:

Plan Control No	Lease	Block	Operator Name	Operator Number	Plan Type Code	Received Date	Final Action Code	Final Action Date
N-8245	G25792	KC292	BP Exploration & Oil Inc.	02481	EP	10/26/2004	Α	12/2/2004
S-7364	G25792	KC292	BP Exploration & Oil Inc.	02481	SEP	10/29/2009	A	12/9/2009
N-8338	G19555	KC336	BP Exploration & Production Inc.	02481	EP	2/15/2005	Α	3/21/2005
S-7451	G19555 G25792	KC336 KC292	BP Exploration & Production Inc.	02481	SEP	11/30/2010	A	10/21/2011

17.3 Other Reference Items

BP, September 2010. "Deepwater Horizon Containment and Response: Harnessing Capabilities and Lessons Learned."

Fugro Geoservices, Inc (FGSI), 2011, "AUV Archaeological Assessment Kaskida Prospect, Blocks 246-248, 290-292, & 335-336, Keathley Canyon Area Gulf of Mexico, FGSI Report No. 2411-1025, Houston, TX. USA.

Geoscience Earth & Marine Services, Inc (GEMS), 2024,"Integrated Shallow Hazards Assessment, Blocks 246-248, 209-292, and 335-336, Keathley Canyon Area, U. S. Gulf of Mexico", GEMS Project No. GHZ3282. Houston, Texas, USA.

17.4 Recovery Fees

Appendix K contains a copy of the receipt showing the payment required by 30 CFR Part 250.125.

Appendixes

Appendix A: Plan Information Forms - Form BOEM-0137

Appendix B: Vicinity Maps, Location Plats, and Bathymetry Maps

Appendix C: Site Clearance Letters for Drill Centers, pre-lay of moorings and wet parking pipeline

risers)

Appendix D: Wastes and Discharges Tables (Projected Generated Wastes and Projected Ocean

Discharges)

Appendix E: Air Emissions Information – Form BOEM-0139

Appendix F: PROPRIETARY COPIES ONLY - WCD Modeling Report for KC 291-A

Appendix G: Oil Spill Response Discussion

Appendix H: Coastal Zone Management Act (CZMA) Consistency Certifications

Appendix I: Environmental Impact Analysis (EIA)

Appendix J: New Technology

Appendix K: Fee Recovery

Appendix A: Plan Information Forms – Form BOEM-0137

PUBLIC INFORMATION

OMB Control Number: 1010-0151 OMB Approval Expires: 6/30/2021

OCS PLAN INFORMATION FORM

				General I	nform	ation						
Туре	of OCS Plan:	Exploratio	n Plan (EP)	Developme	nt Operat	ions Coordinati	on Document (I	OOCD)				
Com	oany Name: BP Exploration &	Production	on Inc.		BOEM	I Operator Nun	iber: 02481					
Addr	ess: 501 Westlake Park Blv	1.			Contac	ct Person: Bet	sy Cleland					
	Houston, TX 77079				Phone	Number: 281	-773-9088					
					E-Mai	1 Address: bet	sy.cleland@bp.	com				
If a s	ervice fee is required under 30	CFR 550.	125(a), provide the	Amount	nt paid \$55,650 Receipt No. 27LFQKNM, 27LF6LVA 27LEBOCB							
		P	roject and W	orst-Case Di	scharg	ge (WCD) I	nformatio	n				
Lease	es: OCS-G 25792	Ar	ea: Keathley Cany	ron	Blocks: 292 Project Name (If Applicable): Kaskida							
Obje	ctive(s) X Oil Ga	s	Sulphur	Salt Onshore	Support I	Base(s): Fourch	on, LA					
Platfo	orm / Well Name: Kaskida		Total V	olume of WCD: 4	mmbo		API Grav	rity: 24	.4			
Dista	nce to Closest Land (Miles): 1	90	-		Volum	e from uncontro	olled blowout:	45,000 1	oopd			
Have	you previously provided infor	mation to	verify the calculati	ons and assumption	ons for your WCD?				Yes	X	No	
If so,	provide the Control Number of	of the EP o	r DOCD with whic	h this information	was provided							
Do y	ou propose to use new or unus	nal technol	logy to conduct you	ur activities?				X	Yes		No	
Do y	ou propose to use a vessel with	anchors to	o install or modify	a structure?					Yes	X	No	
Do y	ou propose any facility that wi	ll serve as	a host facility for d	leepwater subsea d	evelopme	nt?		X	Yes		No	
	Descri	ption o	f Proposed A	ctivities and	Tentat	ive Schedu	ile (Mark a	ll tha	t apply)		
	Proposed A			Star	t Date				No.	of Days		
Drill, throu	Complete and Produce Drill O	Center 1 (D	OC1) Wells A	07/01/2026		06/30	/2030					
	Complete and Produce Drill (Center 2 (D	C2) Wells A	07/01/2026		06/30		1460				
Insta	l piles, pipelines, manifolds, f iated appurtenances	ying leads	, jumpers and	07/15/2027	10/31/2027 10				108	108		
	1 Semi-Submersible Production	n Facility		07/01/2028		07/30	/2028		30			
	l risers, umbilicals, pipelines, ers and associated appurtenant		flying leads,	07/30/2028		09/13	/2028					
		272			7							
	Descripti	on of D	rilling Rig				Description	on of	Structu	ire		
	Jackup	X	Drillship			Caisson			Tensio	on leg pl	atform	
	Gorilla Jackup		Platform rig			Fixed platf	orm		Comp	liant tov	ver	
	Semisubmersible		Submersible			Spar			Guyed	l tower		
	DP Semisubmersible		Other (Attach o	9 (0.10)	X	Floating pr	oduction		Other	(Attach	description)	
Drilli	ng Rig Name (If known): Invi	ctus, Atlas	or available Drills	hip	77	system			Janes	\- 1en		
			Desc	cription of Le	ase Te	rm Pipelin	es					
	From (Facility/Area/Block)		To (Facility/A	rea/Block)		Diameter (I	nches)			Length	(Feet)	
P1 K	C 292 DC1 Manifold	KC	293 FPU		9.625"			14,467				
P2 K	C 292 DC1 Manifold	KC	293 FPU		9.625"				14,767			

P3 KC 292 DC2 Manifold	KC 292 DC1 Manifold	9.625"	5,092
P4 KC 292 DC2 Manifold	KC 292 DC1 Manifold	9.625"	5,096
EHOD-U KC 292 DC1 Manifold	KC 293 FPU	6.65"	18,505
SP-U KC 292 DC1 Manifold	KC 293 FPU	6.28"	17,061
EHOI-U KC 292 DC2 Manifold	KC 292 DC1 Manifold	6.65"	5,070
KC 292 DC1-A	KC 292 DC1 Manifold	8.625"	~85
KC 292 DC1-B	KC 292 DC1 Manifold	8.625"	~85
KC 292 DC1-C	KC 292 DC1 Manifold	8.625"	~85
KC 292 DC2-A	KC 292 DC2 Manifold	8.625"	~85
KC 292 DC2-B	KC 292 DC2 Manifold	8.625"	~85
KC 292 DC2-C	KC 292 DC2 Manifold	8.625"	~85

			Proposed Well/S	tructure Location)r								
			Previously reviewed	l under an approved EP or	DOCD?		Yes	X	No				
ng well or		AT 12	If this is an existing or API No.	well or structure, list the (Complex ID								
use a subsea	BOP or a s	urface BOP on a	floating facility to conduct	your proposed activities?		X	Yes		No				
		uncontrolled	For structures, volume of (Bbls):	all storage and pipelines	API Gra	vity of fl	uid	24.4					
Surface	Location		Bottom-Hole Locat	tion (For Wells)		Completion (For multiple completions, enter separate lines)							
OCS-G 2	25792				OCS OCS								
Keathley	Canyon												
293													
N/S Depa	arture: 6,35	9.18° FSL	N/S Departure;		N/S Dep	arture			$\begin{array}{c} F = L \\ F = L \\ F = L \end{array}$				
E/W Dep	parture: 3,57	4.40' FWL	E/W Departure:		E/W Dep	parture			F_L F_L F_L				
X: 1,793	,494.4		X:		X: X: X:								
Y: 9,68	4,609.18'		Y:		Y: Y: Y:								
Latitude:	26° 41' 19	.261" N	Latitude:		Latitude Latitude Latitude								
Longitud	e: 92° 31' 5	51.865" W	Longitude:		Longitude Longitude Longitude								
eet): 5,561°			MD (Feet):	TVD (Feet):	China Control Control Control	96			/D (Feet): /D (Feet):				
					MD (Fee	et):		TV	/D (Feet):				
			0 0										
e or No.		77777			+		gth of 2	Anchor C	chain on Seatloor				
		1.000				-							
	*			1 10 11/2 11 10 1000									
	2.7					3							
		0.00	11 - 11			074							
	KC				5								
	-	233	A. 10003/1.00	0*									
	KC	293	X: 1799437 70	V- 9678376 50		0.							
	KC KC	293 337	X: 1799437.70 X: 1799042.42	Y: 9678376.50 Y: 9677801.95	110	0*							
	rice previous g well or rise a subseau For wells blowout Surface OCS-G 2 Keathley 293 N/S Department Surface Company Surface C	rice previous name): Kang well or Itse a subsea BOP or a subs	res A Possible a subsea BOP or a surface BOP on a For wells, volume of uncontrolled blowout (Bbls/Day): Surface Location OCS-G 25792 Keathley Canyon 293 N/S Departure: 6,359.18' FSL E/W Departure: 3,574.40' FWL X: 1,793,494.4' Y: 9,684,609.18' Latitude: 26° 41' 19.261" N Longitude: 92° 31' 51.865" W eet): 5,561' (if applicable) in feet: Anchor Locations for Drilling or No. Area Block KC 292 KC 292 KC 292 KC 293 KC 293 KC 293 KC 293 KC 293	re Name/Number (If renaming well or note previous name): Kaskida FPU gwell or receprevious name): Kaskida FPU gwell or reception of APINo. If this is an existing or APINo. Bottom-Hole Location of Rbbis): Bottom-Hole Locations for Bottom-Hole Locations for Pwell gwell or reception name of Rbbis): E/W Departure: E/W Departure: X: 1,793,494.4' X: X: Y: 9,684,609.18' Y: Latitude: 26° 41' 19.261" N Latitude: Longitude: 92° 31' 51.865" W Longitude: Longitude: 92° 31' 51.865" W Longitude: each: 5,561' MD (Feet): (if applicable) in feet: Anchor Locations for Drilling Rig or Construction of No. KC 292 X: 1786885.00 KC 292 X: 1787850.49 KC 293 X: 1799100.70 KC 293 X: 1799653.15 KC 293 X: 1800065.00	Previously reviewed under an approved EP or previous name): Kaskida FPU Previously reviewed under an approved EP or gwell or Yes X No If this is an existing well or structure, list the Gr API No.	Representation Properties Provided Base Provid	e Name/Number (If renaming well or nee previous name): Kaskida FPU g well or Yes X No If this is an existing well or structure, list the Complex ID or API No.	Previous name): Kaskidar PPU	CommerNameFrom Commernation Completed Previously reviewed under an approved EP or DOCD? Previously reviewed under an approved EP or DOCD. Previously reviewed unde				

SW-2	KC	336	X: 1787815.53	Y: 9677884.38	0*	
SW-3	KC	292	X: 1787255.46	Y: 9678398.10	0*	

• Chain penetrates seafloor about 100 ft from the center of suction pile, however no chain actually rests on seafloor

				P	roposed Well/S	tructure Locatio	n								
Well or Structure structure, referen	e Name/Number	r (If renami ne): DC1	ng well or		Previously reviewed	under an approved EP o	or DOCD?		Yes		X	No			
Is this an existing structure?		Ye	s X	No	If this is an existing vor API No.	well or structure, list the	Complex ID								
Do you plan to u	se a subsea BO	P or a surfac	ce BOP on a	a float	ing facility to conduct y	our proposed activities	?	x	Yes			No			
WCD Info	For wells, vol blowout (Bbl				structures, volume of a	all storage and pipelines	API Grav	vity of f	luid	24.4	1				
	Surface Loca	ntion			Bottom-Hole Locati	on (For Wells)		Completion (For multiple completions, enter separate lines)							
Lease No.	OCS-G 25792	2					ocs ocs								
Area Name	Keathley Can	yon													
Block No.	292														
Blockline Departures	N/S Departur	e: 2,777.00	'FSL	1	N/S Departure:		N/S Dep N/S Dep N/S Dep	arture				F_L F_L F_L			
(in feet)	E/W Departur	re: 6,834.00	FEL		E/W Departure:		E/W Dep E/W Dep E/W Dep	F_L F_L F_L							
Lambert X-Y	X: 1,783,086	i.00°			X:		X: X: X:								
Coorumates	Y: 9,681,017	7.00'		1	Y:		Y: Y: Y:								
Latitude/	Latitude: 26°	40° 44.037	" N		Latitude:		Latitude Latitude Latitude								
Longitude	Longitude: 9	2° 33' 46.61	14" W		Longitude:		Longitud Longitud Longitud	le							
Water Depth (Fe	et): 6,082'				MD (Feet):	TVD (Feet):	MD (Fee	et):			TVD	(Feet):			
Anchor Radius (if applicable) in	feet:				•	MD (Fee	et):			TVD	(Feet):			
				ng R		n Barge (If anchor				_					
Anchor Name	or No.	Area	Block		X Coordinate	Y Coordi	nate	Len	gth of A	ncho	or Cha	in on Seafloor			
				_	X:	Y:									
		-			X:	Y:									
					X:	Y:									
					X:	Y:						-			
					X:	Y:									
					X:	Y:									
				-	X: X:	Y:									
				1 2	Λ.	Y:									

					P	roposed Well/S	tructure L	ocation								
Well or Structure structure, referen	e Name/Num	ber (If ren name): D(aming v	vell or		Previously reviewed	under an appro-	ved EP or DO	CD?		Yes		X	No		
Is this an existin structure?			Yes	X N	Io	If this is an existing or API No.	well or structure	e, list the Com	plex ID							
Do you plan to u	se a subsea E	BOP or a si	urface E	BOP on a	floati	ng facility to conduct	your proposed a	ctivities?		x	Yes		Ī	No		
WCD Info	For wells, blowout (B				For (Bb)	structures, volume of	all storage and p	pipelines	API Grav	ity of f	luid	24.4	0-			
	Surface Lo	ocation				Bottom-Hole Locat	ion (For Wells)		Completion (For multiple completions, enter separate lines)							
Lease No.	OCS-G 25	792							ocs ocs							
Area Name	Keathley C	anyon		2					=							
Block No.	292															
Blockline Departures	N/S Depart	ture: 2,85	8.78' FS	SL		N/S Departure:		N/S Depa N/S Depa N/S Depa	arture				F_L F_L F_L			
(in feet)	E/W Depar	ture: 6,77.	3.22' FI	EL.		E/W Departure:			E/W Dep E/W Dep E/W Dep	arture				F_L F_L F_L		
Lambert X-Y	X: 1,783,1	46.78'				X:	0	X: X: X:								
Coortunates	Y: 9,681,0	098.78'				Y:		Y: Y: Y:								
Latitude/	Latitude: 2	26° 40' 44.	.846" N			Latitude:		Latitude Latitude Latitude								
Longitude	Longitude:	92° 33' 4	15.941"	W		Longitude:			Longitud Longitud Longitud	e						
Water Depth (Fe	et): 6,084'					MD (Feet):	TVD (Feet):		MD (Fee				TVD	(Feet): (Feet):		
Anchor Radius (if applicable)	in feet:							MD (Fee					(Feet):		
	Anchor	Locatio	ns for	Drillin	ıg R	ig or Constructio	n Barge (If	anchor radi	us suppli	ed abo	ve, not	nece	ssary)			
Anchor Name	or No.	Area		Block	4	X Coordinate		Coordinate		Len	gth of A	ncho	r Cha	in on Seafloor		
					X		Y:									
					X		Y:									
					Х		Y:									
					X		Y:									
					X		Y:									
					X		Y:									
					X		Y:									
					X	X: Y:										

					P	roposed Well/Str	ucture Location	1								
Well or Structure structure, referen	e Name/Nun	nber (If re name): 1	enaming OC1 "B"	well or		Previously reviewed un	der an approved EP or	DOCD?		Yes		X	No			
Is this an existing structure?			Yes		No	If this is an existing we or API No.	ll or structure, list the (Complex ID								
Do you plan to u	se a subsea l	BOP or a	surface	BOP on	a float	ing facility to conduct you	ır proposed activities?		x	Yes			No			
WCD Info	For wells, blowout (H					structures, volume of all ols):	storage and pipelines	API Grav	ity of f	luid	24.4	1.				
	Surface L	ocation				Bottom-Hole Location	ı (For Wells)		Completion (For multiple completions, enter separate lines)							
Lease No.	OCS-G 25	792						ocs ocs								
Area Name	Keathley (Canyon														
Block No.	292															
Blockline Departures	N/S Depar	ture: 2	,737.05	FSL		N/S Departure:	N/S Depa N/S Depa N/S Depa	arture				F_L F_L F_L				
(in feet)	E/W Depa	rture: 6.	,739.71	FEL		E/W Departure:		E/W Dep E/W Dep E/W Dep	F_L F_L F_L							
Lambert X-Y	X: 1,783,	180.29				X:	X: X: X:									
Coordinates	Y: 9,680,	977.05	Ī			Y:	Y: Y: Y:									
Latitude/ Longitude	Latitude:	26° 40' 4	3.638" 1	N		Latitude:	Latitude Latitude Latitude									
Longitude	Longitude	: 92° 33°	45.576	"W		Longitude:		Longitud Longitud Longitud	e							
Water Depth (Fe	eet): 6,078°					MD (Feet):	TVD (Feet):	MD (Fee MD (Fee					(Feet):			
Anchor Radius (if applicable) in feet:						MD (Fee	t):			TVD	(Feet):			
	Anchor	Locati	ons fo	r Drill	ing R	ig or Construction	Barge (If anchor r	adius suppli	ed abo	ve, not	nece	ssary				
Anchor Name	or No.	Area		Block		X Coordinate	Y Coordin	ate	Len	gth of A	Ancho	or Cha	nin on Seafloor			
						X:	Y:									
					_	X:	Y:									
						X:	Y:									
					-	X:	Y:									
						X: X:	Y: Y:									
						X:	Y: Y:									
					_	X:	Y:									
					- 1 2	A.										

					F	Proposed Well/St	ructure Locatio	n							
Well or Structure structure, referen	e Name/Numb	er (If rename): DO	aming	well or		Previously reviewed t	ınder an approved EP o	or DOCD?		Yes	X	No			
Is this an existing structure?			Yes	x	No	If this is an existing w or API No.	rell or structure, list the	Complex ID							
Do you plan to u	se a subsea B	OP or a su	ırface I	BOP on	a float	ing facility to conduct y	our proposed activities	7	x	Yes		No			
WCD Info	For wells, v blowout (Bl					structures, volume of al	l storage and pipelines	API Grav	ity of f	luid	24.4				
	Surface Lo	cation				Bottom-Hole Location	on (For Wells)	Complet separate		or multip	le comp	letions, enter			
Lease No.	OCS-G 257	92						ocs ocs							
Area Name	Keathley Ca	anyon													
Block No.	292														
Blockline Departures	N/S Depart	ire: 2,7	26.47	FSL		N/S Departure:		N/S Depa N/S Depa N/S Depa	arture			FL FL FL			
(in feet)	E/W Depart	ure: 6,9	923.19	'FEL		E/W Departure:		E/W Dep E/W Dep E/W Dep	arture			F_L F_L F_L			
Lambert X-Y	X: 1,782,99	96.81*				X:		X: X: X:							
Coortimates	Y: 9,680,96	56.47'			Τ,	Y:		Y: Y: Y:							
Latitude/	Latitude: 20	6° 40' 43.	540" N	ī		Latitude:	Latitude Latitude Latitude								
Longitude	Longitude:	92° 33' 4	7.600"	w	4	Longitude:		Longitud Longitud Longitud	e						
Water Depth (Fe	eet): 6,081'					MD (Feet):	TVD (Feet):	MD (Fee				/D (Feet):			
Anchor Radius (if applicable)	in feet:				,	1	MD (Fee	t):		TV	/D (Feet): /D (Feet):			
	Anchor l	Locatio	ns for	r Drilli	ng R	kig or Construction	Barge (If anchor	radius suppli	ed abo	ove, not 1	necessa	ry)			
Anchor Name	or No.	Area		Block		X Coordinate	Y Coordi	nate	Len	gth of A	nchor C	Chain on Seafloor			
					4 2	X:	Y:								
						X:	Y:								
					3	X:	Y:								
						X:	Y:								
						X:	Y:								
						X:	Y:								
						X:	Y:								
	- 1				3	X:	Y:								

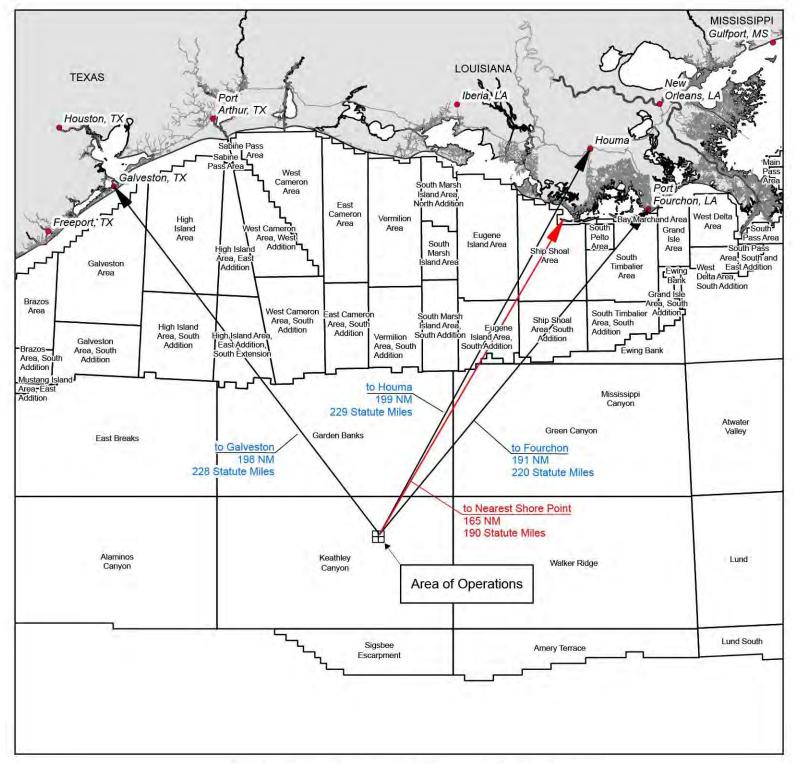
					P	roposed Well/S	tructure Location	1								
Well or Structure structure, referen	Name/Num	ber (If re name): E	naming OC1 "D"	well or		Previously reviewed	under an approved EP or	DOCD?		Yes	1	X	No			
Is this an existing structure?			Yes	1 7 7 7	No	If this is an existing vor API No.	well or structure, list the	Complex ID								
Do you plan to u	se a subsea E	BOP or a	surface !	BOP on	a float	ing facility to conduct y	our proposed activities?		X	Yes			No			
WCD Info	For wells, blowout (B				For (Bb		all storage and pipelines	API Grav	ity of f	luid	24.4	1 .				
	Surface Lo	ocation				Bottom-Hole Locati	on (For Wells)		Completion (For multiple completions, enter separate lines)							
Lease No.	OCS-G 25	792						ocs ocs								
Area Name	Keathley C	anyon														
Block No.	292															
Blockline Departures	N/S Depart	ture: 2,	,799.82°	FSL		N/S Departure:		N/S Depa N/S Depa N/S Depa	arture				F_L F_L F_L			
(in feet)	E/W Depar	ture:	6,734.2	9' FEL		E/W Departure:		E/W Dep E/W Dep E/W Dep	F_L F_L F_L							
Lambert X-Y	X: 1,783,1	85.71°				X:		X: X: X:								
Coordinates	Y: 9,681,0	39.82				Y:		Y: Y: Y:								
Latitude/ Longitude	Latitude: 2	.6° 40' 4	4.260" N	1		Latitude:	Latitude Latitude Latitude									
Longitude	Longitude:	92° 33°	45.514"	w		Longitude:		Longitud Longitud Longitud	e							
Water Depth (Fe	et): 6,080°					MD (Feet):	TVD (Feet):	MD (Fee MD (Fee					(Feet): (Feet):			
Anchor Radius (if applicable)	in feet:						MD (Fee	t):			TVD	(Feet):			
	Anchor	Locati	ons for	r Drilli	ng R	ig or Constructio	n Barge (If anchor	radius suppli	ed abo	ve, not	neces	ssary)	No.			
Anchor Name	or No.	Area		Block		X Coordinate	Y Coordina	te	Len	gth of A	ncho	r Cha	in on Seafloor			
					- 1	X:	Y:									
					-	X.:	Y:									
						X:	Y:									
						X:	Y: Y:									
						Κ;										
						X :	Y:									
						X:	Y: Y:									
					2	X:										

					F	Proposed Well/S	tructure Locatio	n								
Well or Structure structure, referen	e Name/Numb	ber (If re name): I	naming OC1 "E"	well or		Previously reviewed	under an approved EP o	r DOCD?		Yes	1	X	No			
Is this an existing structure?			Yes	x	No	If this is an existing vor API No.	well or structure, list the	Complex ID								
Do you plan to u	se a subsea B	OP or a	surface	BOP on	a float	ing facility to conduct y	our proposed activities	1	x	Yes			No			
WCD Info	For wells, v blowout (B					structures, volume of a bls):	all storage and pipelines	API Grav	ity of f	luid	24.4	1				
	Surface Lo	cation				Bottom-Hole Locati	on (For Wells)		Completion (For multiple completions, enter separate lines)							
Lease No.	OCS-G 257	792						ocs ocs								
Area Name	Keathley C	anyon														
Block No.	292															
Blockline Departures	N/S Depart	ure: 2,	788.21	FSL		N/S Departure:		N/S Depa N/S Depa N/S Depa	arture				F_L F_L F_L			
(in feet)	E/W Depar	ture: 6	,935.73°	FEL		E/W Departure:		E/W Dep E/W Dep E/W Dep	F_L F_L F_L							
Lambert X-Y	X: 1,782,98	84.27				X:		X: X: X:								
Coordinates	Y: 9,681,02	28.21'				Y:		Y: Y: Y:								
Latitude/	Latitude: 2	6° 40' 4	4.452" 1	٧		Latitude:	Latitude Latitude Latitude									
Longitude	Longitude:	92° 33'	47.735	'w		Longitude:		Longitud Longitud Longitud	e							
Water Depth (Fe	et): 6,085°					MD (Feet):	TVD (Feet):	MD (Fee					(Feet):			
Anchor Radius (if applicable)	in feet:					1	MD (Fee	t):			TVD	(Feet):			
	Anchor	Locati	ons fo	r Drill	ing R	lig or Constructio	n Barge (If anchor	radius suppli	ied abo	ve, not	neces	ssary)	ri .			
Anchor Name	or No.	Area		Block		X Coordinate	Y Coordin	ate	Len	gth of A	ncho	r Cha	in on Seafloor			
						X:	Y:									
					-	X:	Y:									
						X:	Y:									
						X:	Y: Y:									
						X;										
			+			X:	Y: Y:									
					-+-	X:	Y: Y:									
					4	X:										

				P	roposed Well/S	tructure Loca	ition				
Well or Structure structure, referen			well or	-	Previously reviewed	under an approved	EP or DOCD?	1	Yes	x	No
Is this an existing well or structure? Yes X No				No	If this is an existing well or structure, list the Complex ID or API No.						
Do you plan to u	se a subsea BOP	or a surface	BOP on	a floati	ing facility to conduct	our proposed activ	ities?	X	Yes		No
WCD Info				For (Bb	structures, volume of a ls):	all storage and pipe	API Grav	vity of t	fluid		
	Surface Locati	ion			Bottom-Hole Locat	on (For Wells)	Complete separate	tion (Fo	or multipl	e comple	tions, enter
Lease No.	OCS-G 25792						OCS OCS				
Area Name	Keathley Canyo	on									
Block No.	292				292						
Blockline Departures	ACT AND ADDRESS OF THE PARTY OF			1	N/S Departure:		N/S Dep	N/S Departure F _ L N/S Departure F _ L N/S Departure F _ L			
(in feet)	E/W Departure: 3,920.00' FWL				E/W Departure:	E/W Dep	E/W Departure F _ L E/W Departure F _ L E/W Departure F _ L				
Lambert X-Y coordinates	X: 1,778,000.000°				X:	X: X: X:	X:				
Coordinates	Ý: 9,681,150.0	00'			Y:	Y: Y: Y: Y:	Y:				
Latitude/ Longitude	Latitude: 26° 4	0° 45.525" 1	N.		Latitude:	Latitude Latitude Latitude	Latitude				
Longitude	Longitude: 92° 34' 42.697" W				Longitude:		Longitud	Longitude Longitude Longitude			
Water Depth (Fe	et): 6,025'				MD (Feet):	TVD (Feet):	MD (Fee			TVD (Feet): TVD (Feet):	
Anchor Radius (i	if applicable) in f	eet:					MD (Fee				(Feet):
	Anchor Loc	cations fo	r Drill	ing R	ig or Constructio	n Barge (If and	hor radius suppl	ied abo	ove, not n	ecessary)
Anchor Name	or No. A	rea	Block		X Coordinate	Y Co	ordinate	Lei	ngth of An	chor Cha	ain on Seafloor
				2	K :	Y:					
				2	X :	Y:					
				2	X :.	Y:					
				2	C :	Y:					
				7	Κ:	Y:					
				2	Κ;	Y:					
				2	C :	Y:					
				2	ζ:	Y:					

				Proposed Well/S	tructure L	ocation					
Well or Structure Nar structure, reference pr	ne/Number (If re revious name): I	naming v OC2 "A"	well or	Previously reviewed	under an appro	ved EP or D	OCD?		Yes	X	No
Is this an existing well or structure? Yes X No				If this is an existing or API No.	If this is an existing well or structure, list the Complex II or API No.						
Do you plan to use a	subsea BOP or a	surface I	BOP on a flo	ating facility to conduct	your proposed a	ctivities?		x	Yes		No
				or structures, volume of Bbls):	all storage and p	oipelines	API Grav	vity of f	luid	24.4	
Sur	rface Location			Bottom-Hole Locat	ion (For Wells)		Complet separate		r multip	le compl	etions, enter
Lease No. OC	CS-G 25792						ocs ocs				
Area Name Ke	athley Canyon		- 4								
Block No. 292	2										
Blockline Departures (in feet) N/S Departure: 2,991.78' FSL E/W Departure: 3,980.78' FWL			N/S Departure:			N/S Depa	N/S Departure F _ L N/S Departure F _ L N/S Departure F _ L				
			E/W Departure: E/V			E/W Departure F _ L E/W Departure F _ L E/W Departure F _ L				F_L	
Lambert X-Y coordinates	1,778,060.78			X:	X:			X: X: X:			
	9,681,231.78			Y:	Y:			Y: Y: Y:			
Latitude/	titude: 26° 40' 4	6.333" N		Latitude:	Latitude:			Latitude Latitude Latitude			
Longitude Lon	ngitude: 92°34'	42.024"	W	Longitude:	Longitude:			Longitude Longitude Longitude			
Water Depth (Feet):	6,028'			MD (Feet):	TVD (Feet)		MD (Feet): MD (Feet):				D (Feet): D (Feet):
Anchor Radius (if app	10,54119555111		*****	P	~		MD (Fee	t):		TV	D (Feet):
Anchor Name or N	NAME AND ADDRESS OF TAXABLE PARTY.	_	Block	Rig or Construction X Coordinate		anchor rad					y) hain on Seafloor
TENENOT TRUME OF 17	11100		Diver	X:	Y:	Coorwanii		1,011	gui or ir.	icioi ci	and on Standor
				X:	Y:		- +6				
				X:	Y:						
				X:	Y:						
				X:	Y:						
				X;	Y:						
				X:	Y:						
				X:	Y:						

Proposed Well/Structure Location Well or Structure Name/Number (If renaming well or Previously reviewed under an approved EP or DOCD? X No Yes structure, reference previous name): DC2 "B" Is this an existing well or If this is an existing well or structure, list the Complex ID No Yes X structure? or API No. Do you plan to use a subsea BOP or a surface BOP on a floating facility to conduct your proposed activities? Yes X No For wells, volume of uncontrolled For structures, volume of all storage and pipelines WCD Info API Gravity of fluid 24.4 blowout (Bbls/Day): 45,000 Completion (For multiple completions, enter **Surface Location** Bottom-Hole Location (For Wells) separate lines) OCS Lease No. OCS-G 25792 OCS Area Name Keathley Canyon Block No. 292 N/S Departure N/S Departure: N/S Departure N/S Departure: 2,870.06' FSL L Blockline N/S Departure L Departures (in feet) L E/W Departure F E/W Departure: 4,014.29' FWL E/W Departure: E/W Departure F L E/W Departure F L X: X: X: 1,778,094.29' X: Lambert X-Y X: coordinates Y: Y: Y: 9,681,110.06° Y: Y: Latitude Latitude: 26° 40' 45.126" N Latitude Latitude: Latitude/ Latitude Longitude Longitude Longitude: 92° 34' 41.659" W Longitude: Longitude Longitude MD (Feet): TVD (Feet): Water Depth (Feet): 6,024' MD (Feet): TVD (Feet): MD (Feet): TVD (Feet): MD (Feet): TVD (Feet): Anchor Radius (if applicable) in feet: Anchor Locations for Drilling Rig or Construction Barge (If anchor radius supplied above, not necessary) Anchor Name or No. Block X Coordinate Y Coordinate Length of Anchor Chain on Seafloor Area X: Y: X: Y:

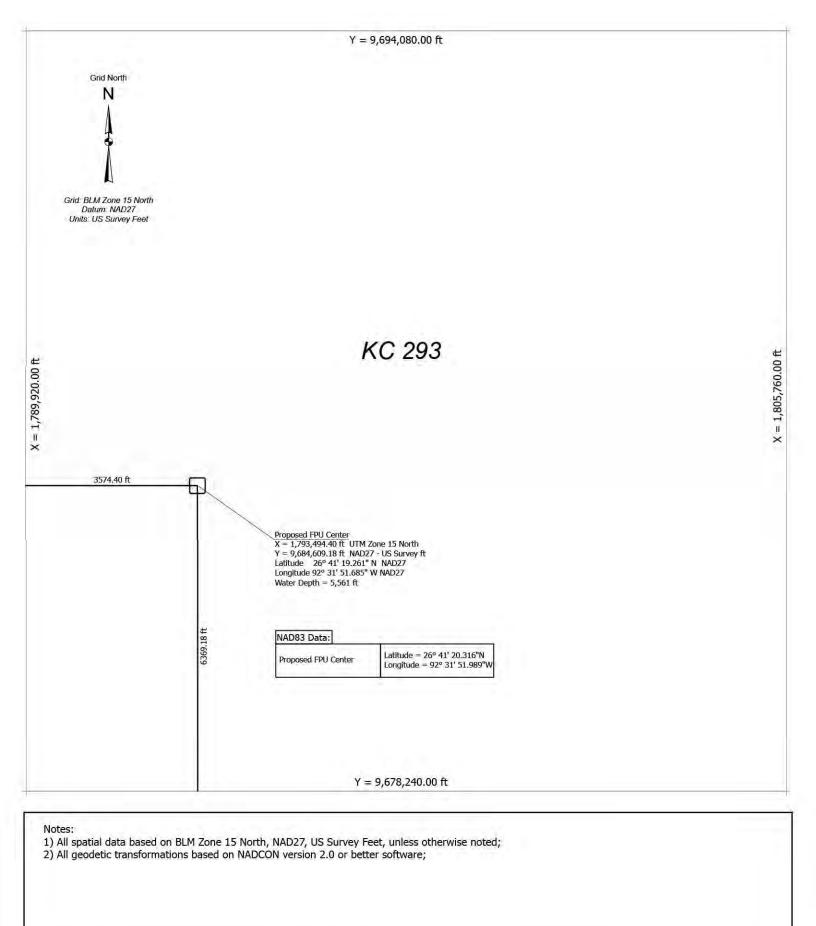

Proposed Well/Structure Location Well or Structure Name/Number (If renaming well or Previously reviewed under an approved EP or DOCD? Yes X No structure, reference previous name): DC2 "C" Is this an existing well or If this is an existing well or structure, list the Complex ID X No structure? or API No. Do you plan to use a subsea BOP or a surface BOP on a floating facility to conduct your proposed activities? No Yes For structures, volume of all storage and pipelines For wells, volume of uncontrolled WCD Info API Gravity of fluid 24.4 blowout (Bbls/Day): 45,000 Completion (For multiple completions, enter **Bottom-Hole Location (For Wells) Surface Location** separate lines) OCS Lease No. OCS-G 25792 OCS Area Name Keathley Canyon Block No. 292 N/S Departure N/S Departure N/S Departure: 2,859.47' FSL N/S Departure: Blockline N/S Departure L Departures (in feet) E/W Departure E/W Departure: 3,830.80' FWL E/W Departure: E/W Departure L E/W Departure X: X: X: X: 1,777,910.80° X: Lambert X-Y coordinates Y: Y: 9,681,099.47° Y: Y: Y: Latitude Latitude: 26° 40' 45.027" N Latitude: Latitude Latitude/ Latitude Longitude Longitude Longitude: 92° 34' 43.683" W Longitude: Longitude Longitude MD (Feet): TVD (Feet): Water Depth (Feet): 6,023' TVD (Feet): MD (Feet): MD (Feet): TVD (Feet): MD (Feet): TVD (Feet): Anchor Radius (if applicable) in feet: Anchor Locations for Drilling Rig or Construction Barge (If anchor radius supplied above, not necessary) Anchor Name or No. Area Block X Coordinate Y Coordinate Length of Anchor Chain on Seafloor X: Y: X: Y:

				P	roposed Well/S	Structure Locatio	n				
Well or Structure	e Name/Number (I nce previous name)	f renaming	well or		Previously reviewed	d under an approved EP o	or DOCD?		Yes	X	No
Is this an existing well or structure? Yes X No				No	If this is an existing well or structure, list the Complex ID or API No.						
Do you plan to u	se a subsea BOP o	r a surface	BOP on	a floati	ng facility to conduct	your proposed activities	?	X	Yes		No
WCD Info	For wells, volum blowout (Bbls/D			For (Bb		all storage and pipelines	API Grav	vity of 1	luid 2	24.4	
	Surface Locatio	n			Bottom-Hole Loca	tion (For Wells)	Complet separate		or multip	e comple	tions, enter
Lease No.	OCS-G 25792						ocs ocs				
Area Name	Keathley Canyon	1									
Block No.	292										
Blockline Departures	N/S Departure:	2,932.82	FSL		N/S Departure:		N/S Departure F			F_L F_L F_L	
(in feet)	E/W Departure:	e: 4,019.79° FWL E			E/W Departure:		E/W Departure E/W Departure E/W Departure			F_L F_L F_L	
Lambert X-Y	X: 1,778,099.79°				X:	X: X: X:	X:				
coordinates	Y: 9,681,172.82'				Y:						
Latitude/	Latitude: 26° 40	' 45.747"]	N		Latitude:	Latitude Latitude Latitude					
Longitude	Longitude: 92°3	34° 41.596	"W	Ī	Longitude:	ide:		Longitude Longitude Longitude			
Water Depth (Fe	eet): 6,026°				MD (Feet):	TVD (Feet):	MD (Fee	MD (Feet): TVD (Feet			(Feet):
Anchor Radius (if applicable) in fee	et:				1	MD (Fee	MD (Feet): TVD MD (Feet): TVD		(Feet): (Feet):	
	Anchor Loca	ations fo	r Drilli	ng R	ig or Constructi	on Barge (If anchor	radius suppl	ied abo	ove, not n	ecessary)
Anchor Name	or No. Are	ea	Block		X Coordinate	Y Coordina	ite	Len	igth of Ai	ichor Ch	ain on Seafloor
				X		Y:					
				X	ζ:	Y:					
				У	ζ:	Y:					
				У	ζ;	Y:					
				Х	C :	Y:					
				У	C :	Y:	1.				
				У	C :	Y:					
				N	C :	Y:					

OCS PLAN INFORMATION FORM (CONTINUED)

Include one copy of this page for each proposed well/structure **Proposed Well/Structure Location** Well or Structure Name/Number (If renaming well or Previously reviewed under an approved EP or DOCD? Yes X No structure, reference previous name): DC2 "E' Is this an existing well or If this is an existing well or structure, list the Complex ID X No structure? or API No. Do you plan to use a subsea BOP or a surface BOP on a floating facility to conduct your proposed activities? No Yes For structures, volume of all storage and pipelines For wells, volume of uncontrolled WCD Info API Gravity of fluid 24.4 blowout (Bbls/Day): 45,000 Completion (For multiple completions, enter **Bottom-Hole Location (For Wells) Surface Location** separate lines) OCS Lease No. OCS-G 25792 OCS Area Name Keathley Canyon Block No. 292 N/S Departure N/S Departure: 2,921.21' FSL N/S Departure N/S Departure: Blockline N/S Departure L Departures (in feet) E/W Departure E/W Departure: 3,818.26' FWL E/W Departure: E/W Departure L E/W Departure X: X: X: X: 1,777,898.26' X: Lambert X-Y coordinates Y: Y: 9,681,161.21' Y: Y: Y: Latitude Latitude: 26° 40' 45.639" N Latitude: Latitude Latitude/ Latitude Longitude Longitude Longitude: 92° 34' 43.819" W Longitude: Longitude Longitude MD (Feet): TVD (Feet): Water Depth (Feet): 6,025' TVD (Feet): MD (Feet): MD (Feet): TVD (Feet): MD (Feet): TVD (Feet): Anchor Radius (if applicable) in feet: Anchor Locations for Drilling Rig or Construction Barge (If anchor radius supplied above, not necessary) Anchor Name or No. Area Block X Coordinate Y Coordinate Length of Anchor Chain on Seafloor X: Y: X: Y:

Appendix B: Vicinity Maps, Location Plats, and Bathymetry Maps

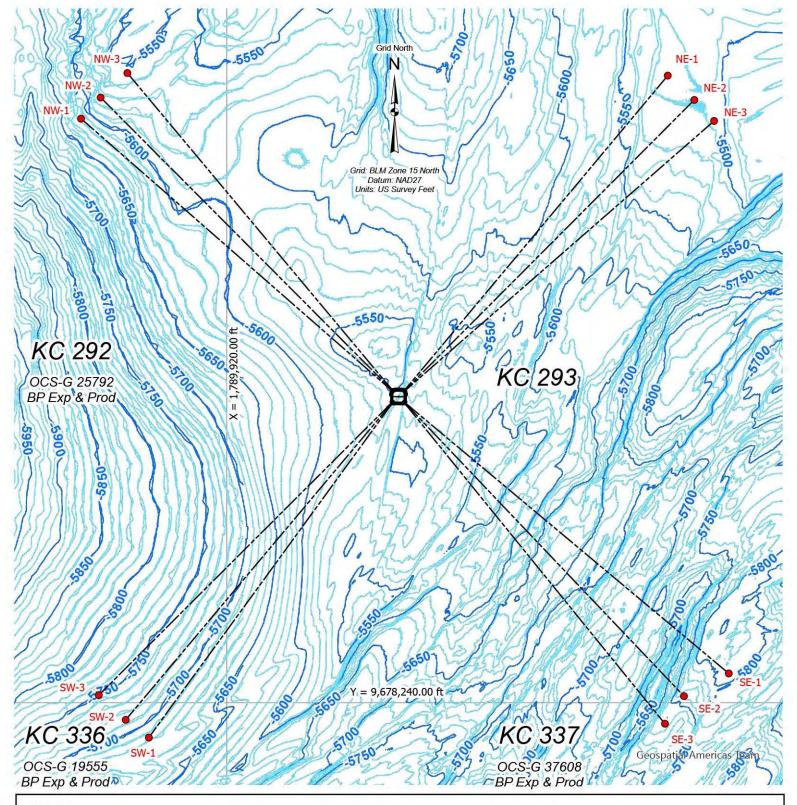

Note: FPU Center used for distance calculations to the shoreline. The shoreline used is the NOAA 1:24K Continuously Updated Shoreline Product (CUSP).

Grid: BLM Zone 15 North Datum: NAD27 Units: US Survey Feet

"Vicinity Chart"

bp	BP EXPLORATION AND PRODUCTION		Scale 1" = 50 miles
2000	Proposed FPU Center Surface Location		Date: 10/10/2024
2 3	Keathley Canyon Area (OPD# NG15-05) Block 292, 293, 336, 337	Offshore Federal	
2000	Plat prepared by: Ian Dootson (BP Solutions)		ID

bp	BP EXPLORATION AND PRODUCTION		Scale 1" = 2000 ft
2000	Proposed FPU Center Surface Location		Date: 10/10/2024
2 3	Keathley Canyon Area (OPD# NG15-05) Block 293	Offshore Federal	Sheet 1 of 3
2010	Plat prepared by: Ian Dootson (BP Solutions)	112	ID

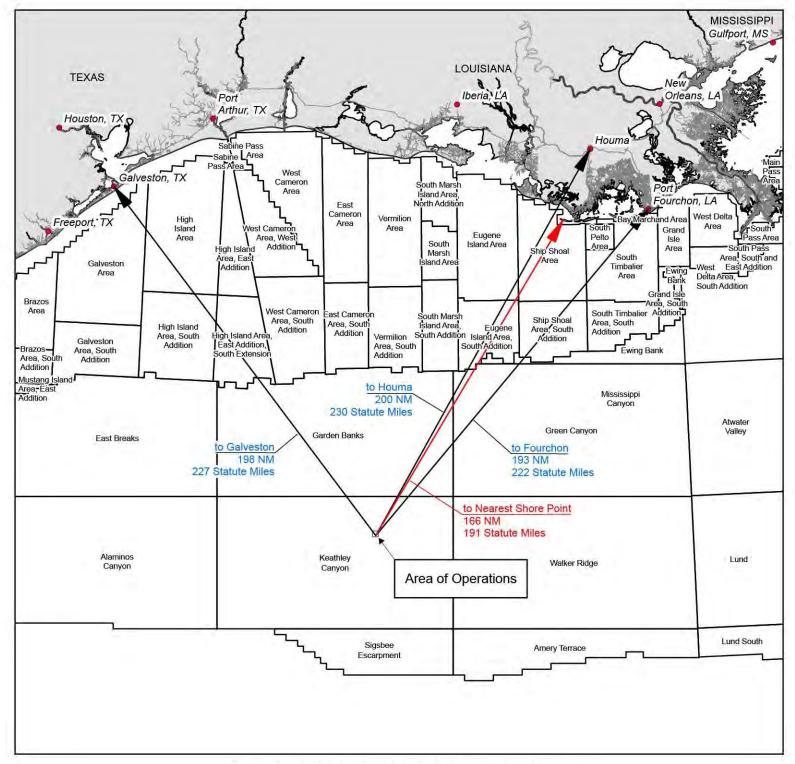

Pile		ne 15 North JS Survey Feet	I NAD27 I			NAD83		
	Easting Northing		Latitude	Longitude	Latitude	Longitude		
NW-1	1786885.00	9690395.00	26 42 16.819N	92 33 04.355W	26 42 17.873N	92 33 04.663W		
NW-2	1787293.30	9690833.21	26 42 21.146N	92 32 59.834W	26 42 22.200N	92 33 00.142W		
NW-3	1787850.49	9691344.28	26 42 26.190N	92 32 53.668W	26 42 27.244N	92 32 53.976W		
NE-1	1799100.70	9691290.67	26 42 25.249N	92 30 49.574W	26 42 26.302N	92 30 49.878W		
NE-2	1799653.15	9690783.72	26 42 20.205N	92 30 43.501W	26 42 21.258N	92 30 43.805W		
NE-3	1800065.00	9690347.00	26 42 15.863N	92 30 38.977W	26 42 16.916N	92 30 39.281W		
SE-1	1800371.00	9678849.00	26 40 21.936N	92 30 36.089W	26 40 22.992N	92 30 36.389W		
SE-2	1799437.70	9678376.50	26 40 17.290N	92 30 46.400W	26 40 18.346N	92 30 46.700W		
SE-3	1799042.42	9677801.95	26 40 11.613N	92 30 50.783W	26 40 12.669N	92 30 51.083W		
SW-1	1788297.00	9677514.00	26 40 09.151N	92 32 49.285W	26 40 10.208N	92 32 49.588W		
SW-2	1787815.53	9677884.38	26 40 12.838N	92 32 54.579W	26 40 13.895N	92 32 54.883W		
SW-3	1787255.46	9678398.10	26 40 17.947N	92 33 00.735W	26 40 19.004N	92 33 01.039W		

Pile	Depth	Block		Block	Ties (feet)	
NW-1	5613	KC292	3035.00	FEL	3685.00	FNL
NW-2	5573	KC292	2626.70	FEL	3246.79	FNL
NW-3	5553	KC292	2069.51	FEL	2735.72	FNL
NE-1	5510	KC293	6659.30	FEL	2789.33	FNL
NE-2	5510	KC293	6106.85	FEL	3296.28	FNL
NE-3	5507	KC293	5695.00	FEL	3733.00	FNL
SE-1	5803	KC293	5389.00	FEL	609.00	FSL
SE-2	5760	KC293	6322.30	FEL	136.50	FSL
SE-3	5737	KC337	6717.58	FEL	438.05	FNL
SW-1	5683	KC336	1623.00	FEL	726.00	FNL
SW-2	5713	KC336	2104.47	FEL	355.62	FNL
SW-3	5746	KC292	2664.54	FEL	158.10	FSL

All spatial data based on BLM Zone 15 North, NAD27, US Survey Feet, unless otherwise noted;
 All geodetic transformations based on NADCON version 2.0 or better software;

	bp
1	Mary.
3	
7	7005

BP EXPLORATION AND PRODUCTION	Scale 1" = 2000 ft
Proposed FPU Mooring Pile Locations	Date: 10/10/2024
Keathley Canyon Area (OPD# NG15-05) Block 293 Offshore Federal	Sheet 2 of 3
Plat prepared by: Ian Dootson (BP Solutions)	ID

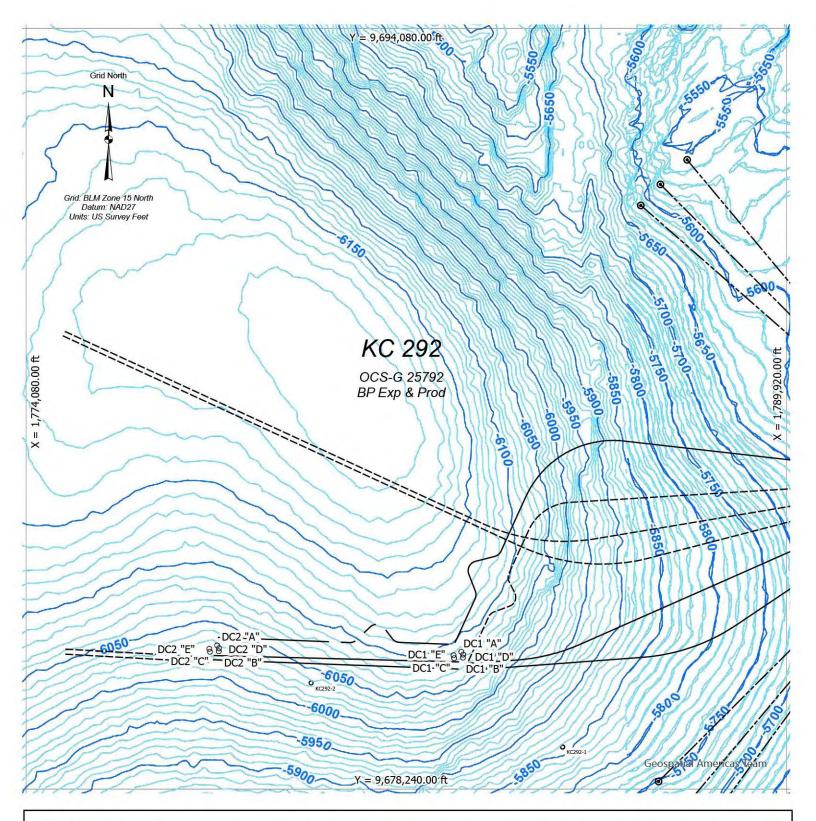

- 1) All spatial data based on BLM Zone 15 North, NAD27, US Survey Feet, unless otherwise noted;
- 2) All geodetic transformations based on NADCON version 2.0 or better software;
- 3) Bathymetry derived from 2008 and 2023 AUV Surveys

Legend

Mooring Piles

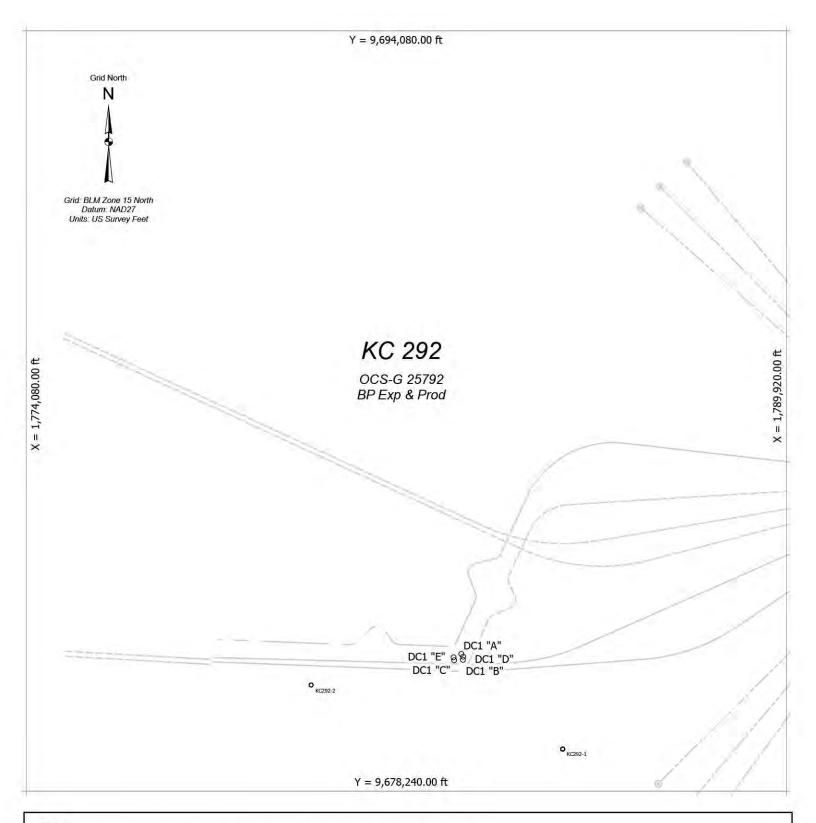
"Bathymetry"

bp	BP EXPLORATION AND PRODUCTION		Scale 1" = 2000 ft
A MARIE	Proposed FPU Mooring Pile Locations		Date: 10/10/2024
2 3	Keathley Canyon Area (OPD# NG15-05) Block 292, 293, 336, 337	Offshore Federal	Sheet 3 of 3
2040	Plat prepared by: Ian Dootson (BP Solutions)		ID


Note: DC1 Well "A" in KC292 used for distance calculations to the shoreline. The shoreline used is the NOAA 1:24K Continuously Updated Shoreline Product (CUSP).

Grid: BLM Zone 15 North Datum: NAD27 Units: US Survey Feet

"Vicinity Chart"

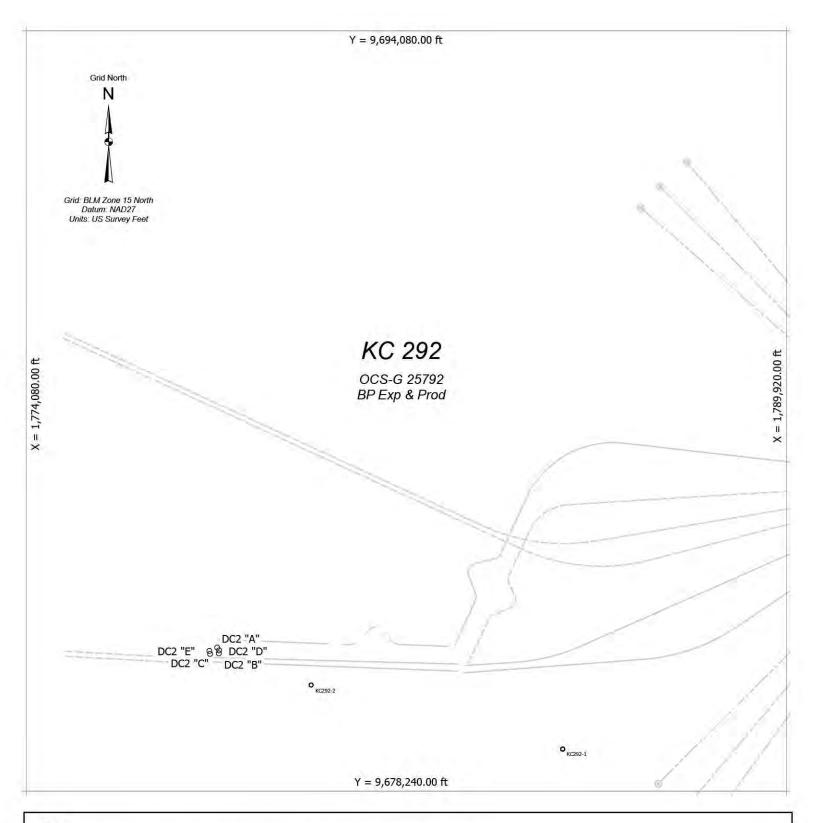

bp	BP EXPLORATION AND PRODUCTION	Scale 1" = 50 miles
3000	Proposed Well Locations OCS-G25792 KC 292 DC1/DC2 Wells "A" to "E"	Date: 11/27/2024
	Keathley Canyon Area (OPD# NG15-05) Block 292 Offshore Federal	
2000	Plat prepared by: Ian Dootson (BP Solutions)	ID

- 1) All spatial data based on BLM Zone 15 North, NAD27, US Survey Feet, unless otherwise noted; 2) All geodetic transformations based on NADCON version 2.0 or better software;
- 3) All well SHL and BHL data based upon BSEE data as of August 2024 and internal BP sources;

"Bathymetry"

bp	BP EXPLORATION AND PRODUCTION	Scale 1" = 2000 ft
	Proposed Well Locations OCS-G25792 KC 292 DC1/DC2 Wells "A" to "E"	Date: 11/27/2024
3 3	Keathley Canyon Area (OPD# NG15-05) Block 292 Offshore Federal	
20402	Plat prepared by: Ian Dootson (BP Solutions)	ID

- All spatial data based on BLM Zone 15 North, NAD27, US Survey Feet, unless otherwise noted;
 All geodetic transformations based on NADCON version 2.0 or better software;
- 3) All well SHL and BHL data based upon BSEE data as of August 2024 and internal BP sources;


bp	BP EXPLORATION AND PRODUCTION	Scale 1" = 2000 ft
A PARTY	DC1 Proposed Well Locations OCS-G25792 KC 292 Wells "A", "B", "C", "D", "E"	Date: 11/27/2024
2 3	Keathley Canyon Area (OPD# NG15-05) Block 292 Offshore Federal	Sheet 1 of 2
-	Plat prepared by: Ian Dootson (BP Solutions)	ID

	Well		e 15 North Survey Feet	KC BLK	Block	k Ties	NA	D27	NA	D83	Dep	th
		Easting	Northing	DLK	FEL	FSL	Latitude	Longitude	Latitude	Longitude		
	DC1 "A"	1,783,146.78	9,681,098.78	292	6,773.22	2,858.78	26°40'44.846"N	92°33'45.941"W	26 40 45.902N	92 33 46.247W	6,084	
	DC1 "B"	1,783,180.29	9,680,977.05	292	6,739.71	2,737.05	26°40'43.638"N	92°33'45.576"W	26 40 44.695N	92 33 45.882W	6,078	MSL
SHL	DC1 "C"	1,782,996.81	9,680,966.47	292	6,923.19	2,726.47	26°40'43.540"N	92°33'47.600"W	26 40 44.596N	92 33 47.906W	6,081	epth M
	DC1 "D"	1,783,185.71	9,681,039.82	292	6,734.29	2,799.82	26°40'44.260"N	92°33'45.514"W	26 40 45.317N	92 33 45.820W	6,080	۵
	DC1 "E"	1,782,984.27	9,681,028.21	292	6,935.73	2,788.21	26°40'44.152"N	92°33'47.735"W	26 40 45.209N	92 33 48.042W	6,085	

- All spatial data based on BLM Zone 15 North, NAD27, US Survey Feet, unless otherwise noted;
 All geodetic transformations based on NADCON version 2.0 or better software;
 All well SHL and BHL data based upon BSEE data as of August 2024 and internal BP sources;

BP EXPLORATION AND PRODUCTION		Scale 1" = 2000 ft
DC1 Proposed Well Locations OCS-G25792 KC 292 Wells "A", "E	3", "C", "D", "E"	Date: 11/27/2024
Keathley Canyon Area (OPD# NG15-05) Block 292	Offshore Federal	Sheet 2 of 2
Plat prepared by: Ian Dootson (BP Solutions)		ID

- 1) All spatial data based on BLM Zone 15 North, NAD27, US Survey Feet, unless otherwise noted; 2) All geodetic transformations based on NADCON version 2.0 or better software;
- 3) All well SHL and BHL data based upon BSEE data as of August 2024 and internal BP sources;

bp	BP EXPLORATION AND PRODUCTION	Scale 1" = 2000 ft
	DC2 Proposed Well Locations OCS-G25792 KC 292 Wells "A", "B", "C", "D", "E"	Date: 11/27/2024
\$ 3	Green Canyon Area (OPD# NG15-05) Block 292 Offshore Federal	Sheet 1 of 2
- Apple	Plat prepared by: Ian Dootson (BP Solutions)	ID

	Well	BLM Zone 15 North NAD27 - US Survey Feet		КС	Block Ties		NAD27		NAD83		Depth	
	1000	Easting	Northing	BLK	FWL	FSL	Latitude	Longitude	Latitude	Longitude		
	DC2 "A"	1,778,060.78	9,681,231.78	292	3,980.78	2,991.78	26°40'46.333"N	92°34'42.024"W	26 40 47.390N	92 34 42.332W	6,028	
	DC2 "B"	1,778,094.29	9,681,110.06	292	4,014.29	2,870.06	26°40'45.126"N	92°34'41.659"W	26 40 46.183N	92 34 41.967W	6,024	MSL
SHL	DC2 "C"	1,777,910.80	9,681,099.47	292	3,830.80	2,859.47	26°40'45.027"N	92°34'43.683"W	26 40 46.084N	92 34 43.991W	6,023	Depth M
	DC2 "D"	1,778,099.79	9,681,172.82	292	4,019.79	2,932.82	26°40'45.747"N	92°34'41.596"W	26 40 46.804N	92 34 41.904W	6,026	ă
	DC2 "E"	1,777,898.26	9,681,161.21	292	3,818.26	2,921.21	26°40'45.639"N	92°34'43.819"W	26 40 46.696N	92 34 44.127W	6,025	

- All spatial data based on BLM Zone 15 North, NAD27, US Survey Feet, unless otherwise noted;
 All geodetic transformations based on NADCON version 2.0 or better software;
 All well SHL and BHL data based upon BSEE data as of August 2024 and internal BP sources;

BP EXPLORATION AND PRODUCTION		Scale 1" = 2000 ft
DC2 Proposed Well Locations OCS-G25792 KC 292 Wells "A",	"B", "C", "D", "E"	Date: 11/27/2024
Keathley Canyon Area (OPD# NG15-05) Block 292	Offshore Federal	Sheet 2 of 2
Plat prepared by: Ian Dootson (BP Solutions)		ID

Appendix C: Shallow Hazards Assessments for Wells, Mooring Pre-Lay & Wet Parking Risers (Site Clearance Letters)

BP New Wells Solutions Team Site Clearance Letter

Kaskida Drill Center 1 Wells "A", "B", "C", "D", and "E"

SITE CLEARANCE LETTER KASKIDA PROPOSED DRILL CENTER 1, BLOCK 292, OCS-G25792 KEATHLEY CANYON AREA

PROPOSED SURFACE LO	CATION - DC1 WELL "A"			
92° 33' 45.941" W	26° 40' 44.846" N			
X = 1,783,146.78 ft E	Y = 9,681,098.78 ft N			
2.854 FSL	6,776 FEL			
Water Depth:	6,084 ft below MSL			
PROPOSED SURFACE LO	CATION - DC1 WELL "B"			
92° 33' 45.576" W	26° 40' 43.638" N			
X = 1,783,180.29 ft E	Y = 9,680,977.05 ft N			
2,738 FSL	6,735 FEL			
Water Depth:	6,078 ft below MSL			
PROPOSED SURFACE LO	CATION - DC1 WELL "C"			
92° 33' 47.599" W	26° 40' 43.540" N			
X = 1,782,996.80 ft E	Y = 9,680,966.47 ft N			
2,727 FSL	6,925 FEL			
Water Depth:	6,081 ft below MSL			
PROPOSED SURFACE LOCATION	ON -DC1 ALTERNATE WELL "D'			
92° 33' 45.513" W	26° 40' 44.260" N			
X = 1,783,185.71 ft E	Y = 9,681,039.82 ft N			
2,782 FSL	6,740 FEL			
Water Depth:	6,080 ft below MSL			
PROPOSED SURFACE LOCATION	ON -DC1 ALTERNATE WELL "E'			
92° 33' 47.735" W	26° 40' 44.152" N			
X = 1,782,984.27 ft E	Y = 9,681,028.21 ft N			
2,771 FSL	6,940 FEL			
Water Depth:	6,086 ft below MSL			

X and Y Coordinates in UTM 15N (US Survey ft)
Geodetic Datum: NAD 1927

Spheroid: Clarke 1866

BP New Wells Solutions Team Site Clearance Letter

Kaskida Drill Center 1 Wells "A", "B", "C", "D", and "E"

KASKIDA DRILL CENTER 1 WELLS "A", "B", "C", "D", AND "E" BLOCK 292, OCS-G25792 KEATHLEY CANYON AREA, GULF OF MEXICO, USA

Introduction. This wellsite clearance letter addresses the shallow hazards for proposed wellsites "A", "B", "C", "D", AND "E" at the Kaskida Drill Center 1 (DC1) in Block 292, Keathley Canyon, Gulf of Mexico (OCS-G25792). This letter is intended to address specific seafloor and shallow geologic conditions within 2,000 ft of the proposed wellsites from the seafloor (about 6,081ft Total Vertical Depth Sub-Sea; TVDSS) to about 12,581 ft TVDSS based on reprocessed 3D seismic, autonomous underwater vehicle (AUV) data and offset well data.

The Kaskida DC1 wells are vertical in the riserless section. BP plans to drill three new wells, with two respud locations, which will be tied back to a new manifold at DC1. The proposed "D" and "E" wells are alternate surface locations and are located approximately 63-202 ft from the primary wells. All wells are within 100 ft of the DC1 manifold and the geologic conditions are expected to be very similar at all well locations. BP plans to drill the proposed wells from a dynamically positioned vessel, therefore an anchoring assessment is not required.

This letter supports the Development Operations Coordination Document (DOCD) and complies with Bureau of Ocean Energy Management (BOEM) guidelines provided in Notice to Lessees (NTL) 2022-G01, 2009-G40, 2008-G04 and 2005-G07 (BOEM 2022, 2009, 2008 and 2005). This letter is supported by an Integrated Shallow Hazards Assessment by Geoscience Earth & Marine Services, Inc. (GEMS, 2024) and a comprehensive Archaeological Assessment by Fugro Geoservices, Inc. (FGSI, 2011). The GEMS report is based on 3D seismic and AUV and FGSI report is based on AUV site survey data, which was acquired in 2008 by Fugro. This letter is intended to supplement those reports with detailed site-specific interpretation conducted by BP at the proposed wellsites using 3D seismic data.

Attachments. Seafloor plates (1, 2, 3, 4 and 5) are centered on the planned KC292 Drill Center 1 manifold. Plates are displayed at a 1 inch = 1,000 ft scale (1:12,000). A 2,000-ft radius circle around the proposed Drill Center manifold is also shown on the Seafloor Plates.

- AUV Seafloor Rendering
- AUV Water Depth and Seafloor Features
- AUV Seafloor Gradient
- AUV Multibeam Backscatter
- AUV Side Scan Sonar Mosaic

The sub-surface plates (6, 7, 8, 9, 10 and 11) accompanying this letter were extracted from the AUV and 3D seismic data and are listed below.

- Sub-Surface Geologic Features
- Portion of AUV Subbottom Line sbp-0030-BPUSAUV08KAS162
- 3D Seismic Section Portion of Inline (12527)
- 3D Seismic Section Portion of Crossline (12772)
- 3D Seismic Frequency Spectrum
- Top-hole Prognosis Chart for Proposed Wellsites "A", "B", "C", "D", AND "E".

Kaskida Drill Center 1 Wells "A", "B", "C", "D", and "E"

<u>3D Seismic Survey Parameters</u>. The 3D Seismic data used for this assessment is based on a Kirchhoff depth migration reprocessing of narrow azimuth towed streamer data acquired over the Kaskida area (Plates 8, 9, and 11). The survey inline and crossline direction are NW-SE and NE-SW, respectively. The inline and crossline bin size is 20.5 ft with a depth interval of 10 ft. The data contains frequencies up to 62 Hz at 6dB at the proposed wellsites (Plate 10). Vertical resolution of the 3D data is estimated to be about 24 ft in the vicinity of the proposed wells.

Autonomous Underwater Vehicle (AUV) Survey Data. The AUV survey was acquired by Fugro in October, 2008. The AUV survey acquired 200 kHz multibeam swath bathymetry (Plates 1 through 3), including backscatter (Plate 4), 120 kHz side scan sonar achieving 200+% coverage over the study area (Plate 5), and sub-bottom profiler data (Plate 7). AUV survey layout consisted of 73 primary lines and 16 tie lines. Line spacing was 200 m (656 ft) for the primary lines and tie lines were spaced 900m (2,953 ft).

<u>Offset Well Data</u>. Relevant information from KC292-1 and KC292-2 wells; and BP's general drilling history within the area, was used to support the assessments made in this report.

<u>Archaeological Resource Survey Requirement</u>. No archaeologically significant objects were identified within 2,000 ft of the proposed well locations (Fugro, 2011).

SEAFLOOR CONDITIONS

<u>Water Depth and Seafloor Gradient</u>. The water depth at the proposed "A", "B", "C", "D", and "E" well locations is predicted to range from 6,078 ft TVDSS to 6,086 ft TVDSS. The depth is derived from AUV Multibeam Bathymetry data (Plates 1 and 2). The local seafloor gradient at the proposed well locations range from 2.6 to about 3.7 degrees to the north-northwest (Plate 3).

<u>Seafloor Features</u>. The proposed wells are situated on a relatively flat area within the basin, surrounded by buried MTD's and seafloor faulting (Plate 2). There are strike-slip faults that are located approximately 800ft east of the proposed DC1 and appears to have penetrated the seafloor based on AUV data. Drill cuttings from KC 292-1 were identified on existing 2008 AUV data, and will not constrain drilling operations at the proposed well locations.

<u>Man-Made Obstructions</u>. There is no existing infrastructure within 2,000 ft of the proposed wellsites (Plate 1). Offset wells KC 292-1 and KC 292-2 are located approximately 2,886 ft SE and 3,121 ft W-SW, respectively, away from the manifold.

<u>Seafloor Debris</u>. Although seafloor debris was identified on the AUV survey data, none was detected within 2000ft of the proposed well locations (Plates 2 and 5). The nearest debris identified in the AUV data is about 4,423ft north of the proposed DC1 manifold, and will not constrain drilling at the proposed well locations. None of the debris is considered archaeologically significant.

<u>Slope Stability</u>. There is no recent slope instability in the area. MTDs identified on the AUV subbottom profiler are older buried features, dating to about 14,000 yrs to 17,000 yrs, that influence the gentle seafloor topography (Plate 7).

<u>Potential High-Density Benthic Communities</u>. There is no geophysical evidence of seafloor hardgrounds or active hydrocarbon seepage features that could potentially support high-density benthic communities within 2,000 ft of the proposed location (Plates 2, 4, and 5) based on the AUV multibeam bathymetry, backscatter, side-scan sonar and sub-bottom profiler data.

Kaskida Drill Center 1 Wells "A", "B", "C", "D", and "E"

SUBSURFACE CONDITIONS

Stratigraphy. The stratigraphy of the top-hole section at the proposed "A", "B", "C", "D", and "E" well locations, as exhibited by the AUV sub-bottom profiler and 3D seismic data, consists of approximately 4,941 ft of deep-water sediments and 1,559 ft of salt between the seafloor and the depth limit of investigation (12,581 ft TVDSS; Plates 7, 8, 9, and 11). The top-hole section comprises predominantly of fine-grained, stacked sequences of laterally extensive clays, silts, and sand interbeds, mass transport deposits, and salt.

The seafloor and nine subsurface horizons (Horizon 1, 2, 3, 3b, 4, 5, 6, 7 and ToS) were mapped in the subsurface study area. These Horizons divide the supra-salt section into ten main units (Units 1 through 10). The stratigraphic interpretations and inferred lithologies are based primarily on the character of the 3D reprocessed seismic, AUV data, and KC 292-1 and KC 292-2 well results. Predicted depths and thicknesses associated with each of the mapped horizons and sequences are displayed on the attached Top-hole Prognosis Chart for the proposed "A", "B", "C", "D", AND "E" drilling locations (Plate 11).

Plate 7 represents the closest South-North sub-bottom profiler line to the proposed well locations, which is about 218 ft east of DC1, and shows an approximate 150 ft thick sequence of laterally extensive hemipelagic clays and silts with interbedded, fine-grained stacked turbidites.

<u>Fault Penetrations</u>. No faults will be penetrated by the wells at DC1 (Plate 8, 9 and 10). Faults near the wellbores are unlikely to have any detrimental effect on drilling operations or the integrity of the wells.

<u>Shallow Gas.</u> No high amplitude anomalies interpreted to represent shallow gas will be penetrated in the top-hole section (Plate 11). There is **Negligible** potential for encountering shallow gas while drilling the top-hole section of the DC1 wells. The closest amplitude anomaly indicative of shallow gas is located about 355ft southeast within Unit 9. Plate 6 shows the distribution of amplitude anomalies mapped from the 3D seismic dataset.

<u>Gas Hydrate</u>. The potential for encountering massive gas hydrate accumulations is ranked as **Negligible** at the proposed wellbores. A bottom simulating reflector (BSR) is not observed in the reprocessed 3D seismic volume. The estimated depth to the base of gas hydrate stability (BGHS) is estimated to be 1,744ft BML at the wells.

Shallow Oil. Staining and white fluorescence, potentially indicative of oil, were observed from cuttings, below the riserless section, just above salt in KC 292-2 well. It is inferred the potential oil in KC 292-2 may be isolated due to the seismic chaotic character in Unit 9 and since no oil was observed in the supra salt sediments in KC 292-1 well. For the purpose of this assessment, it is conservatively assessed there is a **Low** potential for encountering oil in Unit 9 (Plate 11). The remainder of the top-hole section of the proposed wells is ranked as **Negligible** potential for shallow oil.

Shallow Water Flow (SWF). Minor SWF was observed at offset well KC 292-2 but not in KC 292-1 well. The shallow stratigraphy at proposed "A", "B", "C", "D", and "E" wellsite consist of interbedded hemi-pelagic clays, turbidites, channelized turbidites, rapidly deposited mass transport complexes interbedded with thin sands and silts, and allochthonous salt. These rapidly deposited mass transport complexes can be locally over-pressured or have caused underlying sands to become over-pressured.

The potential sand-prone intervals within lower portion of Unit 4 and upper portion of Unit 5 are assessed to have a **Moderate** potential for SWF, which correlate to offset well KC 292-2.

Kaskida Drill Center 1 Wells "A", "B", "C", "D", and "E"

Channeled turbidities and overpressure may be present in this interval. The potential for SWF is ranked **Low** for the upper portion of Unit 6, lower portions of Units 7, 9 and upper portion of Unit 10. The remainder of the top-hole section in the proposed wells is ranked as **Negligible** potential for shallow water flow (Plate 11).

Closing. The proposed wellsites "A", "B", "C", "D", and "E" appear to be generally favorable for well drilling operations. We advise caution based on this assessment but believe the risk of danger to personnel and damage to the borehole, equipment and environment is generally **Low**, provided strict adherence to proper drilling and cementing procedures is followed concerning these hazards until the first pressure containment string is in place.

Prepared By:

Karen Pengelly-Layman Geohazards Specialist BP America, Inc.

December 17, 2024

Klange y Luman

Reviewed By:

Jason Bronikowski Geohazards Specialist BP America, Inc.

December 17, 2024

Kaskida Drill Center 1 Wells "A", "B", "C", "D", and "E"

REFERENCES:

Bureau of Ocean Energy Management, 2022, Notice to lessees and operators of federal oil and gas, and sulphur leases in the Gulf of Mexico outer continental shelf (OCS) region, shallow hazards program: U.S. Department of the Interior, Bureau of Ocean Energy Management, Gulf of Mexico, NTL 2022-G01, Effective Date: October 1, 2022.

Bureau of Ocean Energy Management, 2015, Safety performance review – shallow waterflows can pose significant hazards to deepwater drilling, published on the BOEM Gulf of Mexico Region Homepage, http://www.boem.gov/Oil-and-Gas-Energy-Program/Resource-Evaluation/Geological-and-Geophysical-Reviews/Reviews-Gulf-of-Mexico.aspx

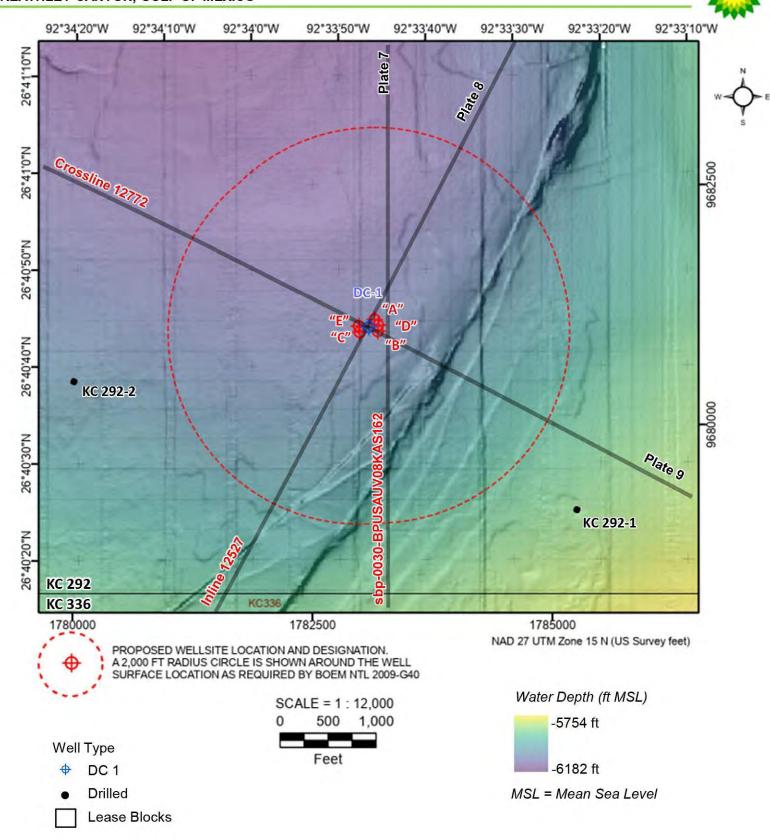
Bureau of Ocean Energy Management, 2014, "Notice to Lessees and Operators (NTL) of Federal Oil, Gas and Sulphur Leases in the Outer Continental Shelf (OCS), Gulf of Mexico OCS Region, Military Warning and Test Areas". United States Department of the Interior, Bureau of Ocean Energy Management, Gulf of Mexico OCS Region, NTL 2014-G04. Effective Date: June 1, 2014.

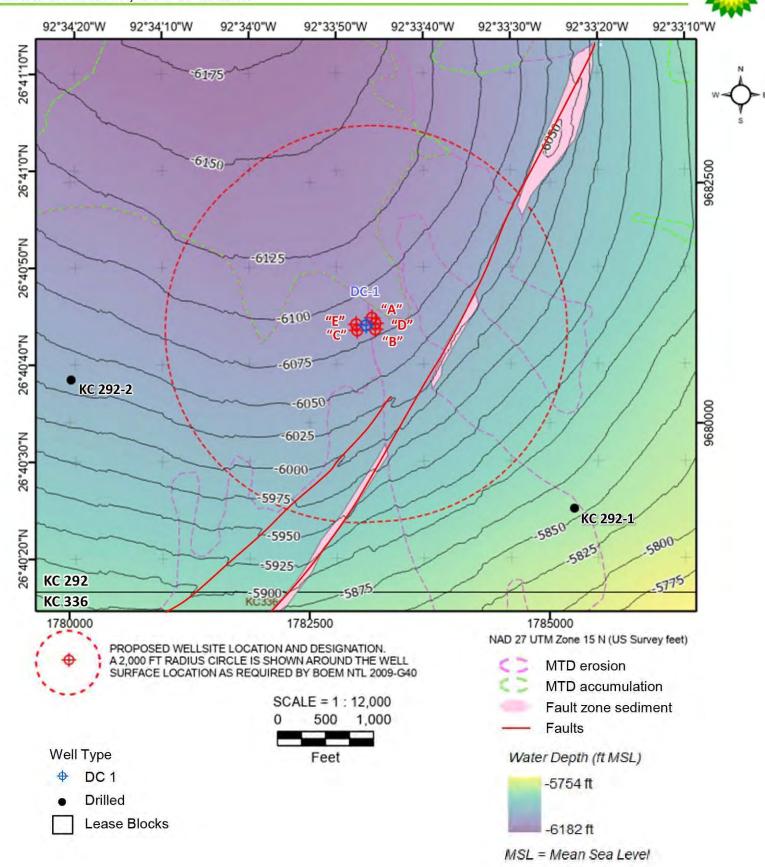
Bureau of Ocean Energy Management, 2011, Notice to Lessees and Operators of Federal Oil and Gas Leases and Pipeline right-of-way holders on the Outer Continental Shelf, Revisions to the list of OCS lease blocks requiring archaeological resource surveys and reports: U.S. Department of the Interior, Bureau of Ocean Energy Management, Bureau of Safety and Environmental Enforcement, Gulf of Mexico, NTL 2011-JOINT-G01. Effective Date December 29, 2011.

Bureau of Ocean Energy Management, 2010, Notice to lessees and operators of federal oil and gas leases in the outer continental shelf, Gulf of Mexico OCS region, Deepwater benthic communities: U.S. Department of the Interior, Minerals Management Service, Gulf of Mexico, NTL 2009-G40, Effective Date January 27, 2010.

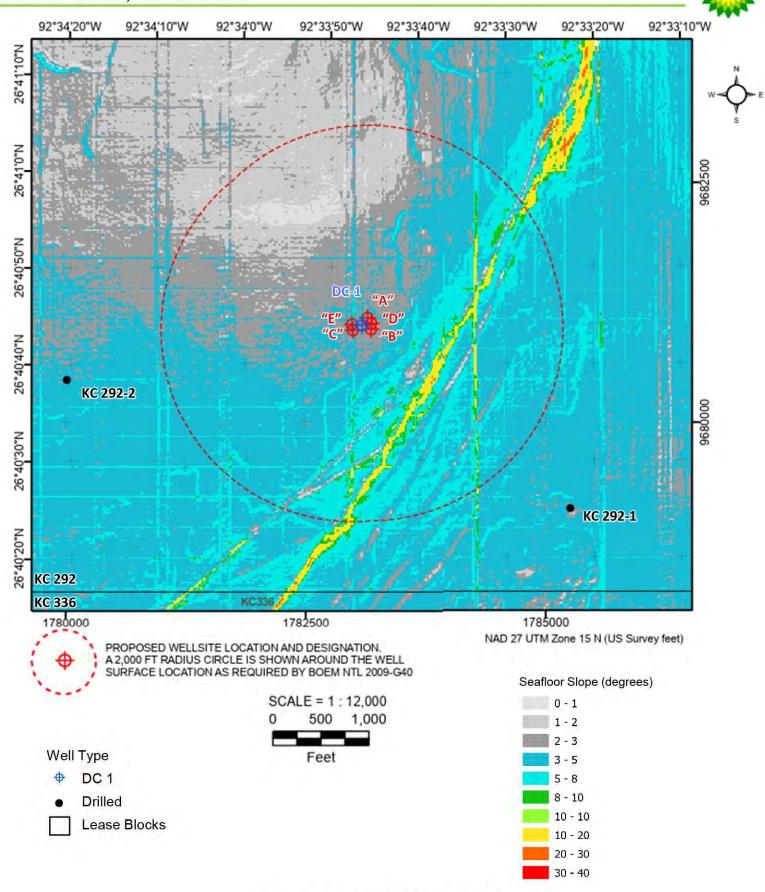
Bureau of Ocean Energy Management, 2005, Notice to lessees and operators of federal oil, gas and sulphur leases and pipeline right-of-way holders in the outer continental shelf, Gulf of Mexico OCS region, Archaeological resource surveys and reports: U.S. Department of the Interior, Minerals Management Service, Gulf of Mexico, NTL 2005-G07, Effective Date July 1, 2005.

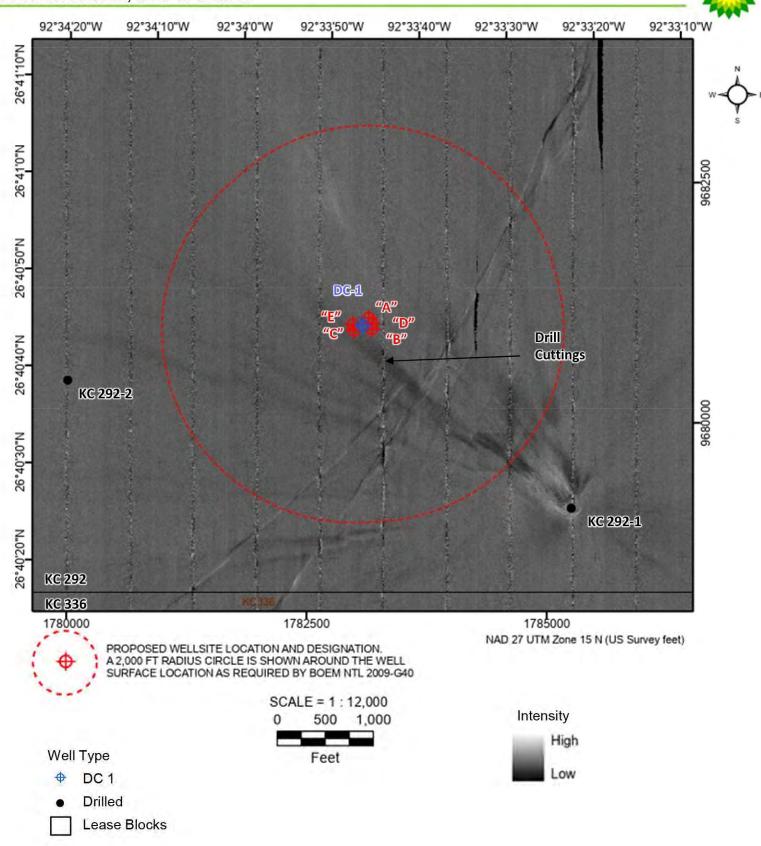
Fugro Geoservices, Inc (FGSI), 2011,"AUV Archaeological Assessment, Kaskida Prospect, Blocks 246-248, 290-292 & 335-336, Keathley Canyon Area Gulf of Mexico", FGSI Report No. 2411-1025

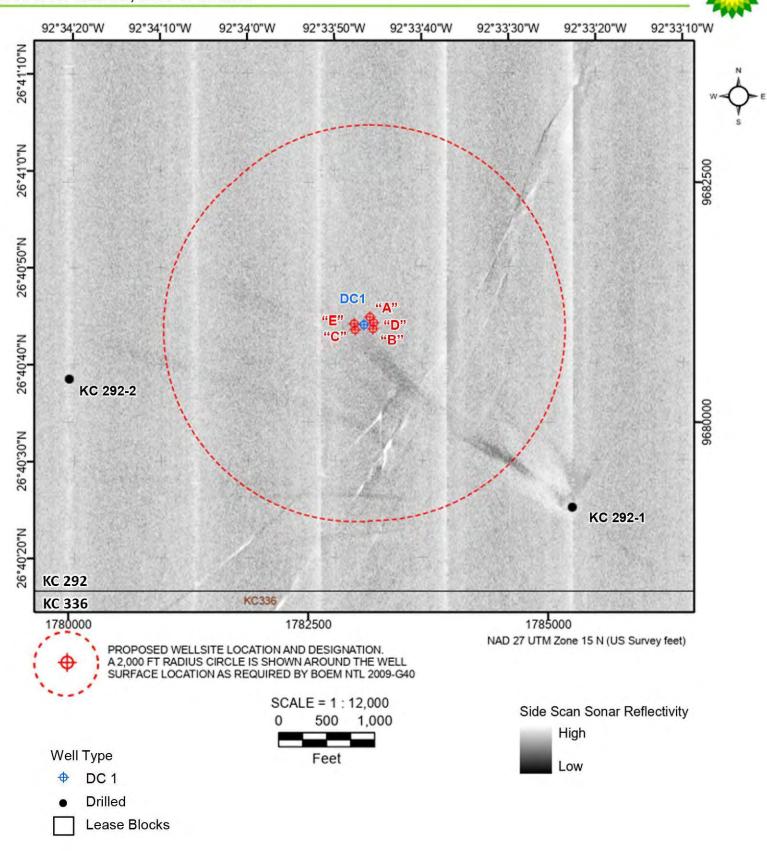

Geoscience Earth & Marine Services, Inc (GEMS), 2024, "Integrated Shallow Hazards Assessment, Blocks 246-248, 290-292, and 335-336, Keathley Canyon Area, Gulf of Mexico.", Project No. GHZ3282.

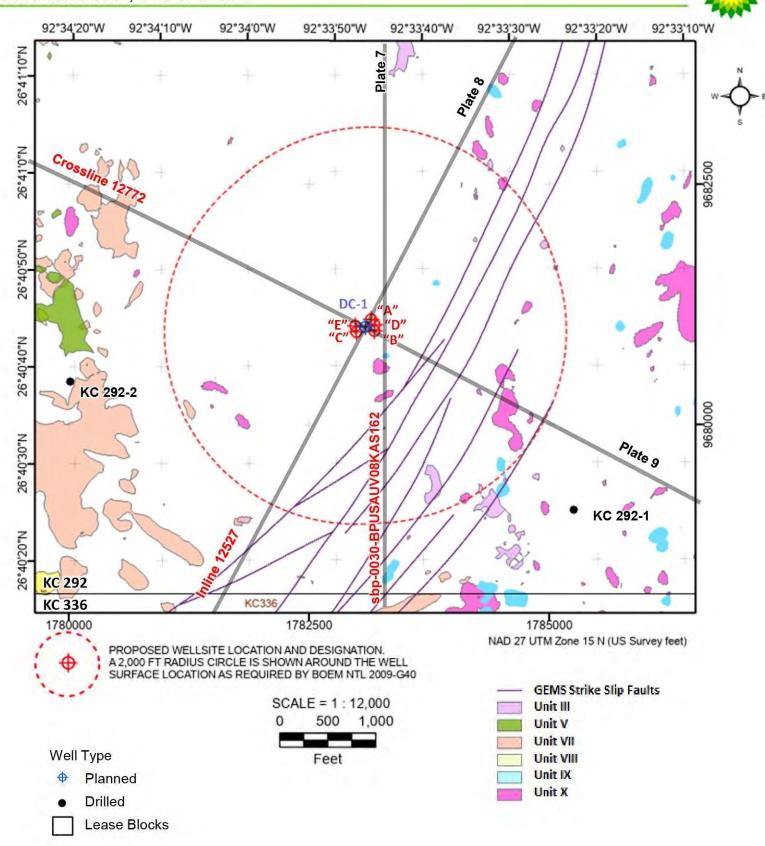

Kaskida Drill Center 1 Wells "A", "B", "C", "D", and "E"

ATTACHMENTS:

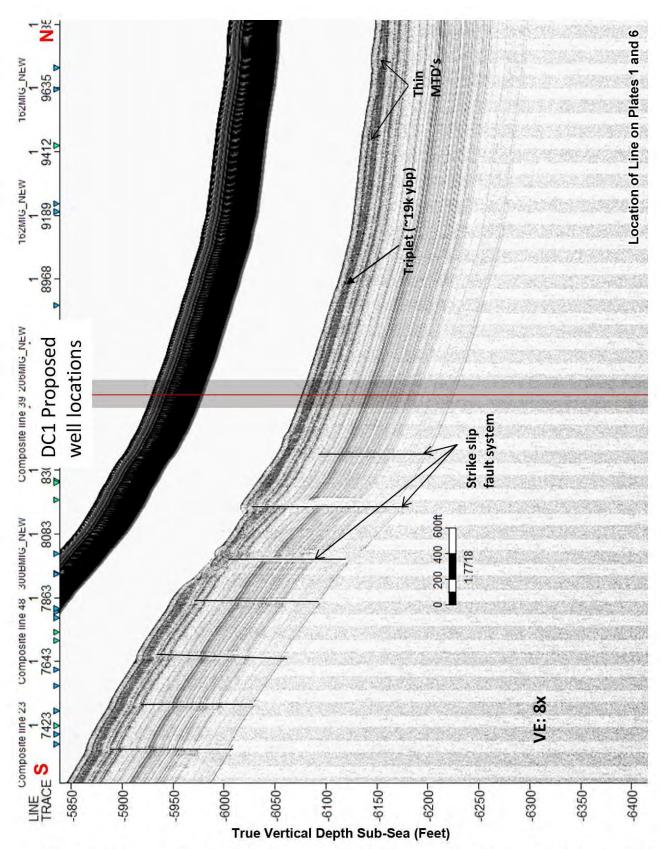

- Plate 1 AUV Seafloor Rendering, Kaskida, Block 292, Keathley Canyon Area, Proposed Wellsites "A", "B", "C", "D", AND "E"
- Plate 2 AUV Water Depth and Seafloor Features, Kaskida, Block 292, Keathley Canyon Area, Proposed Wellsites "A", "B", "C", "D", AND "E"
- Plate 3 AUV Surface Gradient, Kaskida, Block 292, Keathley Canyon Area, Proposed Wellsites "A", "B", "C", "D", AND "E"
- Plate 4 AUV Multibeam Backscatter, Kaskida, Block 292, Keathley Canyon Area, Proposed Wellsites "A", "B", "C", "D", AND "E"
- Plate 5 AUV Side Scan Sonar Mosaic, Kaskida, Block 292, Keathley Canyon Area, Proposed Wellsites "A", "B", "C", "D", AND "E"
- Plate 6 Sub-Surface Geologic Features, Kaskida, Block 292, Keathley Canyon Area, Proposed Wellsites "A", "B", "C", "D", AND "E"
- Plate 7 Portion of AUV Subbottom Line sbp-0030-BPUSAUV08KAS162, Kaskida, Block 292, Keathley Canyon Area, Proposed Wellsites "A", "B", "C", "D", AND "E"
- Plate 8 3D Seismic Section, Portion of Inline 12527, Kaskida, Block 292, Keathley Canyon Area, Proposed Wellsites "A", "B", "C", "D", AND "E"
- Plate 9 3D Seismic Section, Portion of Crossline 12772, Kaskida, Block 292, Keathley Canyon Area, Proposed Wellsites "A", "B", "C", "D", AND "E"
- Plate 10 3D Seismic Frequency Spectrum, Kaskida, Block 292, Keathley Canyon Area, Proposed Wellsites "A", "B", "C", "D", AND "E"
- Plate 11 Top-hole Prognosis Chart, Kaskida, Block 292, Keathley Canyon Area, Proposed Wellsites "A", "B", "C", "D", AND "E"


AUV SEAFLOOR RENDERING KASKIDA, BLOCK 292, KEATHLEY CANYON AREA PROPOSED WELLSITES "A", "B", "C", "D", AND "E"

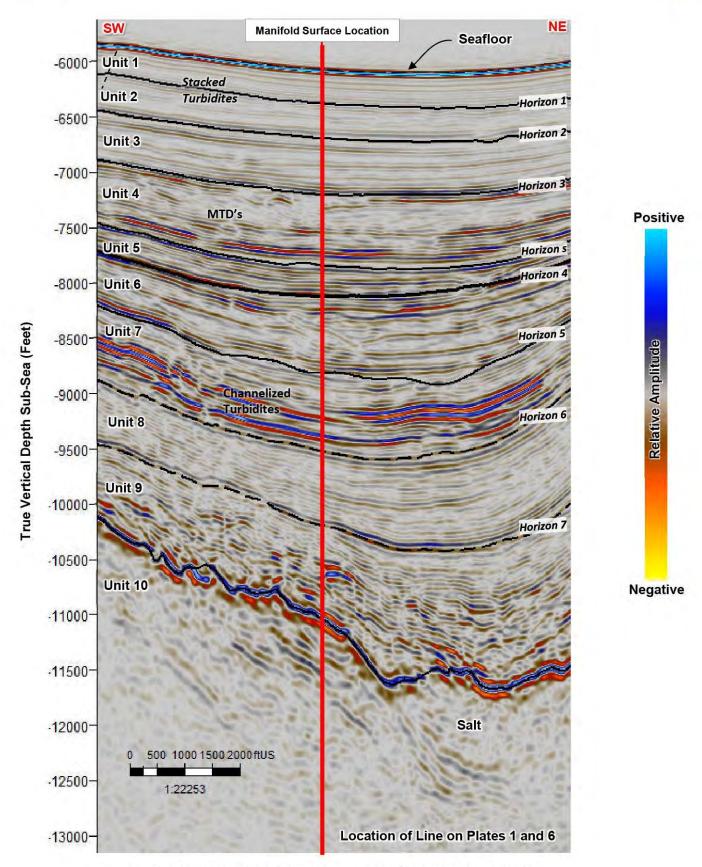

AUV WATER DEPTH AND SEAFLOOR FEATURES KASKIDA, BLOCK 292, KEATHLEY CANYON AREA PROPOSED WELLSITES "A", "B", "C", "D", AND "E"

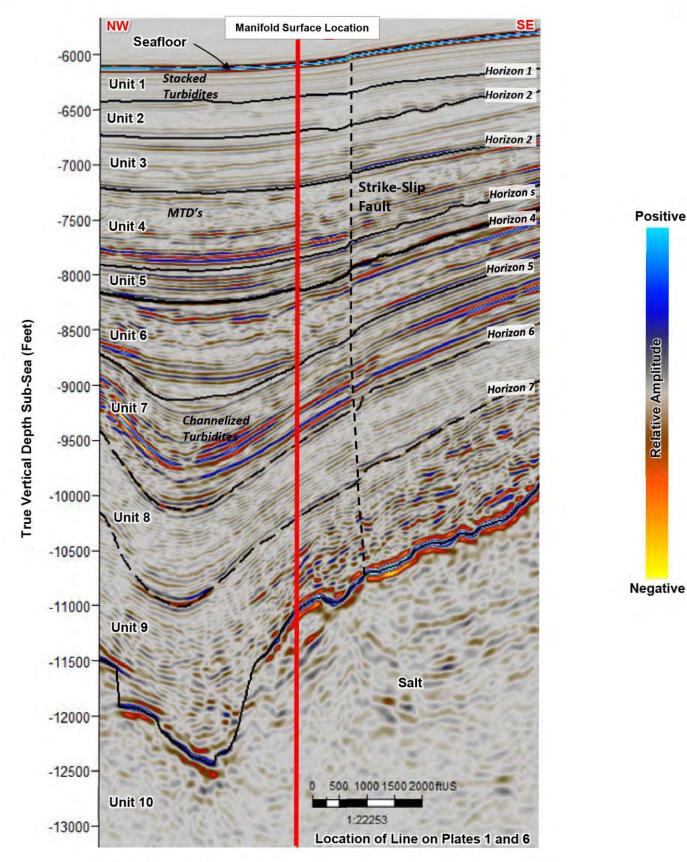

AUV SEAFLOOR GRADIENT KASKIDA, BLOCK 292, KEATHLEY CANYON AREA PROPOSED WELLSITES "A", "B", "C", "D", AND "E"

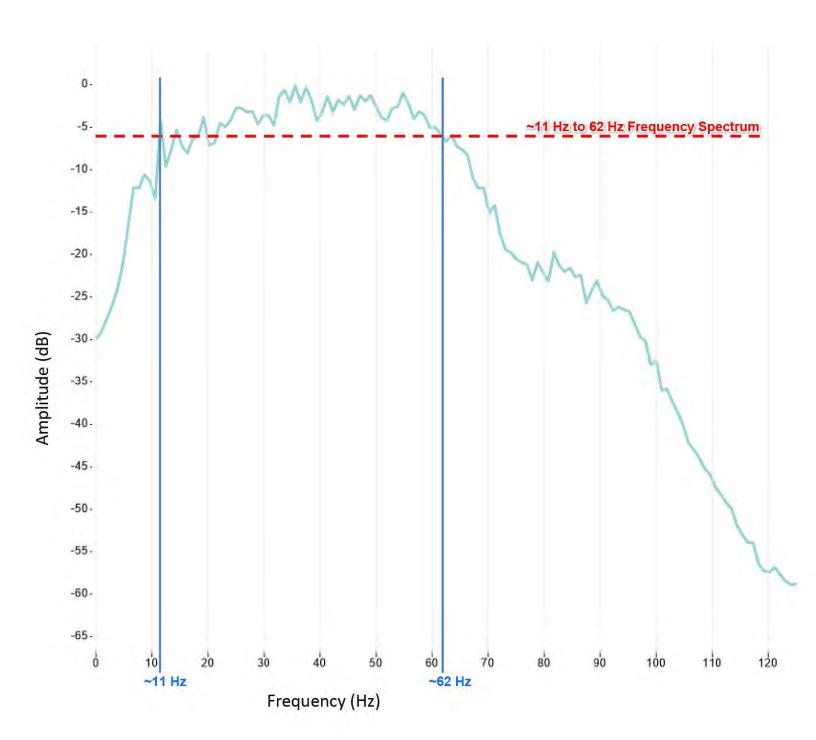
AUV MULTIBEAM BACKSCATTER KASKIDA, BLOCK 292, KEATHLEY CANYON AREA PROPOSED WELLSITES "A", "B", "C", "D", AND "E"



AUV SIDE SCAN SONAR MOSAIC KASKIDA, BLOCK 292, KEATHLEY CANYON AREA PROPOSED WELLSITES "A", "B", "C", "D", AND "E"


SUB-SURFACE GEOLOGIC FEATURES KASKIDA, BLOCK 292, KEATHLEY CANYON AREA PROPOSED WELLSITES "A", "B", "C", "D", AND "E"


PORTION OF AUV SUBBOTTOM LINE sbp-0030-BPUSAUV08KAS162 KASKIDA, BLOCK 292, KEATHLEY CANYON AREA PROPOSED WELLSITES "A", "B", "C", "D", AND "E"


3D SEISMIC SECTION PORTION OF INLINE 12527 KASKIDA, BLOCK 292, KEATHLEY CANYON AREA PROPOSED WELLSITES "A", "B", "C", "D", AND "E"

3D SEISMIC SECTION PORTION OF CROSSLINE 12772 KASKIDA, BLOCK 292, KEATHLEY CANYON AREA PROPOSED WELLSITES "A", "B", "C", "D", AND "E"

3D SEISMIC FREQUENCY SPECTRUM KASKIDA, BLOCK 292, KEATHLEY CANYON AREA PROPOSED WELLSITES "A", "B", "C", "D", AND "E"

TVDSS = True Vertical Depth Subsea

	Crossline 12772 3D Seismic Section Proposed Drill Center 1 KC 292 "A", "B", "C", "D", and "E"	Horizon &	Inferred Lithology &	DEP	DEPTHS		SHALLOW		SHALLOW
		Unit	Top-hole Conditions	BML (Feet)	TVDSS (Feet)	THICKNESS (Feet)	GAS POTENTIAL	OIL POTENTIAL	WATER FLOY POTENTIAL
	NW SI	Seafloor	Seafloor slopes ~2.8° to the northwest		6.081				
,000 ft		Horizon 1	Soft to very stiff clays underlain by laminated clays and silty clays.		40000	292	Negligible	Negligible	Negligible
000 ft		Horizon 2	Debris flows and channelized turbidites. Clays/silts. Channelized interval with silts and sands	292	- 6,373	316	Negligible	Negligible	Negligible
		Horizon 3	Sand prone channelized turbidite with thin silts and mass transport deposits. Clays with silt to sandy intervals.	608	- 6,689	509	Negligible	Negligible	Negligible
00 ft		Horizon S	Mass transport deposits. Clay, silt, & thin sands possible. Alternating channelized sand and silt intervals.	1,117	7,198	648	Negligible	Negligible	Negligible
000 ft		Horizon 4	Commence of the second	1,765	7,825 7,846	252	Negligible	Negligible	Moderate Negligible
00 ft		Horizon 5	Channelized turbidites and mass transport deposits. Clay, silt, & sand	2,017	- 8,098				Low
00 ft			Mass transport deposits and slumped turbidites. Clay, silt, & sand	2,734	8,815	717	Negligible	Negligible	Negligibl
00 ft		Horizon 6	Slumped and channelized turbidites. Mass transport deposits. Clays and silts, possibly sand. Channelized turbidites and thin mass transport sediments.	,,,,,		611	Negligible	Negligible	Negligible
00 ft			Clay, silt, and sand.	3,345	9,426				Low
		Horizon 7	Mass transport deposits and slumped turbidites.			766	Negligible	Negligible	Negligibl
00 ft			Clay with thin sands and silts possible.	4,111	10,192				
00 ft		Top of Salt	Turbidites and mass transport deposits. Clay with silty to sandy intervals.				Negligible	Negligible	Negligibl
00 ft			Clays, silts and sands.	4.941	11,022	830		Low	Low
00 ft	Seismic Section is		InterSalt Seismic Anomaly (ISSA). Interpreted clean allochthonous Salt.	6,500	12,581	1,559	Negligible	Negligible	Low Negligibl
o ft	Vertically Exaggerated	(Depth Limit of			Risk Scale	Negligible	Low	Moderate	High

"A": X = 1,783,146.78 ft , Y = 9,681,098.78 ft ;

"B": X = 1,783,180.29 ft , Y = 9,680,977.05 ft ; "C": X = 1,782,996.80 ft , Y = 9,680,966.47 ft ; "D": X = 1,783,185.71 ft , Y = 9,681,039.82 ft ; "E": X = 1,782,984.27 ft , Y = 9,681,028.21 ft ;

UTM Zone 15 N (US ft) Geodetic Datum: NAD 1927

Plate 11

TOP-HOLE PROGNOSIS CHART, KASKIDA, BLOCK 292, KEATHLEY CANYON AREA PROPOSED DRILL CENTER 1 KC 292 "A", "B", "C", "D", and "E"

MTD = Mass Transport Deposits

Kaskida Drill Center 2 Wells "A", "B", "C", "D", and "E"

SITE CLEARANCE LETTER KASKIDA PROPOSED DRILL CENTER 2, BLOCK 292, OCS-G25792 KEATHLEY CANYON AREA

PROPOSED SURFACE LO	CATION – DC2 WELL "A"					
92° 34' 42.024" W	26° 40' 46.333" N					
X = 1,778,060.78 ft E	Y = 9,681,231.78 ft N					
2,994 FSL	3,979 FWL					
Water Depth:	6,028 ft below MSL					
PROPOSED SURFACE LOCATION – DC2 WELL "B"						
92° 34′ 41.659″ W	26° 40' 45.126" N					
X = 1,778,094.29 ft E	Y = 9,681,110.06 ft N					
2,872 FSL	4,013 FWL					
Water Depth:	6,024 ft below MSL					
PROPOSED SURFACE LO	CATION - DC2 WELL "C"					
92° 34' 43.682" W	26° 40' 45.026" N					
X = 1,777,910.87 ft E	Y = 9,681,099.40 ft N					
2,861 FSL	3,829 FWL					
Water Depth:	6,023 ft below MSL					
PROPOSED SURFACE LOCATIO	N -DC2 ALTERNATE WELL "D'					
92° 34' 41.596" W	26° 40' 45.747" N					
X = 1,778,099.79 ft E	Y = 9,681,172.82 ft N					
2,934 FSL	4,018 FWL					
Water Depth:	6,026 ft below MSL					
PROPOSED SURFACE LOCATIO	N -DC2 ALTERNATE WELL "E'					
92° 34' 43.819" W	26° 40' 45.639" N					
X = 1,777,898.26 ft E	Y = 9,681,161.21 ft N					
2,921 FSL	3,848 FWL					
Water Depth:	6,025 ft below MSL					

X and Y Coordinates in UTM 15N (US Survey ft) Geodetic Datum: NAD 1927

Spheroid: Clarke 1866

Kaskida Drill Center 2 Wells "A", "B", "C", "D", and "E"

KASKIDA DRILL CENTER 2 WELLS "A", "B", "C", "D" AND "E" BLOCK 292, OCS-G25792

KEATHLEY CANYON AREA, GULF OF MEXICO, USA

Introduction. This wellsite clearance letter addresses the shallow hazards for proposed wellsites "A", "B", "C", "D", and "E", at the Kaskida Drill Center 2 (DC2) in Block 292, Keathley Canyon, Gulf of Mexico (OCS-G25792). This letter is intended to address specific seafloor and shallow geologic conditions within 2,000 ft of the proposed wellsites from the seafloor (about 6,025ft Total Vertical Depth Sub-Sea; TVDSS) to about 12,525 ft TVDSS based on reprocessed 3D seismic, autonomous underwater vehicle (AUV) data and offset well data.

The Kaskida DC2 wells are vertical in the riserless section. BP plans to drill three new wells, with two respud locations, which will be tied back to a new manifold at DC2. The proposed "D" and "E" wells are alternate surface locations and are located approximately 63-210 ft from the primary wells. All wells are within 100 ft of the DC2 manifold and the geologic conditions are expected to be very similar at all well locations. BP plans to drill the proposed wells from a dynamically positioned vessel, therefore an anchoring assessment is not required.

This letter supports the Development Operations Coordination Document (DOCD) and complies with Bureau of Ocean Energy Management (BOEM) guidelines provided in Notice to Lessees (NTL) 2022-G01, 2009-G40, 2008-G04 and 2005-G07 (BOEM 2022, 2009, 2008 and 2005). This letter is supported by a Shallow Hazards Assessment by Geoscience Earth & Marine Services, Inc. (GEMS, 2024) and a comprehensive Archaeological Assessment by Fugro Geoservices, Inc. (FGSI, 2011). The GEMS report is based on 3D seismic and AUV and FGSI report is based on AUV site survey data, which was acquired in 2008 by Fugro. This letter is intended to supplement those reports with detailed site-specific interpretation conducted by BP at the proposed wellsites using 3D seismic data.

Attachments. Seafloor plates (1, 2, 3, 4 and 5) are centered on the planned KC292 Drill Center 2 manifold. Plates are displayed at a 1 inch = 1,000 ft scale (1:12,000). A 2,000-ft radius circle around the proposed well locations is shown on the Seafloor Plates.

- AUV Seafloor Rendering
- AUV Water Depth and Seafloor Features
- AUV Seafloor Gradient
- AUV Multibeam Backscatter
- AUV Side Scan Sonar Mosaic

The sub-surface plates (6, 7, 8, 9, 10 and 11) accompanying this letter were extracted from the AUV and 3D data volumes and are listed below.

- Sub-Surface Geologic Features
- Portion of AUV Subbottom Lines sbp-0029-BPUSAUV08KAS206a and sbp-0029-BPUSAUV08KAS154
- 3D Seismic Section Portion of Inline (12751)
- 3D Seismic Section Portion of Crossline (12666)
- 3D Seismic Frequency Spectrum
- Top-hole Prognosis Chart for Proposed Wellsites "A", "B", "C", "D", and "E"

Kaskida Drill Center 2 Wells "A", "B", "C", "D", and "E"

<u>3D Seismic Survey Parameters</u>. The 3D Seismic data used for this assessment is based on a Kirchhoff depth migration reprocessing of narrow azimuth towed streamer data acquired over the Kaskida area (Plates 8, 9, and 11). The survey inline and crossline direction are NW-SE and NE-SW, respectively. The inline and crossline bin size is 20.5 ft with a depth interval of 10 ft. The data contains frequencies up to 66 Hz at 6dB at the proposed wellsites (Plate 10). Vertical resolution of the 3D data is estimated to be about 24 ft in the vicinity of the proposed wells.

Autonomous Underwater Vehicle (AUV) Survey Data. The AUV survey was acquired by Fugro in October, 2008. The AUV survey acquired 200 kHz multibeam swath bathymetry (Plates 1 through 3), including backscatter (Plate 4), 120 kHz side scan sonar achieving 200+% coverage over the study area (Plate 5), and sub-bottom profiler data (Plate 7). AUV survey layout consisted of 73 primary lines and 16 tie lines. Line spacing was 200 m (656 ft) for the primary lines and tie lines were spaced 900m (2,953 ft).

<u>Offset Well Data</u>. Relevant information from KC292-1 and KC292-2 wells; and BP's general drilling history within the area, was used to support the assessments made in this report.

<u>Archaeological Resource Survey Requirement</u>. No archaeologically significant objects were identified within 2,000 ft of the proposed well locations (Fugro, 2011).

SEAFLOOR CONDITIONS

<u>Water Depth and Seafloor Gradient</u>. The water depth at the proposed "A", "B", "C", "D", and "E" well locations is predicted to range from 6,023 ft TVDSS to 6,028 ft TVDSS. The depth is derived from AUV Multibeam Bathymetry data (Plates 1 and 2). The local seafloor gradient at the well locations range from 2.0 to 2.4 degrees to the north and northeast (Plate 3).

<u>Seafloor Features</u>. The proposed wells are situated on a relatively flat area surrounded by buried MTD's and seafloor faulting (Plates 2).

<u>Man-Made Obstructions</u>. There is no existing infrastructure within 2,000 ft of the proposed wellsites (Plate 1). Offset wells KC 292-1 and KC 292-2 are located approximately 7,537 ft SE and 2,139 ft SE, respectively, away from the manifold.

<u>Seafloor Debris</u>. Although seafloor debris was identified on the AUV survey data, none was detected within 2000ft of the proposed well locations (Plate 2 and 5). The nearest debris identified in the AUV data is about 4,370 ft south of the proposed DC2 manifold, and will not constrain drilling at the proposed well locations. None of the debris is considered archaeologically significant.

<u>Slope Stability</u>. There is no recent slope instability in the area. MTD's identified on the AUV subbottom profiler are older buried features, dating to about 14,000 yrs- 17,000 yrs, that influence the gentle seafloor topography.

<u>Potential High-Density Benthic Communities</u>. There is no geophysical evidence of seafloor hardgrounds or active hydrocarbon seepage features that could potentially support high-density benthic communities within 2,000 ft of the proposed location (Plates 2, 4, and 5) based on the AUV multibeam bathymetry, backscatter, side-scan sonar and sub-bottom profiler data.

Kaskida Drill Center 2 Wells "A", "B", "C", "D", and "E"

SUBSURFACE CONDITIONS

Stratigraphy. The stratigraphy of the top-hole section at the proposed "A", "B", "C", "D", and "E" well locations, as exhibited by the AUV sub-bottom profiler and reprocessed 3D seismic data, consists of approximately 4,465 ft of deep-water sediments and 2,035 ft of salt between the seafloor and the depth limit of investigation (12,525 ft TVDSS; Plates 7, 8, 9, and 11). The top-hole section comprises predominantly of fine-grained, stacked sequences of laterally extensive clays, silts, and sand interbeds, mass transport deposits, and salt.

The seafloor and nine subsurface horizons (Horizon 1, 2, 3, 3b, 4, 5, 6, 7 and ToS) were mapped in the subsurface study area. These Horizons divide the supra-salt section into ten main units (Units 1 through 10). The stratigraphic interpretations and inferred lithologies are based primarily on the character of the 3D reprocessed seismic, AUV data, and KC 292-1 and KC 292-2 well results. Predicted depths and thicknesses associated with each of the mapped horizons and sequences are displayed on the attached Top-hole Prognosis Chart for the proposed "A", "B", "C", "D", and "E" drilling locations (Plate 11).

Plate 7 represents the closest sub-bottom profiler lines to the proposed well locations, which are 147 ft north and 53 ft east of the DC2 manifold, and shows an approximate 150 ft thick sequence of laterally extensive hemipelagic clays and silts with interbedded, fine grained stacked turbidites.

<u>Fault Penetrations</u>. Two buried faults will be penetrated by the wells at DC2 (Plate 8, 9 and 11). The first fault (Fault 1) is in Unit 7 at approximately 9,010ft TVDSS. The second fault (Fault 2) is near the top of Unit IX at approximately 9,772ft TVDSS. These faults are unlikely to have any detrimental effect on drilling operations or the integrity of the well.

<u>Shallow Gas.</u> No high amplitude anomalies interpreted to represent shallow gas will be penetrated in the top-hole section (Plate 11). There is **Negligible** potential for encountering shallow gas while drilling the top-hole section of the DC2 wells. The closest amplitude anomaly indicative of shallow gas is located about 250ft northwest of the DC2 manifold within Unit 6. Plate 6 shows the distribution of amplitude anomalies mapped from the reprocessed 3D seismic dataset.

<u>Gas Hydrate</u>. The potential for encountering massive gas hydrate accumulations is ranked as **Negligible** at the proposed wellbores. A bottom simulating reflector (BSR) is not observed in the reprocessed 3D seismic volume. The estimated depth to the base of gas hydrate stability (BGHS) is estimated to be 1,736 ft BML at the wells.

Shallow Oil. Staining and white fluorescence, potentially indicative of oil, were observed from cuttings, below the riserless section, just above salt in KC 292-2 well. It is inferred the potential oil in KC 292-2 may be isolated due to the seismic chaotic character in Unit 9 and since no oil was observed in the supra salt sediments in KC 292-1 well. For the purpose of this assessment, it is conservatively assessed there is a **Low** potential for encountering oil in Unit 9 (Plate 11). The remainder of the top-hole section of the proposed wells is ranked as **Negligible** potential for shallow oil.

<u>Shallow Water Flow (SWF)</u>. Minor SWF was observed at offset well KC 292-2 but not in KC 292-1 well. The shallow stratigraphy at proposed "A", "B", "C", "D", and "E" wellsite consist of interbedded hemi-pelagic clays, turbidites, channelized turbidites, rapidly deposited mass transport complexes interbedded with thin sands and silts, and allochthonous salt. These rapidly deposited mass transport complexes can be locally overpressured or have caused underlying sands to become over-pressured.

Kaskida Drill Center 2 Wells "A", "B", "C", "D", and "E"

The potential sand-prone intervals within lower portion of Unit 4 and upper portion of Unit 5 are assessed to have a **Moderate** potential for SWF, which correlate to offset well KC 292-2. Channeled turbidities and overpressure may be present in this interval. The potential for SWF is ranked **Low** for the upper and lower portions of Unit 6, and lower portion of Units 7. The remainder of the top-hole section in the proposed wells is ranked as **Negligible** potential for shallow water flow.

<u>Closing</u>. The proposed wellsites "A", "B", "C", "D", and "E" appear to be generally favorable for well drilling operations. We advise caution based on this assessment but believe the risk of danger to personnel and damage to the borehole, equipment and environment is generally **Low**, provided strict adherence to proper drilling and cementing procedures is followed concerning these hazards until the first pressure containment string is in place.

Prepared By:

Rangell Layman

Karen Pengelly-Layman Geohazards Specialist BP America, Inc.

December 17, 2024

Reviewed By:

Jason Bronikowski Geohazards Specialist BP America, Inc.

December 17, 2024

Kaskida Drill Center 2 Wells "A", "B", "C", "D", and "E"

REFERENCES:

Bureau of Ocean Energy Management, 2022, Notice to lessees and operators of federal oil and gas, and sulphur leases in the Gulf of Mexico outer continental shelf (OCS) region, shallow hazards program: U.S. Department of the Interior, Bureau of Ocean Energy Management, Gulf of Mexico, NTL 2022-G01, Effective Date: October 1, 2022.

Bureau of Ocean Energy Management, 2015, Safety performance review – shallow waterflows can pose significant hazards to deepwater drilling, published on the BOEM Gulf of Mexico Region Homepage, http://www.boem.gov/Oil-and-Gas-Energy-Program/Resource-Evaluation/Geological-and-Geophysical-Reviews/Reviews-Gulf-of-Mexico.aspx

Bureau of Ocean Energy Management, 2014, "Notice to Lessees and Operators (NTL) of Federal Oil, Gas and Sulphur Leases in the Outer Continental Shelf (OCS), Gulf of Mexico OCS Region, Military Warning and Test Areas". United States Department of the Interior, Bureau of Ocean Energy Management, Gulf of Mexico OCS Region, NTL 2014-G04. Effective Date: June 1, 2014.

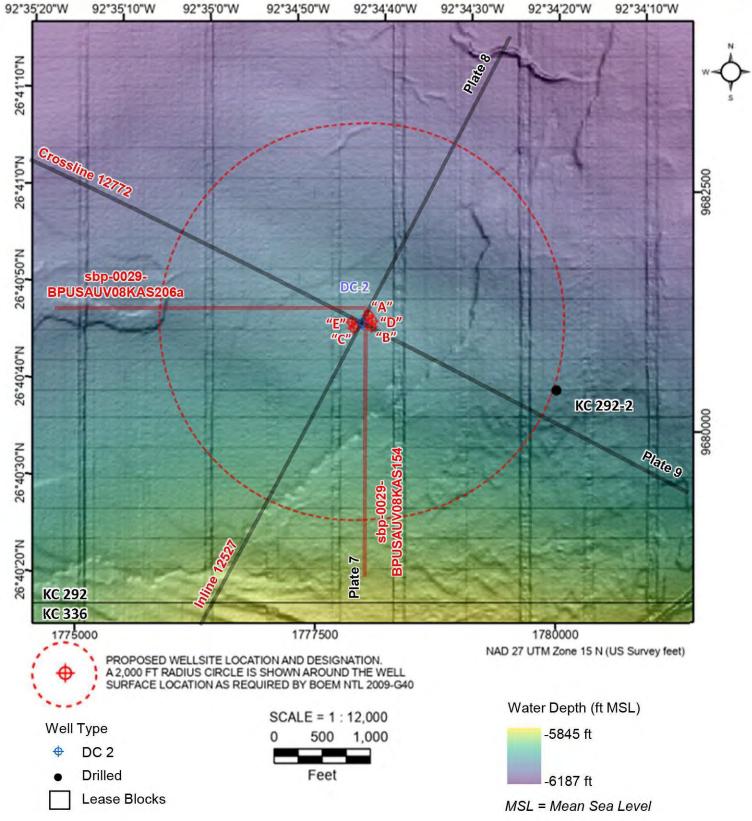
Bureau of Ocean Energy Management, 2011, Notice to Lessees and Operators of Federal Oil and Gas Leases and Pipeline right-of-way holders on the Outer Continental Shelf, Revisions to the list of OCS lease blocks requiring archaeological resource surveys and reports: U.S. Department of the Interior, Bureau of Ocean Energy Management, Bureau of Safety and Environmental Enforcement, Gulf of Mexico, NTL 2011-JOINT-G01. Effective Date December 29, 2011.

Bureau of Ocean Energy Management, 2010, Notice to lessees and operators of federal oil and gas leases in the outer continental shelf, Gulf of Mexico OCS region, Deepwater benthic communities: U.S. Department of the Interior, Minerals Management Service, Gulf of Mexico, NTL 2009-G40, Effective Date January 27, 2010.

Bureau of Ocean Energy Management, 2005, Notice to lessees and operators of federal oil, gas and sulphur leases and pipeline right-of-way holders in the outer continental shelf, Gulf of Mexico OCS region, Archaeological resource surveys and reports: U.S. Department of the Interior, Minerals Management Service, Gulf of Mexico, NTL 2005-G07, Effective Date July 1, 2005.

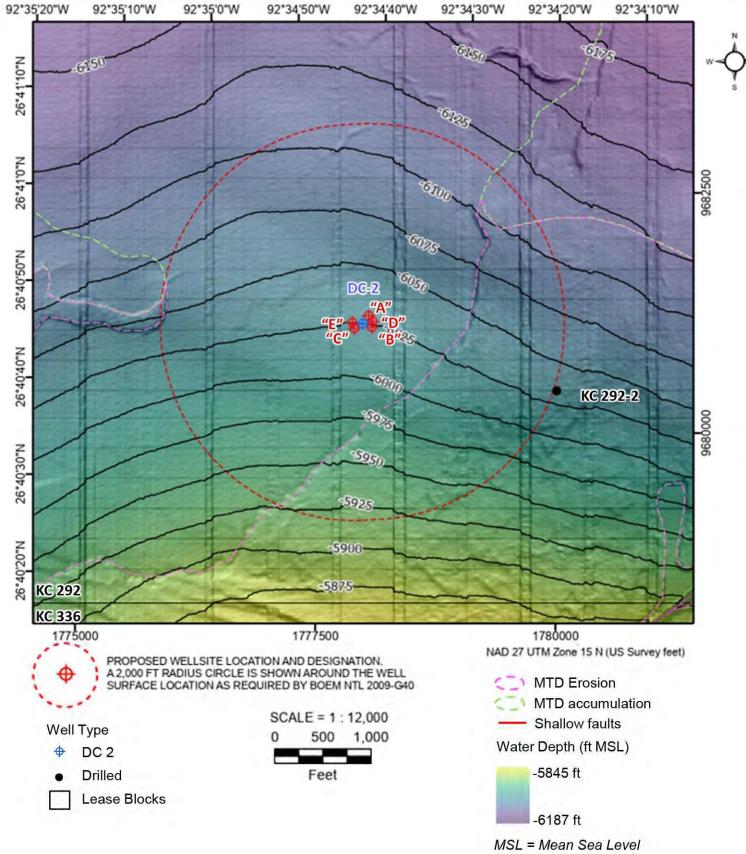
Fugro Geoservices, Inc (FGSI), 2011,"AUV Archaeological Assessment, Kaskida Prospect, Blocks 246-248, 290-292 & 335-336, Keathley Canyon Area Gulf of Mexico", FGSI Report No. 2411-1025

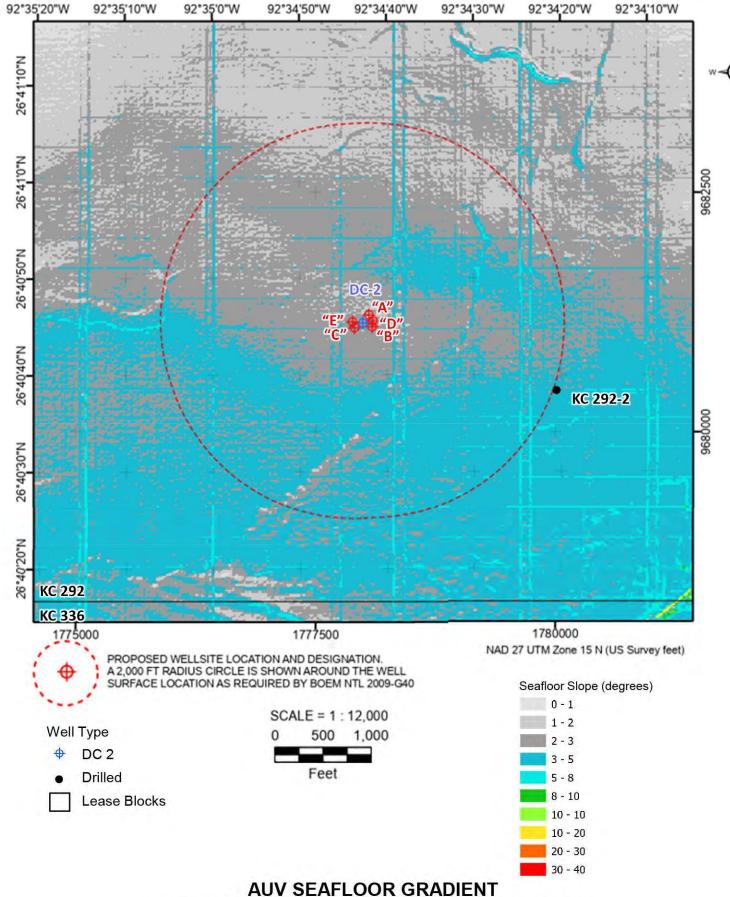
Geoscience Earth & Marine Services, Inc (GEMS), 2024, "Integrated Shallow Hazards Assessment, Blocks 246-248, 290-292, and 335-336, Keathley Canyon Area, Gulf of Mexico.", Project No. GHZ3282.


Kaskida Drill Center 2 Wells "A", "B", "C", "D", and "E"

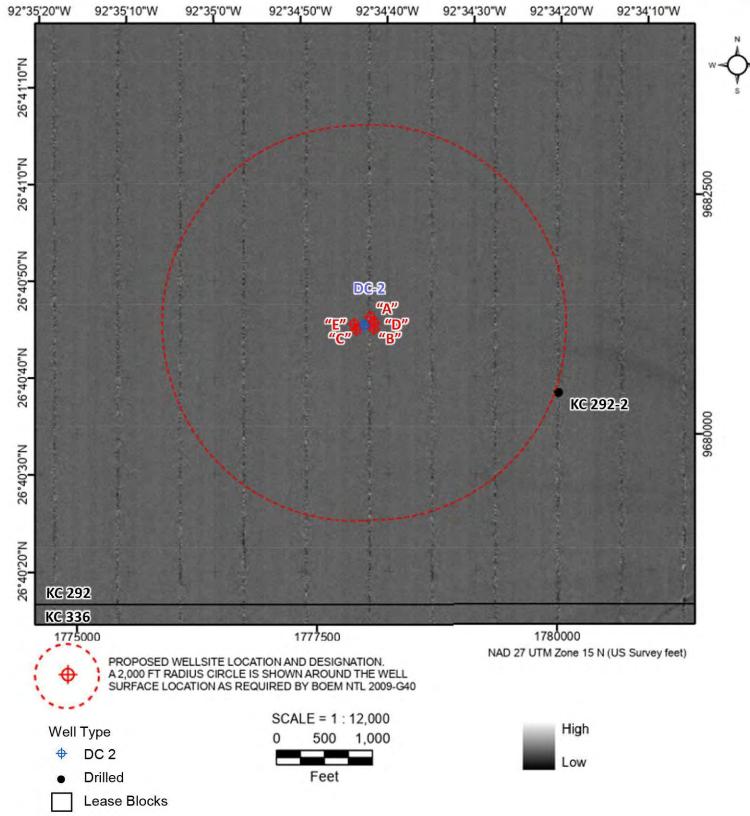
ATTACHMENTS:

- Plate 1 AUV Seafloor Rendering, Kaskida, Block 292, Keathley Canyon Area, Proposed Wellsites "A", "B", "C", "D", AND "E"
- Plate 2 AUV Water Depth and Seafloor Features, Kaskida, Block 292, Keathley Canyon Area, Proposed Wellsites "A", "B", "C", "D", AND "E"
- Plate 3 AUV Surface Gradient, Kaskida, Block 292, Keathley Canyon Area, Proposed Wellsites "A", "B", "C", "D", AND "E"
- Plate 4 AUV Multibeam Backscatter, Kaskida, Block 292, Keathley Canyon Area, Drill Center 2 "A", "B", "C", "D", AND "E"
- Plate 5 AUV Side Scan Sonar Mosaic, Kaskida, Block 292, Keathley Canyon Area, Proposed Wellsites "A", "B", "C", "D", AND "E"
- Plate 6 Sub-Surface Geologic Features, Kaskida, Block 292, Keathley Canyon Area, Proposed Wellsites "A", "B", "C", "D", AND "E"
- Plate 7 Portion of AUV Composite Subbottom Lines sbp-0029-BPUSAUV08KAS206a and sbp-0029-BPUSAUV08KAS154, Kaskida, Block 292, Keathley Canyon Area, Proposed Wellsites "A", "B", "C", "D", AND "E"
- Plate 8 3D Seismic Section, Portion of Inline 12751, Kaskida, Block 292, Keathley Canyon Area, Proposed Wellsites "A", "B", "C", "D", AND "E"
- Plate 9 3D Seismic Section, Portion of Crossline 12666, Kaskida, Block 292, Keathley Canyon Area, Proposed Wellsites "A", "B", "C", "D", AND "E"
- Plate 10 3D Seismic Frequency Spectrum, Kaskida, Block 292, Keathley Canyon Area, Proposed Wellsites "A", "B", "C", "D", AND "E"
- Plate 11 Top-hole Prognosis Chart, Kaskida, Block 292, Keathley Canyon Area, Proposed Wellsites "A", "B", "C", "D", AND "E"

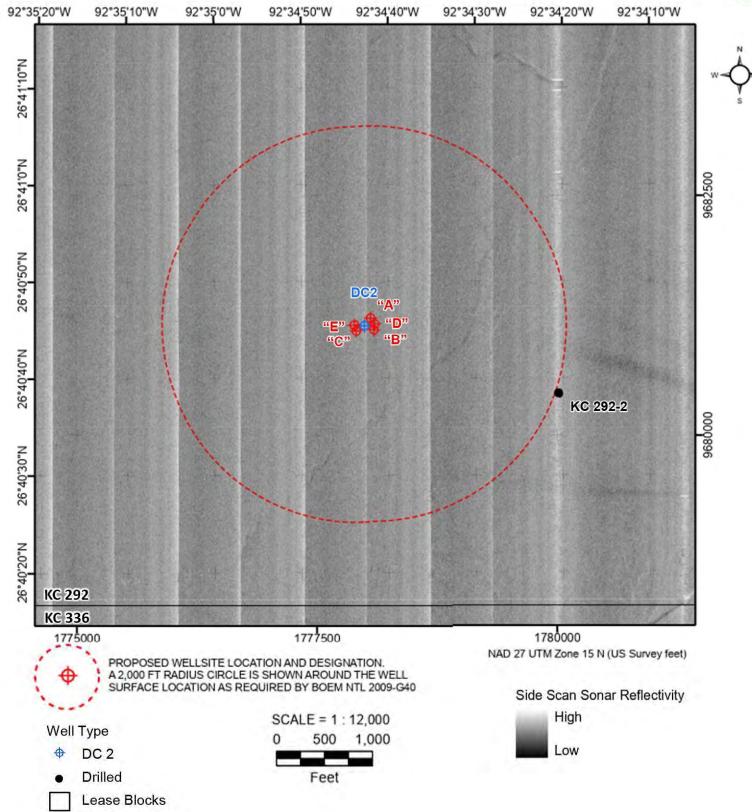

BP AMERICA INC. SITE CLEARANCE LETTER, PROPOSED "A", "B", "C", "D" AND "E" LOCATIONS, BLOCK 292, KEATHLEY CANYON, GULF OF MEXICO

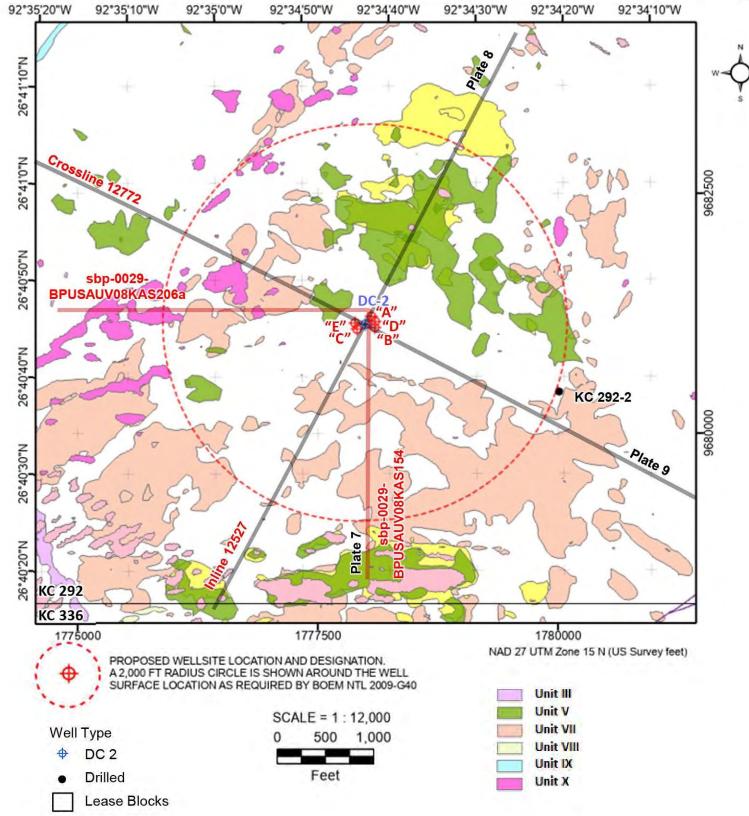

AUV SEAFLOOR RENDERING KASKIDA, BLOCK 292, KEATHLEY CANYON AREA PROPOSED WELLSITES "A", "B", "C", "D" AND "E"

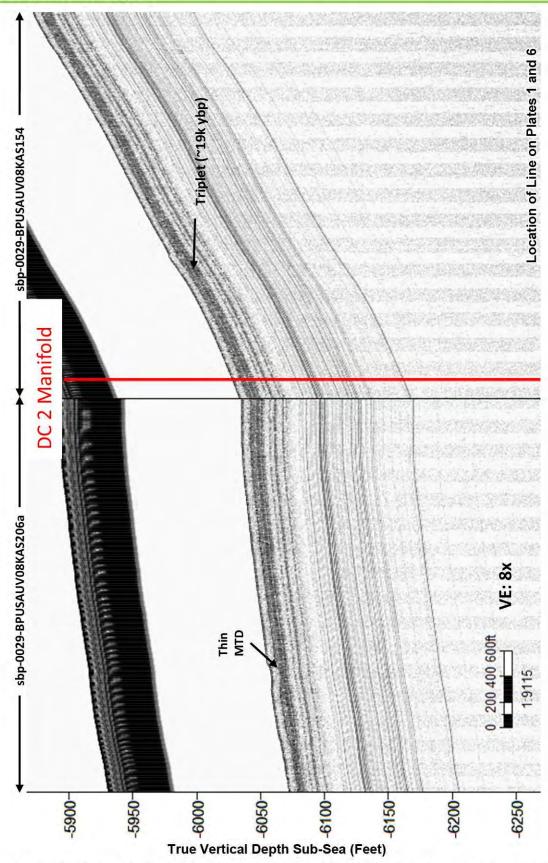
AUV WATER DEPTH AND SEAFLOOR FEATURES KASKIDA, BLOCK 292, KEATHLEY CANYON AREA PROPOSED WELLSITES "A", "B", "C", "D", "D" AND "E" BP AMERICA INC. SITE CLEARANCE LETTER, PROPOSED "A", "B", "C", "D" AND "E" LOCATIONS, BLOCK 292, KEATHLEY CANYON, GULF OF MEXICO



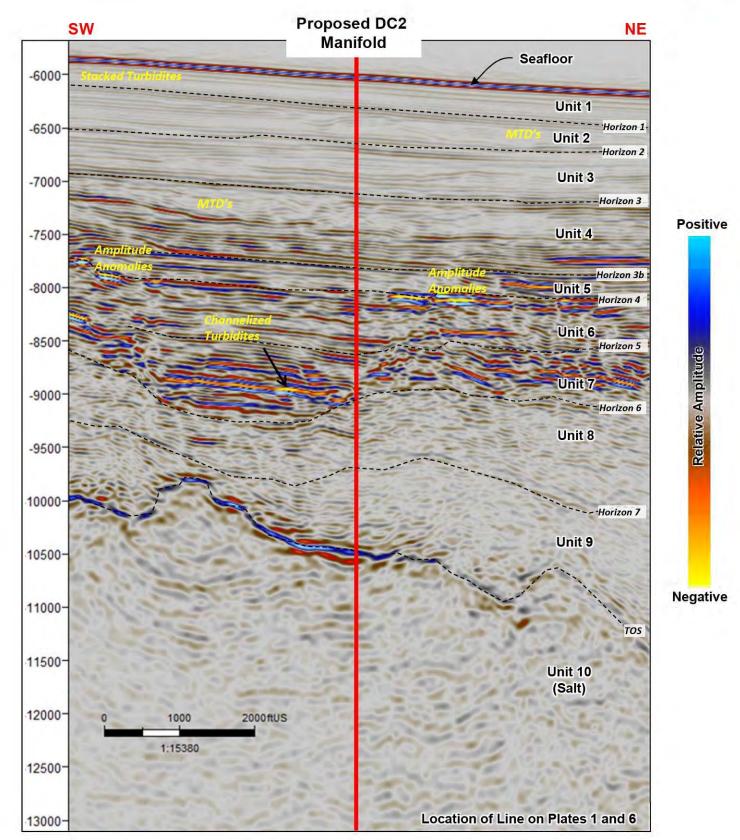
KASKIDA, BLOCK 292, KEATHLEY CANYON AREA PROPOSED WELLSITES "A", "B", "C", "D" AND "E"


BP AMERICA INC. SITE CLEARANCE LETTER, PROPOSED "A", "B", "C", "D" AND "E" LOCATIONS, BLOCK 292, KEATHLEY CANYON, GULF OF MEXICO

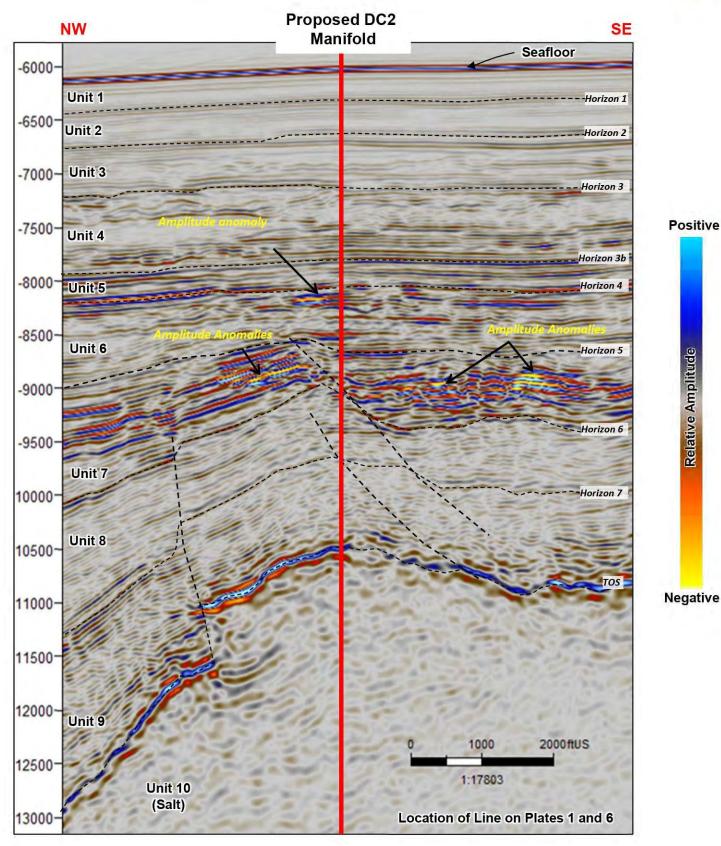

AUV MULTIBEAM BACKSCATTER KASKIDA, BLOCK 292, KEATHLEY CANYON AREA PROPOSED WELLSITES "A", "B", "C", "D" AND "E" BP AMERICA INC. SITE CLEARANCE LETTER, PROPOSED "A", "B", "C", "D" AND "E" LOCATIONS, BLOCK 292, KEATHLEY CANYON, GULF OF MEXICO

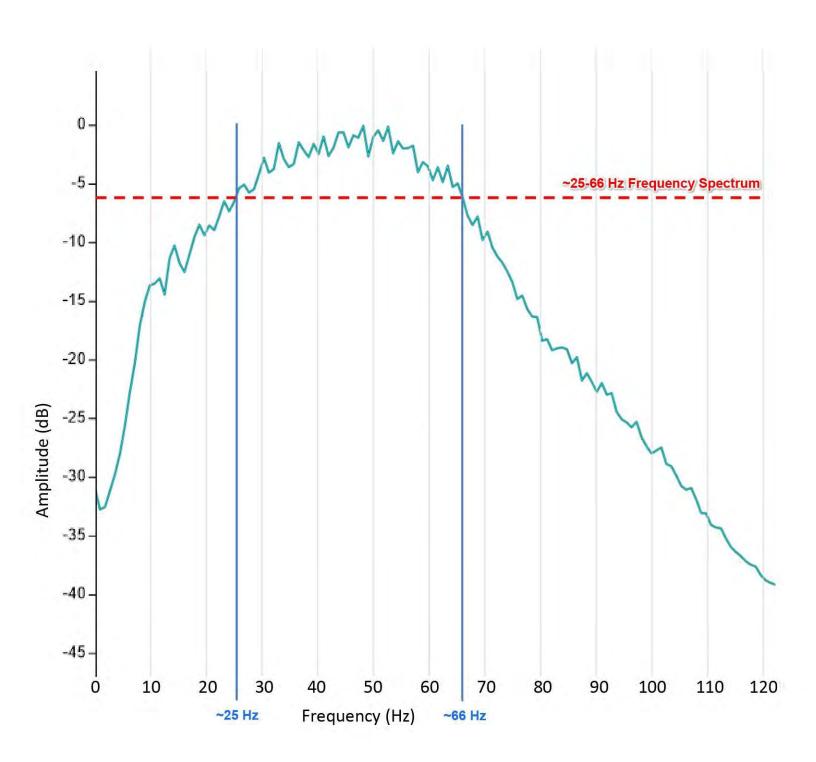

AUV SIDE SCAN SONAR MOSAIC KASKIDA, BLOCK 292, KEATHLEY CANYON AREA PROPOSED WELLSITES "A", "B", "C", "D" AND "E"

SUB-SURFACE GEOLOGIC FEATURES KASKIDA, BLOCK 292, KEATHLEY CANYON AREA PROPOSED WELLSITES "A", "B", "C", "D" AND "E"



PORTION OF AUV COMPOSITE SUBBOTTOM LINES sbp-0029-BPUSAUV08KAS206a
AND sbp-0029-BPUSAUV08KAS154
KASKIDA, BLOCK 292, KEATHLEY CANYON AREA
PROPOSED WELLSITES "A", "B", "C", "D" AND "E"


True Vertical Depth Sub-Sea (Feet)


3D SEISMIC SECTION, PORTION OF INLINE 12751, KASKIDA, BLOCK 292, KEATHLEY CANYON AREA PROPOSED WELLSITES "A", "B", "C", "D" AND "E"

Relative Amplitude

3D SEISMIC SECTION, PORTION OF CROSSLINE 12666, KASKIDA, BLOCK 292, KEATHLEY CANYON AREA PROPOSED WELLSITES "A", "B", "C", "D" AND "E"

3D SEISMIC FREQUENCY SPECTRUM, KASKIDA, BLOCK 292, KEATHLEY CANYON AREA PROPOSED WELLSITES "A", "B", "C", "D" AND "E"

	Crossline 12666 3D Seismic Section	Harizan P	Horizon & Inferred Lithology &		DEPTHS		SHALLOW	SHALLOW	SHALLOW
	Proposed Drill Center 2 KC 292 "A", "B", "C", "D", and "E"	Unit		BML (Feet)	TVDSS (Feet)	THICKNESS (Feet)	GAS	OIL POTENTIAL	WATER FLOW
00 ft TVDSS	IW	SE Seafloor	Seafloor slopes ~2° to the north		Character				
00 ft TVDSS		Horizon 1	Soft to very stiff clays underlain by laminated clays and silty clays.	0	6,025	275	Negligible	Negligible	Negligible
		Horizon 2	Debris flows and channelized turbidites. Clays/silts.	275	- 6,300	325	Negligible	Negligible	Negligible
00 ft TVDSS		Horizon 3	Channelized interval with silts and sands	600	6,625	J			
00 ft TVDSS		Horizon 3 (6 Hug)	Sand prone channelized turbidite with thin silts and mass transport deposits. Clays with silt to sandy intervals.			495	Negligible	Negligible	Negligible
O II I VDSS		BGHS 3	Mass transport deposits. Clay, silt, & thin sands possible.	1,095	7,120	685	Newlinible	No-best-	Negligible
00 ft TVDSS	Amplitude	Horizon S	Alternating channelized sand and silt intervals. Predicted base of gas hydrate stability	1,738	7,761	003	Negligible	Negligible	Moderat
3		Horizon 4	Channelized turbidites and mass transport deposits. Silty to sandy intervals.	1,780	7,805	222	Negligible	Negligible	Negligible
00 ft TVDSS				2,002	8,027				
		Horizon 5	Channelized turbidites and mass transport deposits. Clay, silt, & sand	27.5			Low		Low
00 ft TVDSS		Fault 1 Horizon 6	Mass transport deposits and slumped turbidites. Clay, silt, & sand			635	Negligible	Negligible	Negligibl Low
00 ft TVDSS		100	Slumped and channelized turbidites. Mass transport deposits. Clays and silts, possibly sand.	2,637	- 8,662	443	Negligible	n est	Negligible
		Horizon 7	Channelized turbidites and thin mass transport sediments. Clay, silt, and sand.	2 085	0.010	-3.5	regugible	Negligible	Low
00 ft TVDSS			Mass transport deposits and slumped turbidites.	2,985 3,080	+ 9;105				
00 ft TVDSS		Top of Salt	Clay with thin sands and silts possible.		250	622	Negligible	Negligible	Negligible
00 ft TVDSS		6 14	Turbidites and mass transport deposits. Clay with silty to	3,747	9:772			Negligible	
			sandy intervals.			763	Negligible		Negligibl
00 ft TVDSS			Clays, silts and sands.	4,465	10,490			Low	
00 ft TVDSS			Interpreted clean allochthonous Salt.			2,035	Negligible	Negligible	Negligibl
	Seismic Section Vertically	is		6,500	12,525				
00 ft TVDSS	400 ft Exaggerated	(Depth Limit of Investigation)			Risk Scale	Negligible	Low	Moderate	High

TOP-HOLE PROGNOSIS CHART, KASKIDA, BLOCK 292, KEATHLEY CANYON AREA PROPOSED DRILL CENTER 2 KC 292 "A", "B", "C", "D", and "E"

BML = Below Mudline BGHS = Base of Gas Hydrate Stability TVDSS = True Vertical Depth Subsea

MTD = Mass Transport Deposits

Note depths and horizons are relative to well location.

Surface Locations at

"A": X = 1,778,060.78 ft , Y = 9,681,231.78 ft ;

"B": X = 1,778,094.29 ft , Y = 9,681,110.06 ft ; "C": X = 1,777,910.87 ft , Y = 9,681,099.40 ft ; "D": X = 1,778,099.79 ft , Y = 9,681,172.82 ft ; "E": X = 1,777,898.26 ft , Y = 9,681,161.21 ft ;

UTM Zone 15 N (US ft) Geodetic Datum: NAD 1927

TRUE VERTICAL DEPTH SUB-SEA (FEET)

September 4, 2024 Project No.: GHZ3279

BP America Inc. 501 Westlake Park Houston, TX 77079

Attention: Mr. Jason Bronikowski

Shallow Geohazards Assessment Proposed Kaskida Mooring Anchor Pile Locations Blocks 292, 293, 336, and 337 Keathley Canyon Area, Gulf of Mexico

BP America Inc., (BP) requested for Geoscience Earth & Marine Services (GEMS) to provide the following shallow geohazards assessment of the proposed Kaskida Floating Production Unit (FPU) mooring anchor pile locations in Blocks 292, 293, 336, and 337 Keathley Canyon (KC) Area, Gulf of Mexico (Figures 1 and 2).

This report complies with the current Bureau of Ocean Energy Management (BOEM) Notices-to-Lessees (NTLs). The applicable NTLs present guidelines for filing exploration and development plans (NTL 2008-G04; MMS 2008), archaeological assessment (NTL 2005-G07; BOEM 2020), geohazard assessments (NTL 2022-G01; BOEM, 2022), and the delineation of potential areas of high-density deepwater benthic communities (NTL 2009-G40; MMS, 2010).

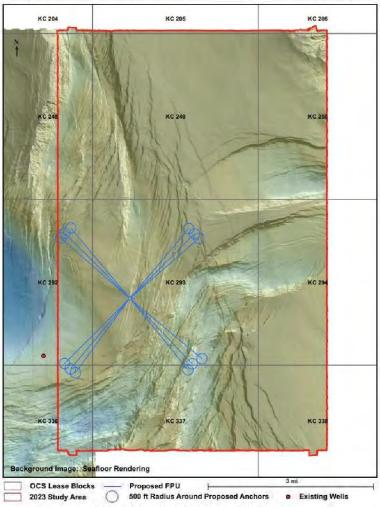


Figure 1. Survey Area Overview Map.