

PFAS Roundtable

ADEM Surface Water Conference, Tuesday October 15, 2024

Alabama Department of Environmental Management

Meet the Panelists

Jeaniece Slater General Manager, West Morgan East Lawerence Water and Sewer Authority

Lindsay Boone, M.Sc. Pace Analytical, Technical Specialist

Worldwide Experts in Water Treatment

Zia Klocke, P.E. Research Engineer, Ovivo

Scotti Wells, EIT PFAS Pilot Manager, Insite Engineering

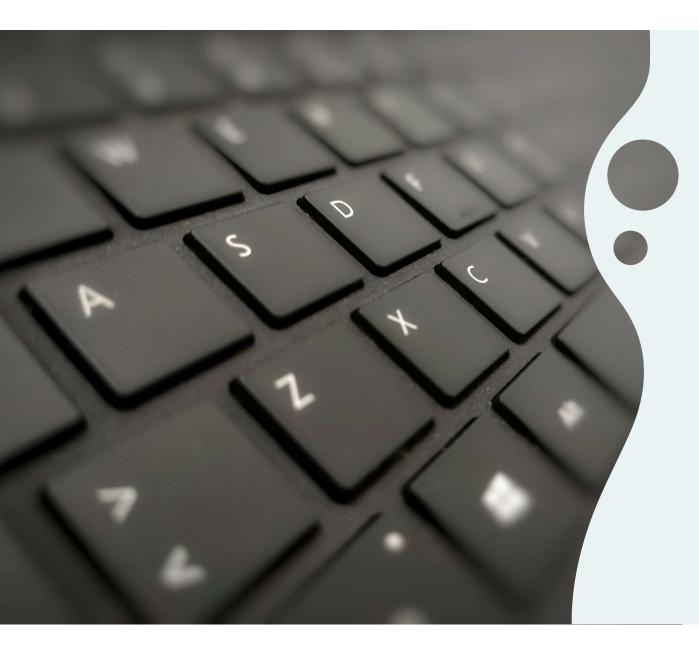
Communicating PFAS

Customers want to Know

Introduction to PFAS

Regulatory Standards

BUT WAIT!!!!


The lawsuit filed by the American Water Works Association (AWWA) and the Association of Metropolitan Water Agencies (AMWA) against the EPA regarding PFAS regulations essentially means that these water industry groups are challenging the EPA's new PFAS standards, arguing that they are too stringent and not based on the best available science, potentially creating difficulties for water utilities in complying with the new regulations due to concerns about cost and feasibility, while still claiming to support public health protection.

Chemical and Water Associations Challenge EPA's Maximum Contaminant

Per- and olyfluoroalkyl substance

All Experts are challenged In today's world

Google Experts

We Must Be First to Provide Information

0882

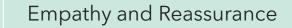
0629

SIDE WEST

0724

Communication Strategies

Transparency: We must be transparent with customers about PFAS


Outreach: Social Media, newsletters, community meetings, and Q&A's

Spokesperson

Q

?

Customers FAQ's

Work Hand and Hand With Your Community

MMUNITY PARTNERSHIPS

Treatment Technologies

Have a Plan

IMPLEMENTING PFAS TECHNOLOGY

Tuesday, October 15, 2024

Alabama Department of Environmental Management

OUTLINE AND AGENDA

- I. The New Maximum Contaminant Limit (MCL)
- **II. The Compliance Timeline**
- **III. PFAS Treatment Options**

IV.Q & A

WHAT SPECIFIC QUESTIONS WOULD YOU LIKE ADDRESSED?

www.insiteengineering.org

EPA's MCLs

In this final rule, EPA is setting limits for five individual PFAS: PFOA, PFOS, PFNA, PFHxS, and HFPO-DA (known as GenX Chemicals). And EPA is also setting a hazard index level for two or more of four PFAS as a mixture: PFNA, PFHxS, HFPO-DA, and PFBS:

Chemical	Maximum Contaminant Level	Maximum Contaminant Level (MCL)			
	Goal (MCLG)				
PFOA	0	4.0 ppt			
PFOS	0	4.0 ppt			
PFNA	10 ppt	10 ppt			
PFHxS	10 ppt	10 ppt			
HFPO-DA (GenX chemicals)	10 ppt	10 ppt			
Mixture of two or more:	Hazard Index of 1	Hazard Index of 1			
PFNA, PFHxS, HFPO-DA, and					
PFBS					
Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no					
known or expected risk to health. MCLGs allow for a margin of safety and are non-enforceable public health goals.					

Hazard Index

STAT

ENVIRONN

Calculation


 $Hazard\ Index = \frac{PFHxS}{10\ ppt} + \frac{PFNA}{10.0\ ppt} + \frac{GenX}{10.0\ ppt} + \frac{PFBS}{2,000.0\ ppt}$

Example Water Quality Results

PFHxS = NDPFNA = ND

 $GenX = 6.0 \, ppt \ll HAL$

 $PFBS = 1,000 \ ppt \ll HAL$

What is EPA saying?

EPA'S PFAS Q&A FACT SHEET:

How many utilities does EPA estimate will be impacted by this proposal?

There are over 66,000 public water systems that are subject to the PFAS drinking water rule. Most of these systems will primarily have to conduct monitoring to confirm that they do not have PFAS at levels exceeding the regulatory standards. EPA estimates that between about 6% and 10% of the 66,000 public drinking water systems subject to this rule may have to take action to reduce PFAS to meet these new standards.

COMPLIANCE

General Requirements:

- 3 Years to Complete Initial Monitoring (2027) Quarterly for 12 months (Twice per 12 months for small groundwater systems)
- Five Years to Implement Solutions (2029)
- Public Notification for Violations Begins in 2029

PFAS TREATMENT OPTIONS

EVERY WATER SOURCE IS DIFFERENT

There is no one-size-fits-all solution for the removal of PFAS from drinking water.

"The Big 3"

What treatment options are most effective in removing PFAS from drinking water?

As part of the final PFAS National Primary Drinking Water Regulation (NPDWR), granular activated carbon, anion exchange, reverse osmosis, and nanofiltration were identified by the EPA as the "Best Available Technologies" (BATs) for meeting the PFAS Maximum Contaminant Levels (MCLs). This is based on six criteria: removal efficiency, historical full-scale operation, geographic applicability, compatibility with other treatment processes, ability to bring the entire water system into compliance, and a reasonable cost to large as well as medium sized systems. Water systems may use any technology or practice to meet the PFAS MCLs and are not limited to the BATs.

GAC

Ion Exchange Reverse Osmosis

PFAS TREATMENT PROCESSES

EPA "BATs"

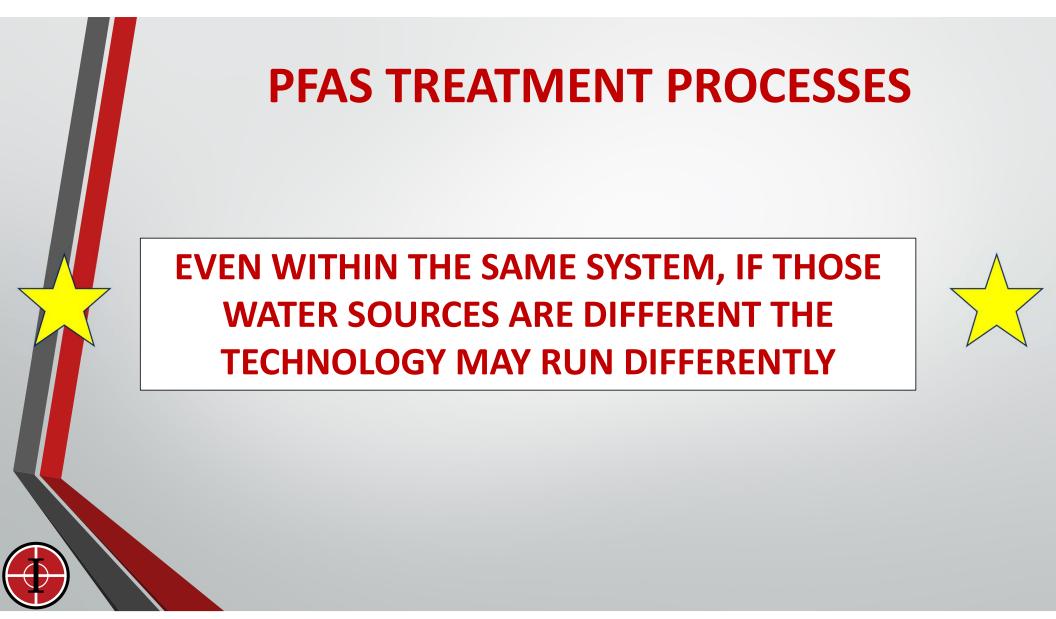
There are so many options to consider:

- **RO:** Reverse Osmosis
- GAC: Granular Activated Carbon
- IX: Ion Exchange
- PAC: Powdered Activated Carbon
- **AOP: Advanced Oxidation Processes**
- **SAFF:** Surface Active Foam Fractionation
- **Ceramic Membranes with Adsorbent**
- **Electrochemical Oxidation**
- **Supercritical Water**
- **Chemical Precipitation**
- **Other Emerging Technologies**

PFAS TREATMENT PROCESSES

So where do you start?

Sampling & Testing



PFAS TREATMENT PROCESSES

How do you make a selection? What do you consider?
PFAS Removal Efficiencies
Capital Cost
Operational Cost
Ease of Operation
By-Products & Waste Stream Treatments
Media Regeneration / Disposal Costs
Other Local Issues....

WHAT'S THIS GOING TO COST?

Remember there are 2 parts: CAPITAL + OPERATIONAL

What will the total costs look like 80 years from now?

CUSTOMER #1- 24MGD WATER TREATMENT PLANT

TECHNOLOGY	ANTICIPATED CAPITAL COST	ANTICIPATED ANNUAL OPERATIONAL COST	ANTICIPATED 80- YEAR LIFE CYCLE COST
MF + CCRO	\$99.4M	\$3.07M	\$345M
UF + GAC	\$82.4M	\$3.86M	\$391M

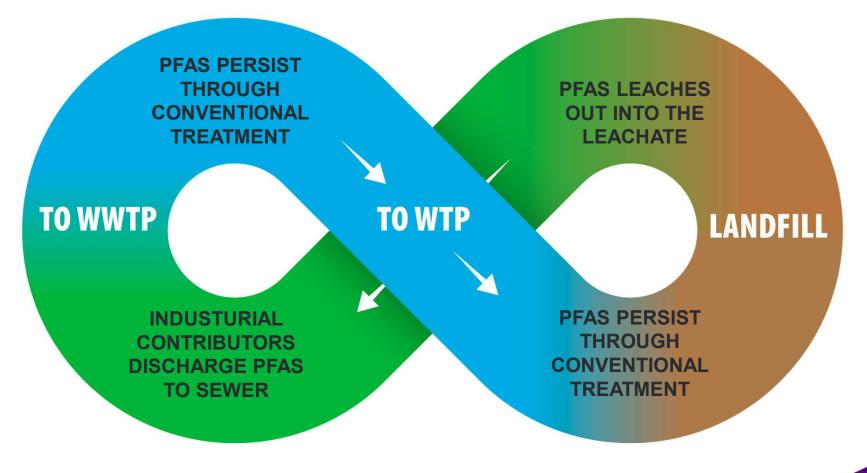
CUSTOMER #2-3 MGD WATER TREATMENT PLANT

TECHNOLOGY	ANTICIPATED CAPITAL COST	ANTICIPATED ANNUAL OPERATIONAL COST	ANTICIPATED 80- YEAR LIFE CYCLE COST
RO	\$40.3M	\$1.79M	\$109.2M
GAC	\$21.8M	\$1.86M	\$94M

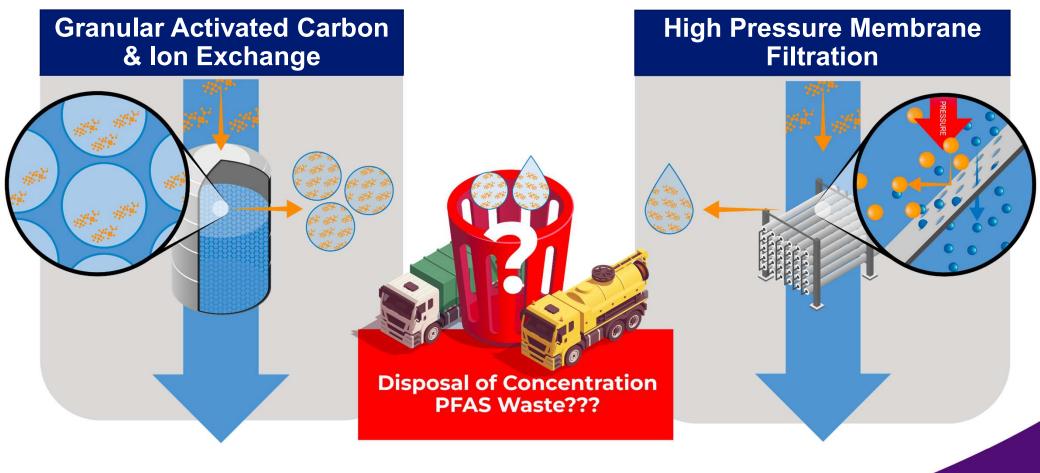
TODAY'S #1 TAKEAWAY:

YOUR WATER IS YOUR WATER

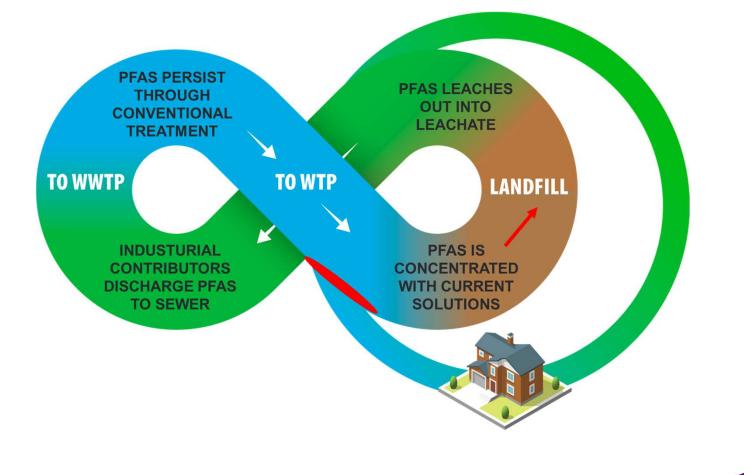
There is no one-size-fits-all solution for the removal of PFAS from drinking water.

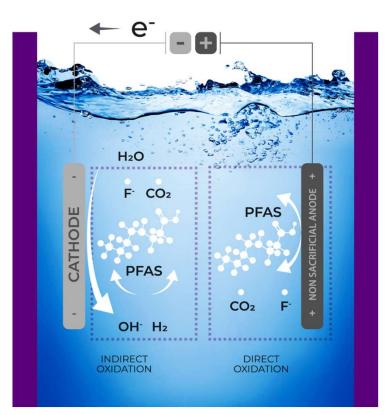

Ovivo's Integrated Solution for Onsite PFAS Destruction: A Municipal Drinking Water Case Study

Zia Klocke, P.E. Product Manager (Adsorption), PFAS Solutions Alabama Surface Water Meeting 2024



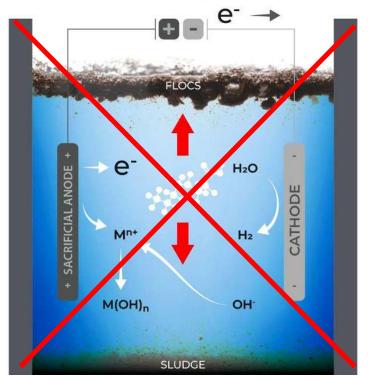
Worldwide Experts in Water Treatment


The Forever Chemical Cycle


Current PFAS Water Treatment Methods

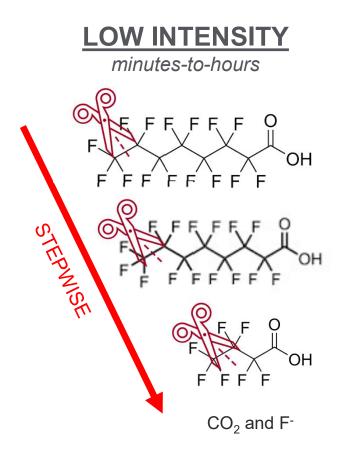
The Forever Chemical Cycle

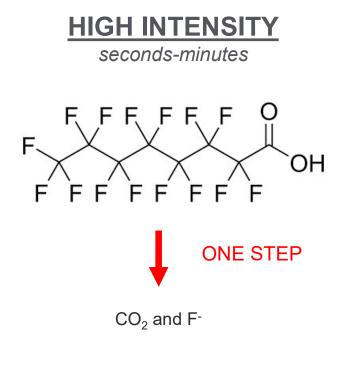
How Electro-Oxidation Destroys PFAS



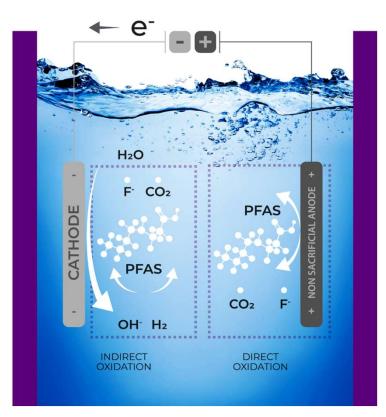
- Pass an electrical current through the electrodes (anode and cathode)
 - Non-Sacrificial electrodes

How Electro-Oxidation Destroys PFAS


Electro-Coagulation

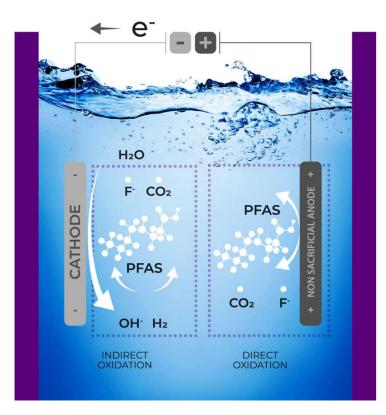


- Pass an electrical current through the electrodes (anode and cathode)
 - Non-Sacrificial electrodes



Two Approaches to PFAS Destruction

How Electro-Oxidation Destroys PFAS



- Pass an electrical current through the electrodes (anode and cathode)
 - Non-Sacrificial electrodes
- Direct oxidation happens at the surface of the anode that cleaves the C-F bond.

• Indirect oxidation through other electrochemically-created oxidants also react with and break down PFAS in the bulk liquid.

How Electro-Oxidation Destroys PFAS

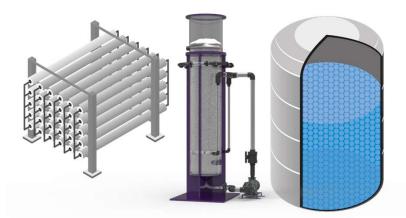
- Pass an electrical current through the electrodes (anode and cathode)
 - Non-Sacrificial electrodes
- Direct oxidation happens at the surface of the anode that cleaves the C-F bond.

- Indirect oxidation through other electrochemically-created oxidants also react with and break down PFAS in the bulk liquid.
- Operates at ambient temps and low pressures

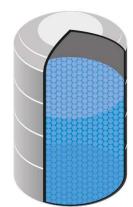
Integrated Solution Onsite Destruction

CONCENTRATE

Reverse Osmosis Foam Fractionation Regenerable Ion Exchange

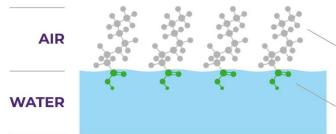

DESTROY

Ovivo Electrochemical Oxidation



POLISH

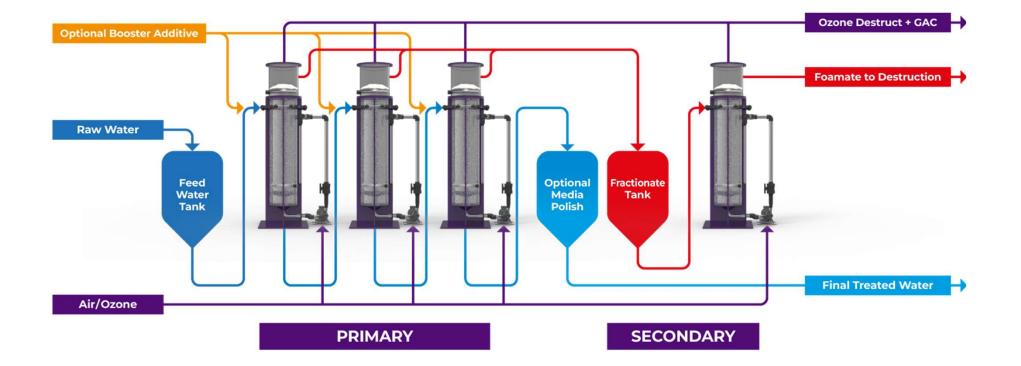
GAC Ion Exchange



Foam Fractionation as a PFAS Separation Method

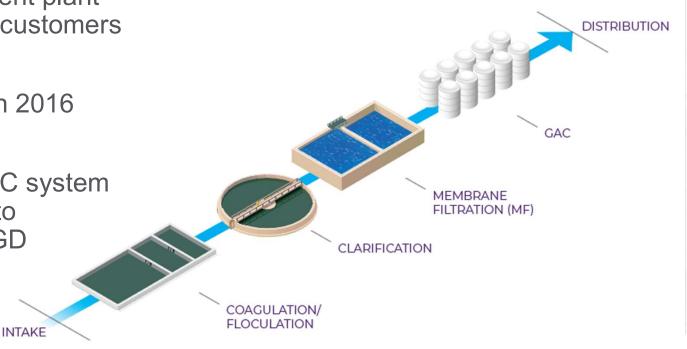
- Foam Fractionation utilizes PFAS attraction to the air water interface to remove and concentrate PFAS
- Foamate can be 1000X more concentrated and 1-10% the volume of the influent
- Ovivo's system selectively uses both ozone and air to create smaller bubbles with higher overall surface area and higher electrostatic charge compared to air-only systems, significantly boosting PFAS removal and concentration factors.

Hydrophobic tails oriented **toward air** (away from water)

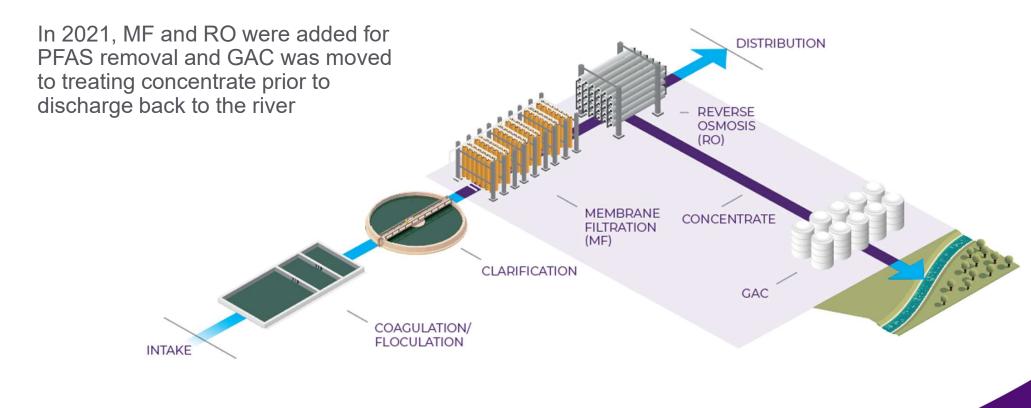

Hydrophilic heads oriented **toward water**

 Commercially deployed for PFAS in Australia since 2017

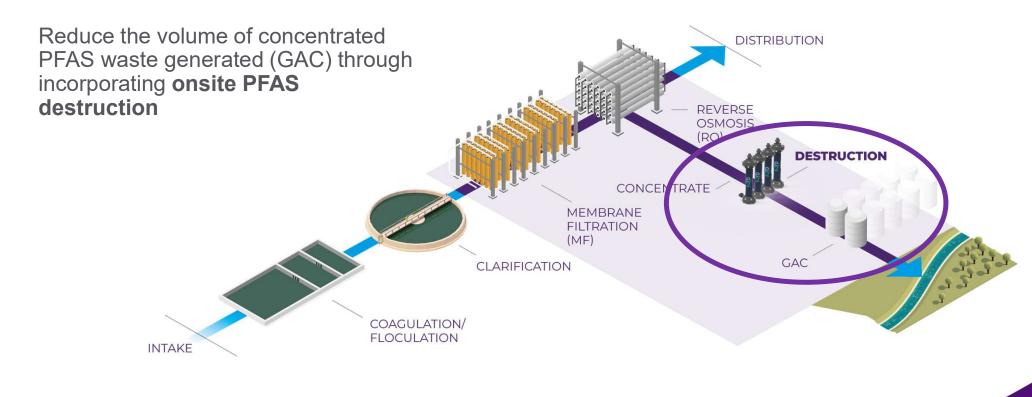
Ovivo's Ozone Foam Fractionation


Case Study #1 Drinking Water Application

Reverse Osmosis Concentrate



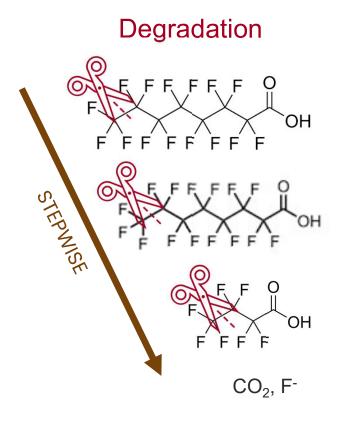
West Morgan East Lawerence, AL History


- 16 MGD water treatment plant serving over 100,000 customers
- First detected PFAS in 2016
- Emergency Ovivo GAC system installed in late 2016 to remove PFAS in 5 MGD

West Morgan East Lawerence, AL

West Morgan East Lawerence, AL Study Goal

Compare Two Electrode Types:


• Multiple specialized electrodes that we can use to tailor to the water

Compare Two Electrode Types:

• Multiple specialized electrodes that we can use to tailor to the water

Electro degradation and generation of longto short-chain PFAS compound

Compare Two Electrode Types:

• Multiple specialized electrodes that we can use to tailor to the water

Electro degradation and generation of long- to short-chain PFAS

Generation of Perchlorates

Chloride Oxidized to Perchlorate

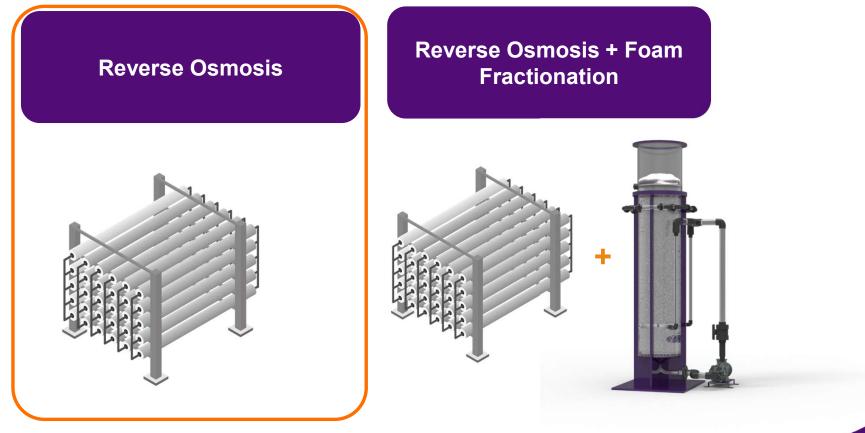
 $CI \rightarrow CIO_4^-$

Compare Two Electrode Types:

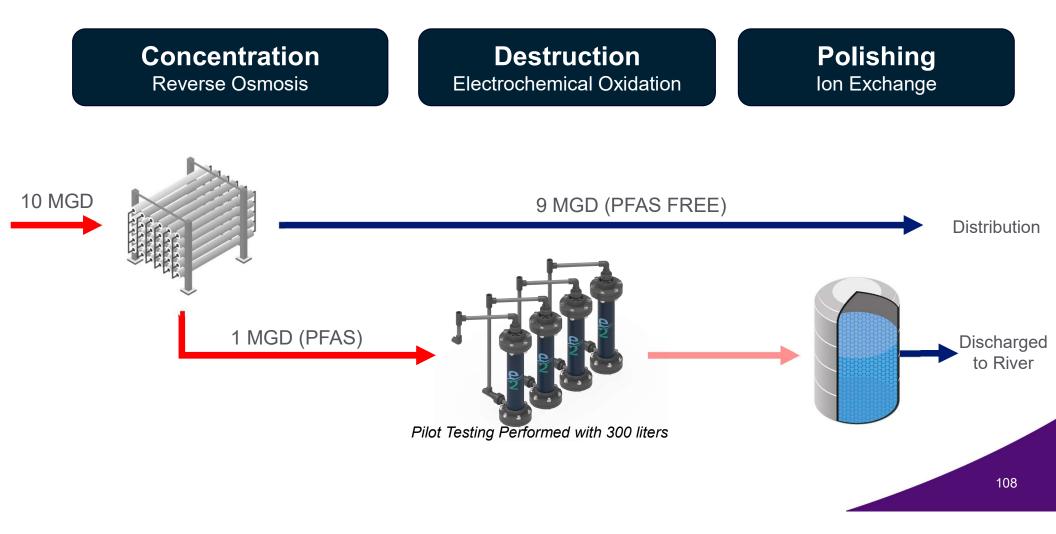
• Multiple specialized electrodes that we can use to tailor to the water

Electro degradation and generation of long- to short-chain PFAS compound

Generation of Perchlorates


Energy Consumption

Energy vs. Total PFAS Reduction



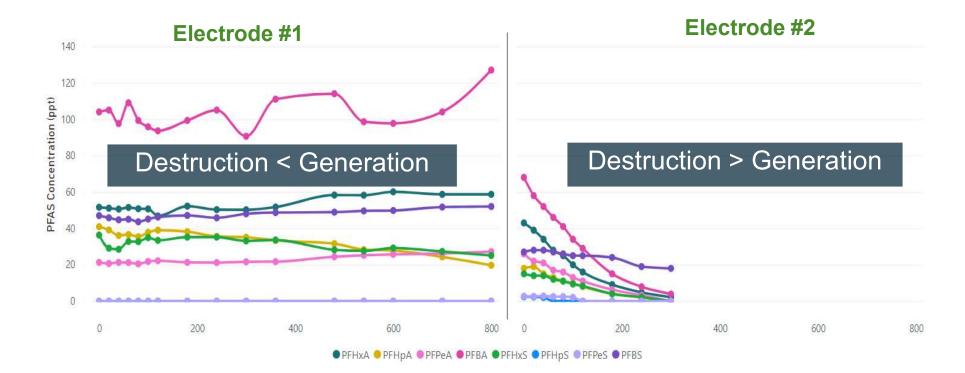
Integrated Solution Updates

Concentration Options

Reverse Osmosis Treatment Train

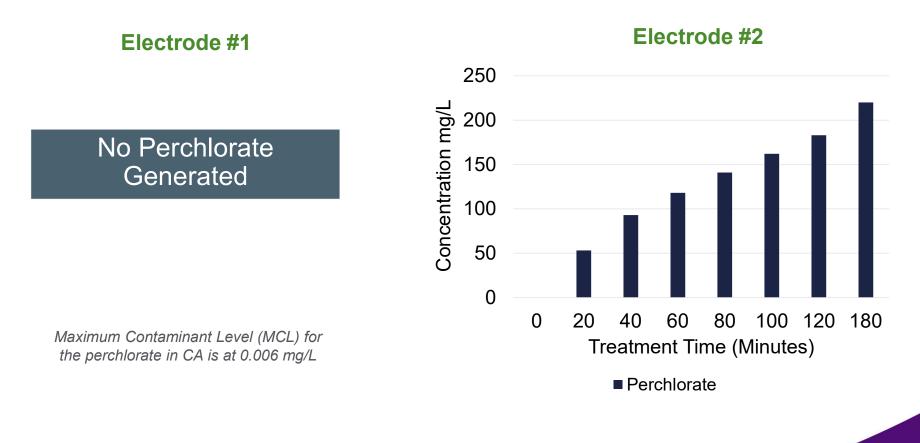
Method: 537 Modified (PACE ENV-SOP-MIN4-0179)

Reverse Osmosis Concentrate *EO Destruction*

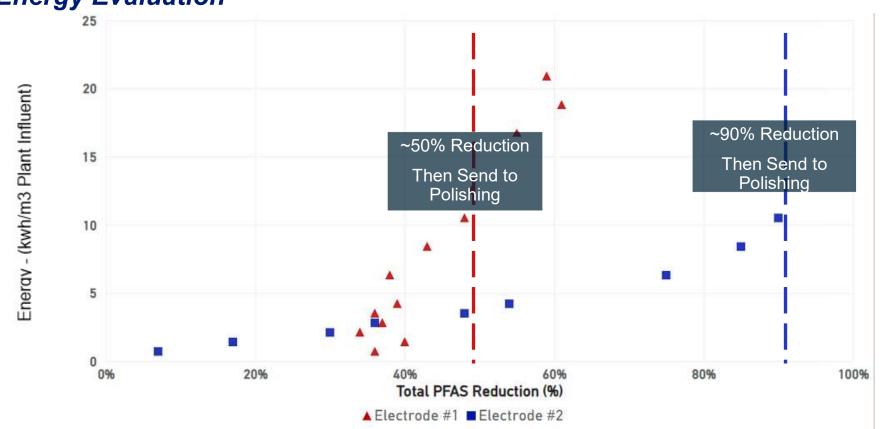


Reverse Osmosis Concentrate *EO Long-Chain Destruction*

Method: 537 Modified (PACE ENV-SOP-MIN4-0179)


Reverse Osmosis Concentrate EO Short-Chain Destruction

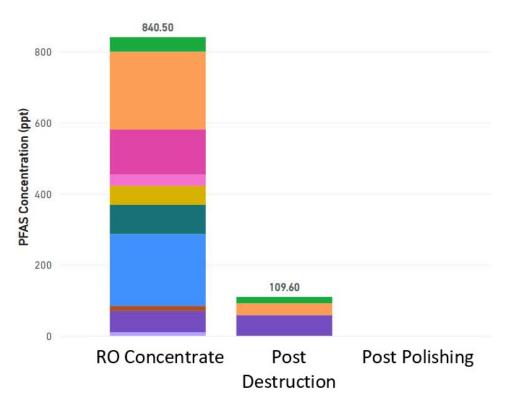
Method: 537 Modified (PACE ENV-SOP-MIN4-0179)



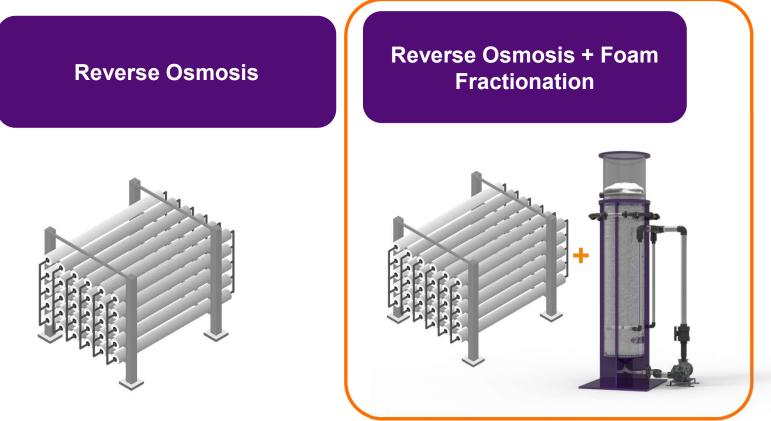
Reverse Osmosis Concentrate *Perchlorate Evaluation*

Method: EPA 314

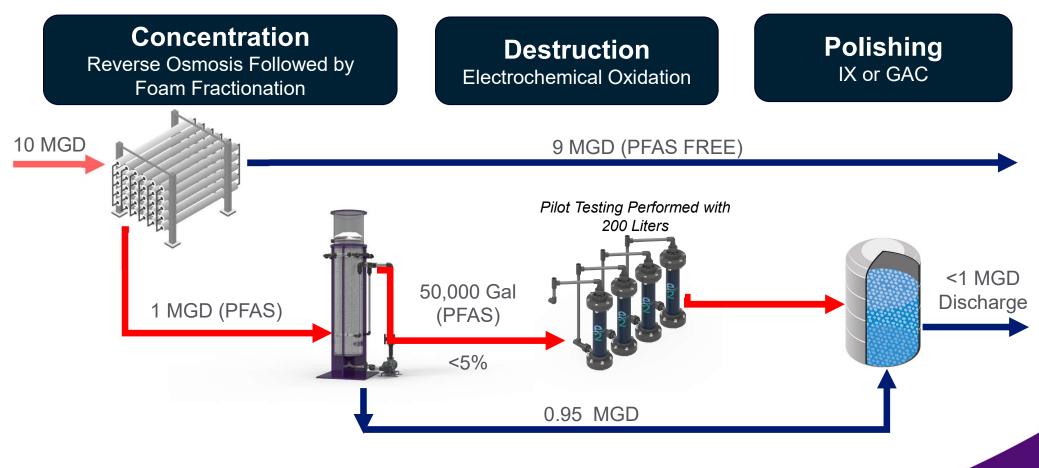
Reverse Osmosis Concentrate *Energy Evaluation*

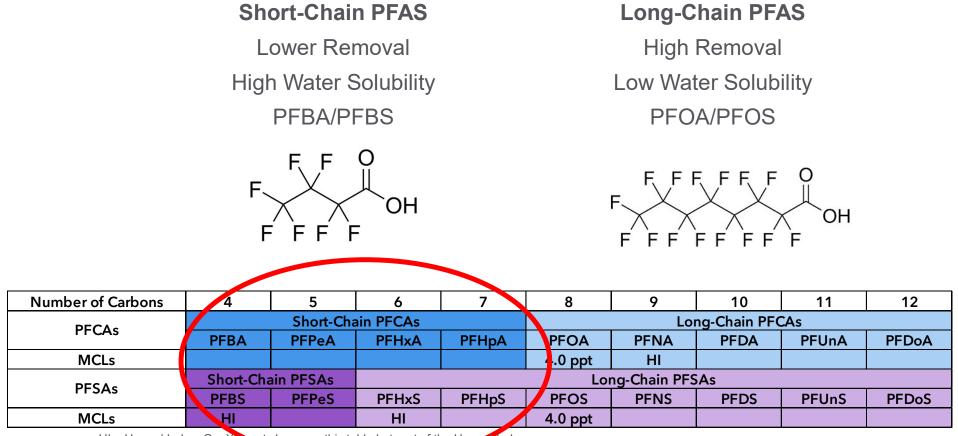


Reverse Osmosis Concentrate


Integrated Solution Summary

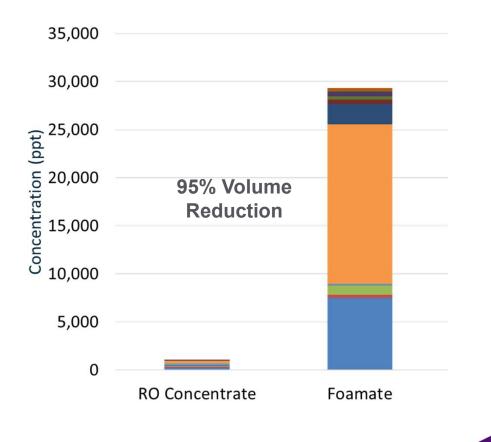
PFAS Compound	Units	RO Concentrate	Post Destruction	Post Polish
PFOS	ng/L	219	33	ND
PFOA	ng/L	202	ND	ND
PFNA	ng/L	ND	ND	ND
PFHxS	ng/L	41	18	ND
PFBS	ng/L	60	58	ND
PFBA	ng/L	127	ND	ND
PFPeA	ng/L	32	ND	ND
PFHxA	ng/L	82	ND	ND
PFPeS	ng/L	10	ND	ND
PFHpA	ng/L	54	ND	ND
6:2 FTS	ng/L	ND	ND	ND
PFHpS	ng/L	ND	ND	ND
PFOSAm	ng/L	ND	ND	ND
PFDA	ng/L	ND	ND	ND
NMeFOSAA	ng/L	15	ND	ND
NEtFOSAA	ng/L	ND	ND	ND


Polishing Removed Perchlorate to ND


Integrated Solution Updates Concentration Options

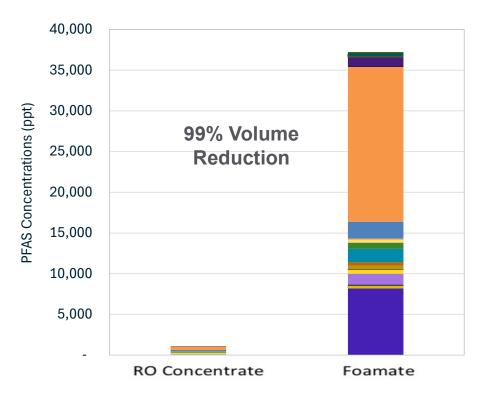
Foam Fractionation Treatment Train

Foam Fractionation as a PFAS Separation Method

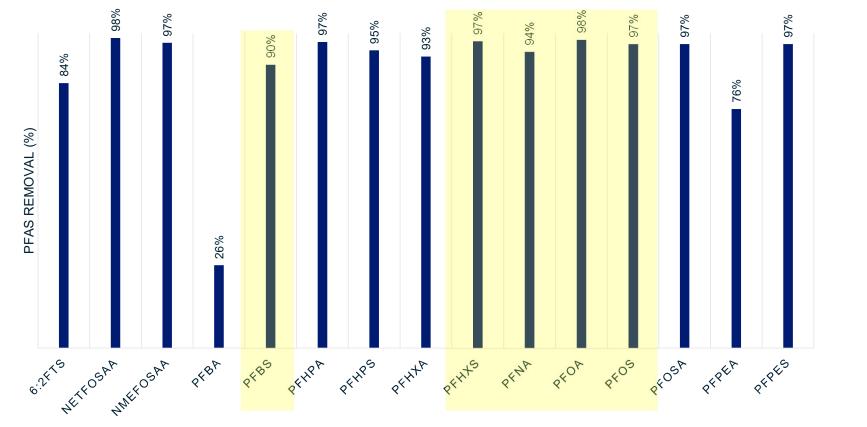


HI = Hazard Index. GenX is not shown on this table but part of the Hazard Index.

Concentration by Foam Fractionation (Air only)


PFAS Compound	Units	<u></u>	<u>Foamate</u>
PFBA	ng/L	143	113
PFPeA	ng/L	<u>48.9</u>	<u> 56.2 </u>
PFBS	ng/L	55.1	500
PFHxA	ng/L	81.2	324
PFPeS	ng/L	9.6	301
PFHpA	ng/L	56.4	976
PFHxS	n <u>g/L</u>	<u>_50.1</u>	<u>2,110</u>
	ng/L	224	7,480
6:2 FTS	ng/L	ND	27.1
PFHpS	ng/L	7.1	476
PFNA	ng/L	ND	106
PFOSAm	n <u>g/L</u>		<u> </u>
PFOS	ng/L	288	16,600
PFDA	ng/L	ND ND	44.4
NMeFOSAA	ng/L	13.7	554
NEtFOSAA	ng/L	23.6	801

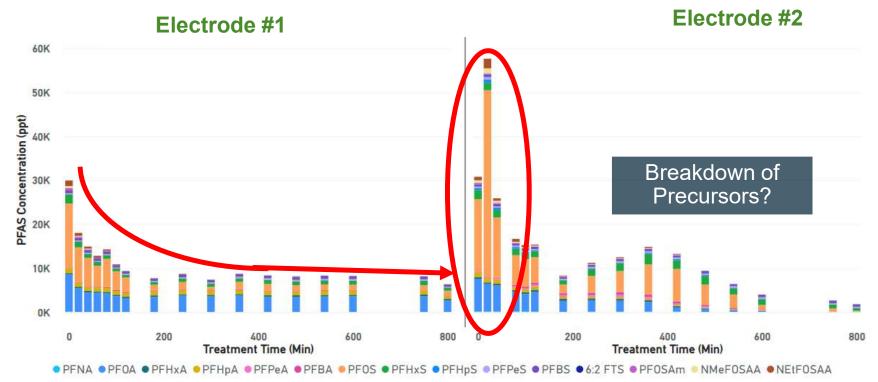
Method: 537 Modified (PACE ENV-SOP-MIN4-0179)


Concentration by Foam Fractionation (Air + Ozone)

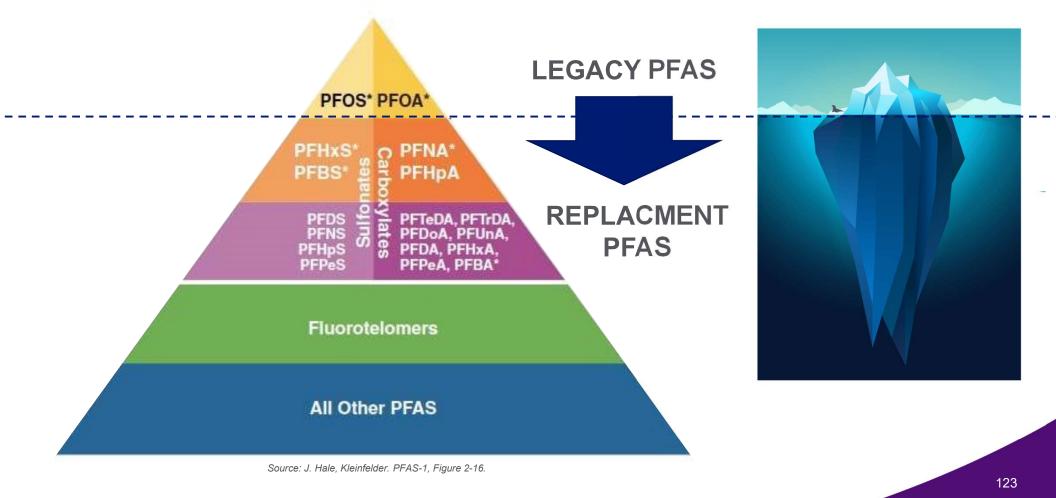
PFAS Compound	Units	<u>RO</u>	Super <u>Concentrate</u>
PFBA	ng/L	72	1 ,300
PFPeA	ng/L	26	<u>1,100</u>
PFBS	ng/L	160	450
PFHxA	ng/L	57	1,700
PFPeS	ng/L	-	87
PFHpA	ng/L	42	490
PFHxS	n <u>q</u> /L	<u> </u>	<u>1,70</u> 0
PFOA	ng/L	210	2,100
6:2 FTS	ng/L	16	8,200
PFHpS	ng/L	10	400
PFNA	ng/L	6	310
PFOSAm	ng/L	9	120
PFOS	ng/L	410	19,000
PFDA	ng/L	2	24
NMeFOSAA	ng/L	12	93
NEtFOSAA	ng/L	23	130



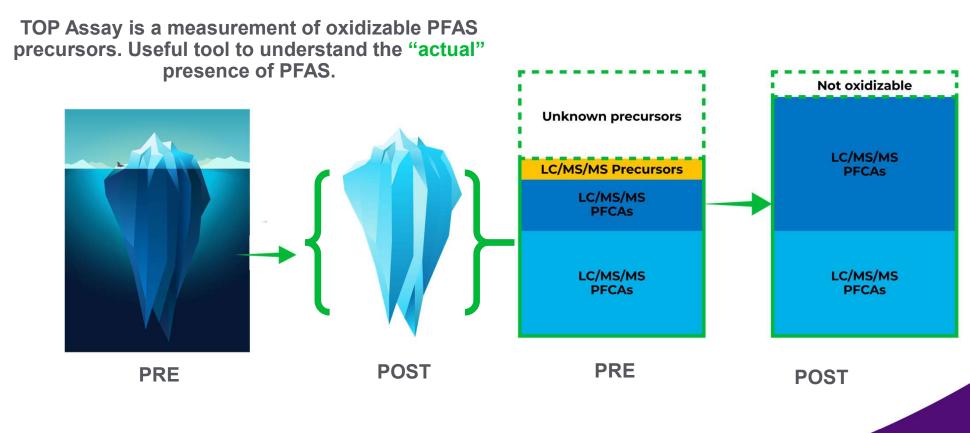
PFAS Removal by Foam Fractionation (Air + Ozone)


AVERAGE PFAS REMOVAL

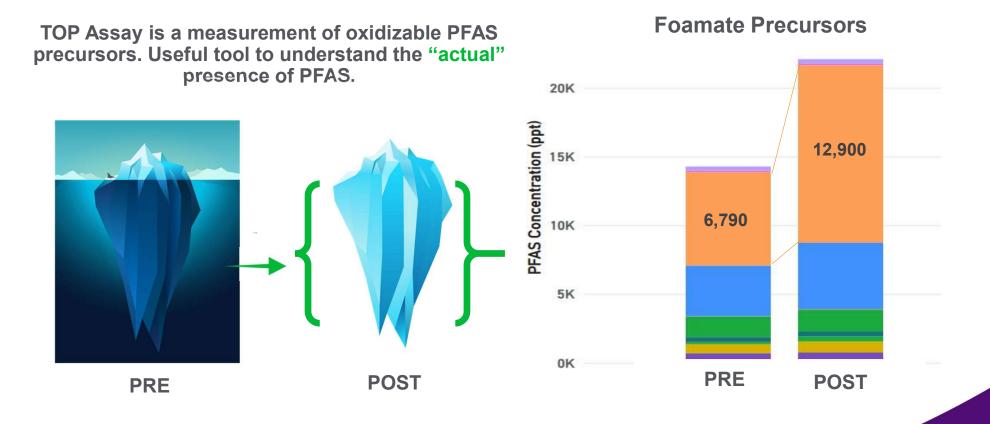
Foam Fractionation Treatment Train

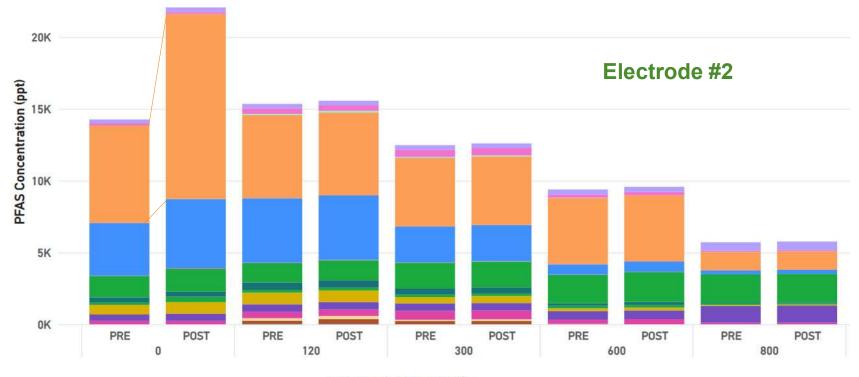


Foam Fractionation (Foamate) EO Destruction

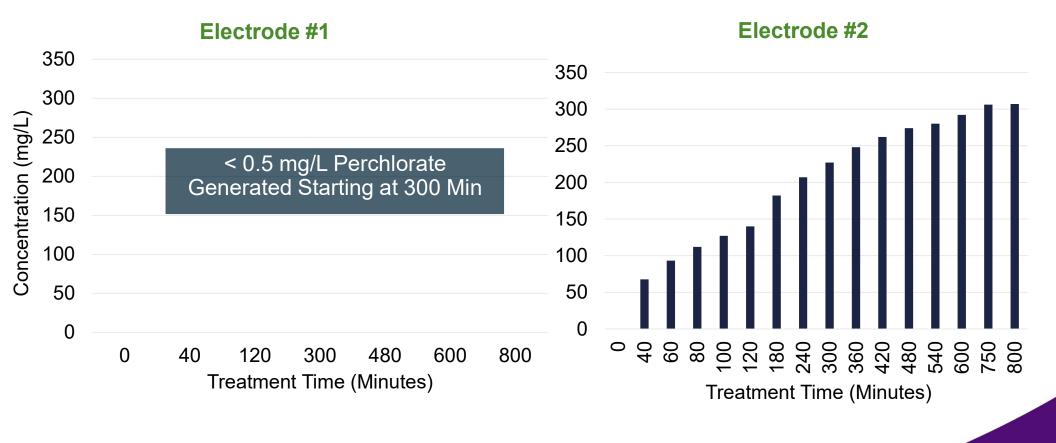


Method: 537 Modified (PACE ENV-SOP-MIN4-0179)

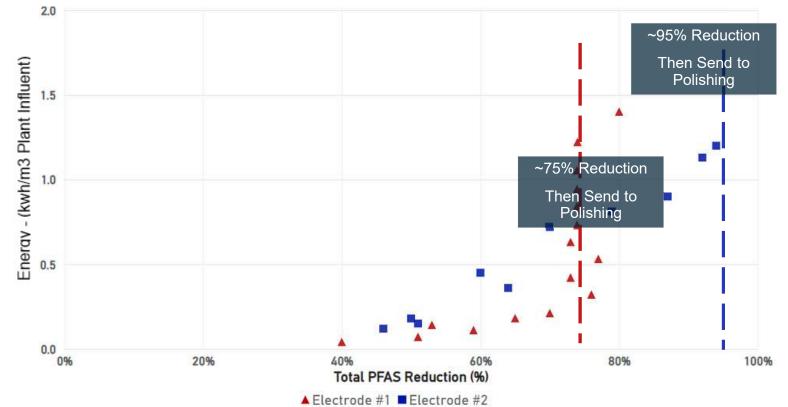

Precursor Compounds


Total Oxidizable Precursor Assay (TOP) Explained

Total Oxidizable Precursor Assay (TOP) Foamate



Total Oxidizable Precursor Assay (TOP) Foamate EO Destruction


Treatment Time (Min)

Foam Fractionation (Foamate) Perchlorate Generation

Method: EPA 314

Foam Fractionation (Foamate) Energy Evaluation

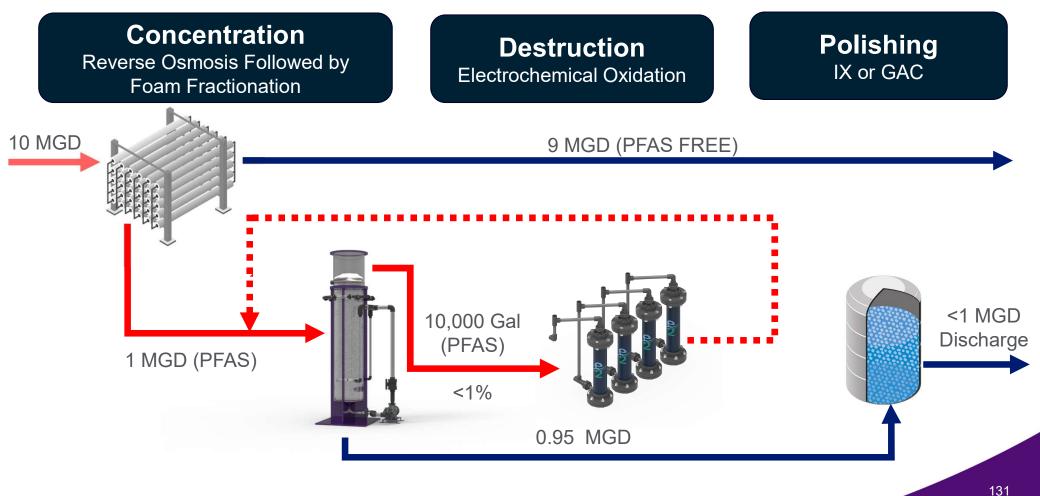
128

Foam Fractionation (Foamate) Energy Evaluation

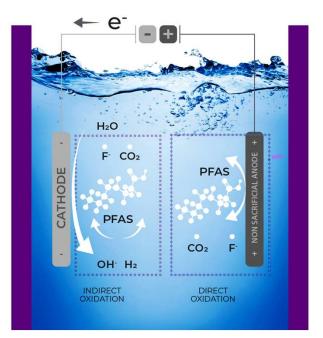
75% PFAS Reduction ~90% less energy to destroy the same 75% of PFAS RO Concentrate Foamate

129

Foam Fractionation (Foamate) Integrated Solution Summary


PFAS	Units	RO		Post	Post	
Compound	Units	Concentrate	Foamate	Destruction	Polish	
PFOS	ng/L	288	16,600	191	ND	
PFOA	ng/L	224	7,480	50.6	ND	
PFNA	ng/L	ND	106	ND	ND	
PFHxS	ng/L	50.1	2,110	635	ND	
PFBS	ng/L	55.1	500	565	ND	2
PFBA	ng/L	143	113	11.1	ND	
PFPeA	ng/L	48.9	56.2	5.97	ND	
PFBS	ng/L	55.1	500	565	ND	
PFHxA	ng/L	81.2	324	8.11	ND	
PFPeS	ng/L	9.6	301	265	ND	
PFHpA	ng/L	56.4	976	12.3	ND	
6:2 FTS	ng/L	ND	27.1	ND	ND	
PFHpS	ng/L	7.1	476	14.1	ND	
PFOSAm	ng/L	ND	352	1.36	ND	
PFDA	ng/L	ND	44.4	ND	ND	
NMeFOSAA	ng/L	13.7	554	ND	ND	
NEtFOSAA	ng/L	23.6	801	ND	ND]

Polishing Removed Perchlorate to ND


PFAS Concentration at The End of Each Treatment Process

Foam Fractionation Treatment Train (Recycle)

Destruction Takeaways

- Electrochemical Oxidation is designed for safe operation onsite by water treatment operators making it well positioned for municipal application in comparison to other energy intensive PFAS destruction technologies.
- When coupled with upstream concentration, destruction is more energy efficient and cost effective.
- A toolbox of solutions both with combining different upstream and downstream removal technologies is needed for large flows and dilute concentrations.
- A team of experts at Ovivo to customize the best approach to meet your treatment goals and objectives.

Overall Solution Takeaways

EVERY WATER IS DIFFERENT

• There will be no one-size fits all solutions for PFAS removal and destruction!

Piloting Testing is Required

• There are so many unknowns with each water type that we all learn a lot through testing

Things to Consider Beyond Removal Efficiencies and Capital Costs

- Safety and ease of operation
- Future availability (demand of media and disposal options)
- Complete lifecycle cost + operating costs
 - Byproduct treatment, disposal costs, transportation, chemicals, media replacement, power, end of life disposal, ect.

THANK YOU!

Zia Klocke - Product Manager (Adsorption) Zia.Klocke@ovivowater.com

Tom Whitton - Business Development Manager

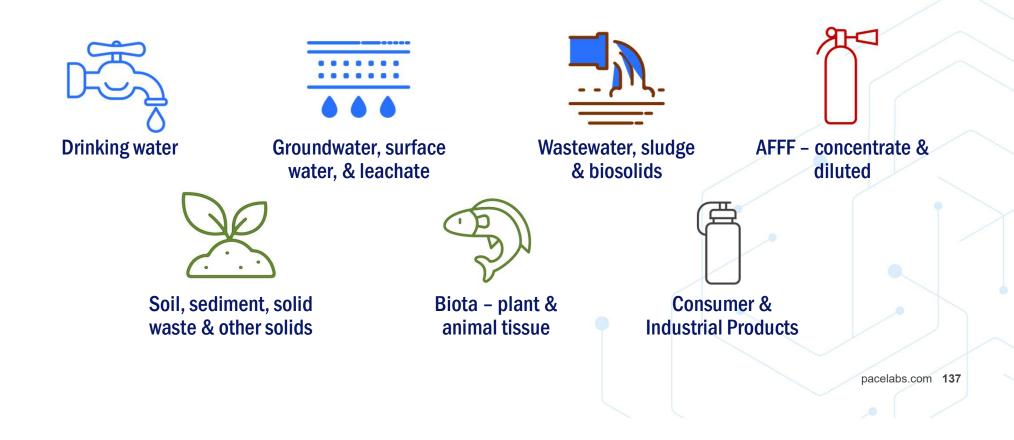
Tom.Whitton@ovivowater.com

PEOPLE ADVANCING SCIENCE

PFAS Panel – Analytical

Lindsay Boone, M.Sc. Technical Specialist, PFAS

ADEN

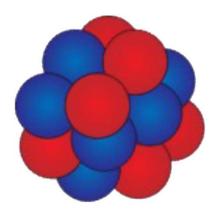

Alabama Department of Environmental Management

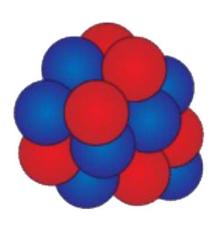
PFAS OVERVIEW

- Speciated PFAS Test Methods
- Organic Fluorine

MATRICES

CHOOSING THE RIGHT TEST METHODS



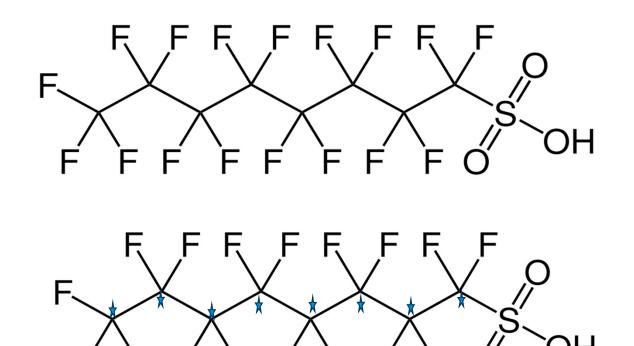

METHOD	EPA 537.1	EPA 533	
MATRIX	Drinking Water	Drinking Water	
COMPOUNDS	18	25	
HOLDING TIMES, DAYS	14/28	28/28	
EXTRACTION	Solid Phase (SPE)	Solid Phase (SPE)	
QUANTIFICATION	Internal Standard (IS)	Isotope Dilution (ID)	
NOTES		Developed for UCMR 5 and additional PFAS. Does not replace 537.1.	

pacelabs.com 138

Isotopes of Carbon

Carbon-12 98.9% 6 protons 6 neutrons

Atomic weight: 12 Da exactly Carbon-13 1.1% 6 protons 7 neutrons


Atomic weight: 13.00335483521(23) Da

UNSTABLE

Carbon-14 <0.1% 6 protons 8 neutrons

Atomic weight: 14.003241988(4) Da

The Difference is the molecular weight!

F

F

F

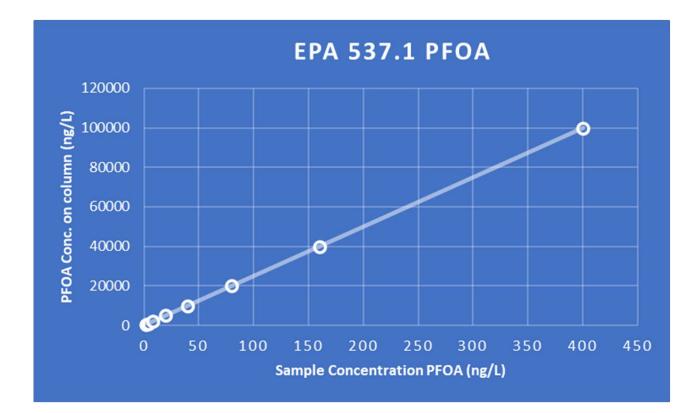
F

F

F

PFOS with ¹²C molecular weight 499.937 g/mol

PFOS with ¹³C molecular weight 508.205 g/mol


Isotopically labelled PFOS is spiked in your sample and the percentage of labelled analyte not recovered is mathematically accounted for when reporting your native (C12) PFOS

F

EPA Finalized National Primary Drinking Water Regulations for Six PFAS

Compound	Final MCLG	Final MCL (enforceable levels)
PFOA	Zero	4.0 parts per trillion (ppt) (also expressed as ng/L)
PFOS	Zero	4.0 ppt
PFHxS	10 ppt	10 ppt
PFNA	10 ppt	10 ppt
HFPO-DA (commonly known as GenX Chemicals)	10 ppt	10 ppt
	1 (unitless)	1 (unitless)
Mixtures containing two or more of PFHxS, PFNA, HFPO-DA, and PFBS	Hazard Index	Hazard Index

Calibration Curve of 4.0 ppt for PFOA EPA 537.1

- US EPA reports 25 compounds from EPA 533 and 4 that don't overlap from EPA 537.1
- Note: All 29 PFAS in EPA's UCMR 5 for its survey of the nation's public water systems are included in EPA Method 1633

	537.1	
PFEESA		•
HFPOA-DA/Gen X	•	•
NFDHA		•
PFOS	•	•
PFUdA	•	•
N-MeFOSAA	٠	
PFPeA		•
PFPeS		•
6:2 FTS		•
N-EtFOSAA	•	
PFHxA	•	•
PFDoA	•	•
PFOA	•	•
PFDA	•	•
PFHxS	•	•
PFBA		•
PFBS	•	•
PFHpA	•	•
PFHpS		•
PFNA	•	•
PFTeDA	•	
PFMOPrA		•
8:2 FTS		•
PFTrDA	٠	
9CL-PF3PONS	•	•
4:2 FTS		•
11Cl-PF3OUdS	•	•
PFMOBA		•
ADONA	•	•
		• pacelabs.com 143

UCMR 5 Update July 2024 for Regulated Contaminants

Regulated PFAS	MCL (ng/L) ¹	Total number of PWSs with location(s) with a full set of results	Number of PWSs with average(s) greater than MCL	% of PWSs with average(s) greater than MCL		
PFOS	4	3,459	316	9.1%		
PFOA	4	3,460	246	7.1%		
HFPO-DA (GenX chemicals)	10	3,462	1	0.0%		
PFHxS	10	3,460	29	0.8%		
PFNA	10	3,462	3	0.1%		
Hazard Index	1	3,455	33	1.0%		
(HFPO-DA, PFHxS, PFNA, PFBS)	(unitless)					
Total number of unique PWSs with one or more averages greater than MCL = 393 of 3,463 (11%)						

UCMR 5 Update July 2024 for Unregulated Contaminants

Contaminan t	UCMR MRL ² (i.tg/L)	% of total results ≥MRL	Total number of PWSs with results	Number of PWSs with results ≥MRL
lithium	9000	28.1%	6,520	2,248
PFBA	5	8.4%	6,401	1,101
PFHxA	3	9.5%	6,403	1,040
PFDA	3	0.1%	6,403	6
11Cl- PF3OUdS	5	0.0%	6,402	0
8:2 FTS	5	0.0%	6,402	5
4:2 FTS	3	0.0%	6,402	2
6:2 FTS	5	0.5%	6,402	111
ADONA	3	0.0%	6,402	2
9CI-PF3ONS	2	0.0%	6,402	1
NFDHA	20	0.0%	6,402	3
PFEESA	3	0.0%	6,403	0
PFMPA	4	0.0%	6,403	2
PFMBA	3	0.0%	6,403	1
PFDoA	3	0.0%	6,403	2
PFHpS	3	0.0%	6,403	2
PFHpA	3	2.4%	6,403	311
PFPeS	4	0.2%	6,403	34
PFPeA	3	10.7%	6,403	1,148
PFUnA	2	0.0%	6,403	2
NEtFOSAA	5	0.0%	6,490	1
NMeFOSAA	6	0.0%	6,490	0
PFTA	8	0.0%	6,490	0
PFTrDA	7	0.0%	6,490	0

NON-POTABLE WATER & LEACHATE

CWA Analytical Methods for Perand Polyfluorinated Alkyl Substances (PFAS)

The EPA developed two new analytical methods to test for PFAS compounds in wastewater, as well as other environmental media.

On this page:

- <u>Background</u>
- NEW Method 1633 for 40 PFAS Compounds
- NEW Method 1621 for Adsorbable Organic Fluorine
- NEW Documents
- <u>Related Information</u>

https://www.epa.gov/cwa-methods/cwa-analytical-methods-and-polyfluorinated-alkyl-substances-pfas

NON-POTABLE WATER & LEACHATE SOIL & OTHER SOLIDS

BIOTA - PLANT & ANIMAL TISSU

EPA 1633

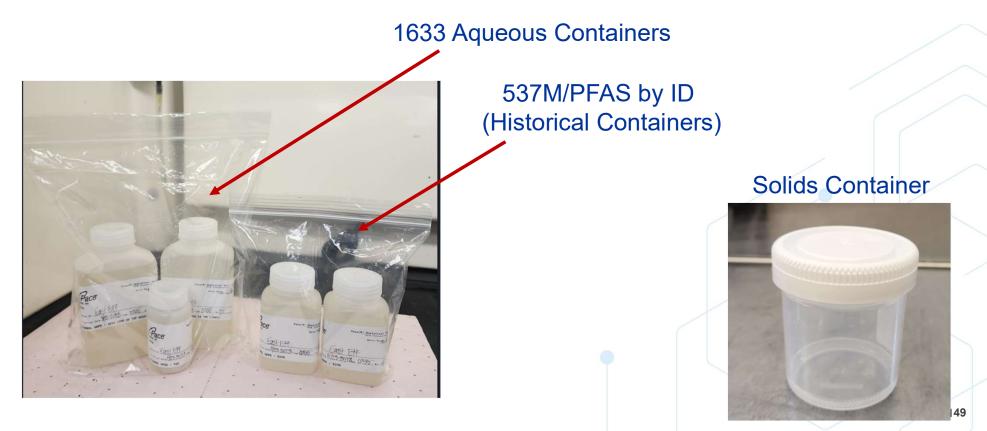
- Valid for 8 matrices wastewater, surface water, groundwater, soils, biosolids, landfill leachate, biota, and sediment
- Joint EPA/DOD development
- Method is now final
- This method will eventually eliminate the use of "modified" methods/lab-specific SOPs
- There are several important differences between the "modified" method and 1633

pacelabs.com 14

NON-POTABLE WATER & LEACHATE SOIL & OTHER SOLIDS BIOTA – PLANT & ANIMAL TISSUE

EPA 1633 - Features

- Sample Volume Needed varies by matrix
- TSS limitations on aqueous matrices
- Prep restrictions
- Method modifications needed to water samples >100mg/L TSS
- Centrifuge/sub sample/multiple cartridges
- Moisture Content on solids-dry weight reporting
- Biosolid/Sludge limitations



NON-POTABLE WATER & LEACHATE SOIL & OTHER SOLIDS

EPA 1633 - Containers

NON-POTABLE WATER & LEACHATE SOIL & OTHER SOLIDS BIOTA – PLANT & ANIMAL TISSUE

EPA 1633

pacelabs.com 150

NON-POTABLE WATER & LEACHATE SOIL & OTHER

BIOTA – PLANT & ANIMAL TISSUE

EPA 1633 - TSS Impacts – something to think about...

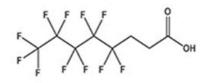
	Liquid	Solid	
Analyte	ng/L	ug/kg	
PFBA	53000	43	
PFPeA	86000	96	
PFHxA	130000	210	
PFHpA	15000	34	
PFOA	32000	79	
PFNA	1700	3.8	
PFDA	1300	3.1	
PFUnA	<500	0.32	
PFDoA	<500	0.53	
PFTrDA	<500	<0.17	
PFTeDA	<500	0.26	
PFBS	180000	430	
PFPeS	<500	1.3	
PFHxS	19000	49	
PFHpS	<500	0.47	
PFOS	5400	14	
PFNS	<500	<0.17	
PFDS	<500	<0.17	
PFDoS	<500	<0.17	
4:2FTS	<2000	<0.69	
6:2FTS	4800	7.8	
8:2FTS	<2000	2.6	
PFOSA	<500	<0.17	

	Liquid	Solid	
Analyte	ng/L	ug/kg	
NMeFOSA	<500	<0.17	
NEtFOSA	<500	<0.17	
N-MeFOSAA	5900	14	
N-EtFOSAA	3400	8	
NMeFOSE	<5000	4.2	
NEtFOSE	<5000	4.9	
HFPO-DA	<2000	<0.69	
ADONA	<2000	<0.69	
9CI-PF3ONS	<2000	<0.69	
11CI-PF3OUdS	<2000	<0.69	
3:3 FTCA	<5000	<1.7	
5:3 FTCA	220000	140	
7:3 FTCA	32000	28	
PFEESA	<1000	<0.35	
PFMPA	<1000	<0.35	
PFMBA	<1000	<0.35	
NFDHA	<1000	<0.35	

pacelabs.com 151

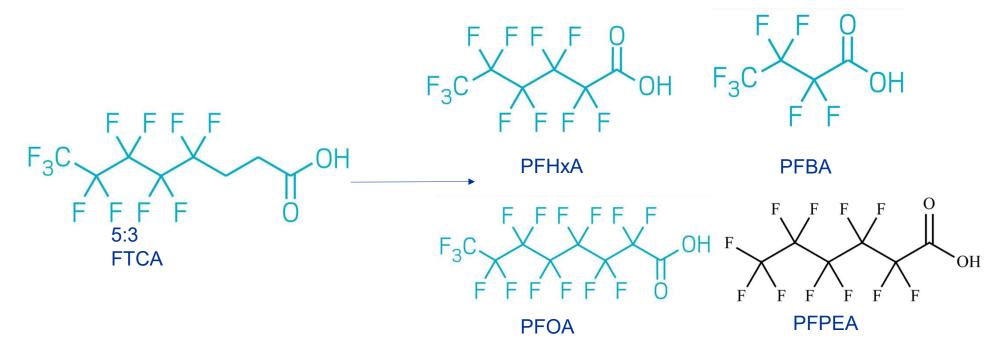
NON-POTABLE WATER & LEACHATE

SOIL & OTHER SOLIDS



BIOTA – PLANT & ANIMAL TISSUE

EPA 1633 – 40 PFAS Compounds


- Addition of Precursors will be insightful these can degrade to terminal PFAS like PFBA
- 5:3 fluorotelomer carboxylic acid (FTCA) is a common and often dominant constituent of PFAS found in landfills and is released from carpet in model anaerobic landfill reactors. This compound could prove to be an indicator of PFAS in the environment originating from landfills (Land et al. 2017, 2016).

Analyte	Analyte
PFBA	8:2 FTS
PFPeA	PFOSA
PFHxA	N-MeFOSAA
PFHpA	N-EtFOSAA
PFOA	HFPO-DA
PFNA	PFMOPrA
PFDA	ADONA
PFUnDA	9CI-PF3ONS
PFDoDA	11CI-PF3OUdS
PFTrDA	3:3 FTCA
PFTeDA	5:3 FTCA
PFBS	7:3 FTCA
PFPeS	N-EtFOSA
PFHxS	N-EtFOSE
PFHpS	NFDHA
PFOS	N-MeFOSA
PFNS	N-MeFOSE
PFDS	PFDoS
4:2 FTS	PFEESA
6:2 FTS	PFMOBA
	pacelabs.com 152

5:3 FTCA has several potential degradation pathways

pacelabs.com 153

NON-POTABLE WATER & LEACHATE SOIL & OTHER SOLIDS BIOTA – PLANT & ANIMAL TISSUE

EPA 1633 – Lower Detection Limits

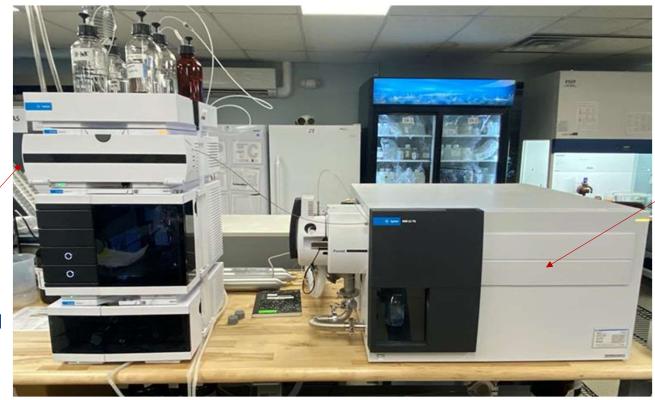
	Water, ng/L		Solids, µg/kg			Wa
Acronym	LOQ	DL	LOQ	DL	Acronym	LOQ
PFBA	4	0.55	0.8	0.14	NEtFOSA	1
PFPeA	2	0.29	0.4	0.06	NMeFOSA	1
PFHxA	1	0.12	0.2	0.08	NEtFOSE	10
PFHpA	1	0.16	0.2	0.03	NMeFOSE	10
PFOA	1	0.16	0.2	0.04	NEtFOSAA	1
PFNA	1	0.17	0.2	0.04	NMeFOSAA	1
PFDA	1	0.18	0.2	0.04	4:2 FTS	4
PFUnA	1	0.18	0.2	0.03	6:2 FTS	4
PFDoA	1	0.17	0.2	0.04	8:2 FTS	4
PFTrDA	1	0.20	0.2	0.03	PFMPA	2
PFTeDA	1	0.17	0.2	0.03	PFMBA	2
PFBS	1	0.10	0.2	0.03	HFPO-DA	4
PFPeS	1	0.12	0.2	0.03	NFDHA	2
PFHxS	1	0.17	0.2	0.03	ADONA	4
PFHpS	1	0.11	0.2	0.02	PFEESA	2
PFOS	1	0.26	0.2	0.05	9CI-PF3ONS	4
PFNS	1	0.22	0.2	0.04	11Cl-PF3OUdS	4
PFDS	1	0.15	0.2	0.03	3:3FTCA	5
PFDoS	1	0.34	0.2	0.03	5:3FTCA	25
PFOSA	1	0.15	0.2	0.05	7:3FTCA	25

	Wate	Water, ng/L		µg/kg	
Acronym	LOQ	DL	LOQ	DL	
NEtFOSA	1	0.14	0.2	0.06	
NMeFOSA	1	0.15	0.2	0.03	
NEtFOSE	10	2.36	2.0	0.44	
NMeFOSE	10	1.52	2.0	0.40	
NEtFOSAA	1	0.28	0.2	0.03	
NMeFOSAA	1	0.19	0.2	0.05	
4:2 FTS	4	0.63	0.8	0.15	
6:2 FTS	4	0.95	0.8	0.14	
8:2 FTS	4	0.54	0.8	0.13	
PFMPA	2	0.32	0.4	0.04	
PFMBA	2	0.30	0.4	0.04	
HFPO-DA	4	0.89	0.8	0.10	
NFDHA	2	0.49	0.4	0.06	
ADONA	4	0.57	0.8	0.10	
PFEESA	2	0.48	0.4	0.05	
9CI-PF3ONS	4	0.73	0.8	0.08	
11CI-PF3OUdS	4	0.94	0.8	0.11	
3:3FTCA	5	1.48	1.0	0.21	
5:3FTCA	25	1.88	5.0	1.11	
7:3FTCA	25	2.56	5.0	1.00	

Note: Detection limits for Leachate are 5× and Biosolids are 10×

pacelabs.com 154

P*FAST*® EPA 8327/ASTM D8421/D8535


- LOQ ~10 ppt
- Pricing is a plus
- Faster on average TAT
- All MCL PFAS included
- All 40 PFAS in EPA 1633
- 44 PFAS Useful for pilot studies, bench scale remediation technologies, destruction technologies
- SW-846 8327 and ASTM D8421 needs vary by regulatory agency

- Landfill Leachate
- Metal Finisher
- POTW Effluent 1
- Hospital
- POTW Influent
- Bus Washing Station
- Powerplant
- Pulp and Paper
- POTW Effluent 2
- Ground Water
- Surface Water

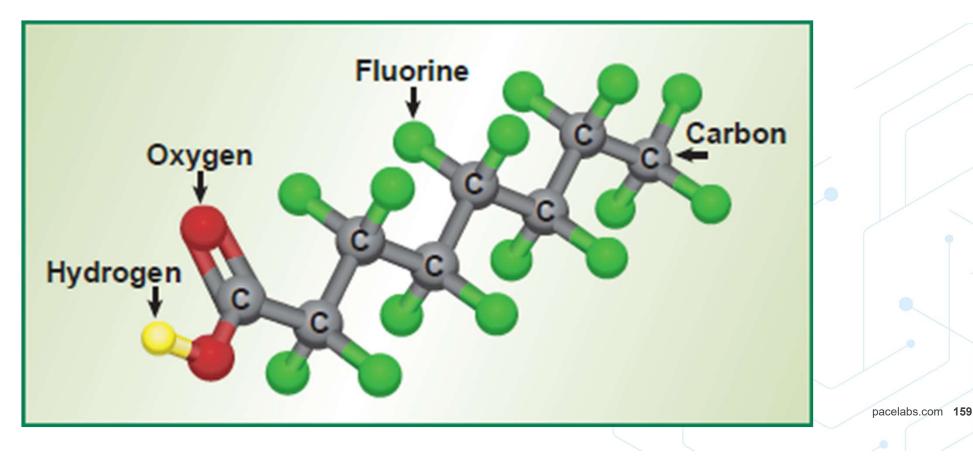
Nine sources supplied by OW/OST/EAD

LC-MS/MS Analysis Instrumentation for Speciated PFAS Liquid Chromatography Tandem Mass Spectrometry

MS/MS

Mass Spectrometry Detector (Quadrupole)

LC


Traditional Liquid Chromatography

PFAS OVERVIEW

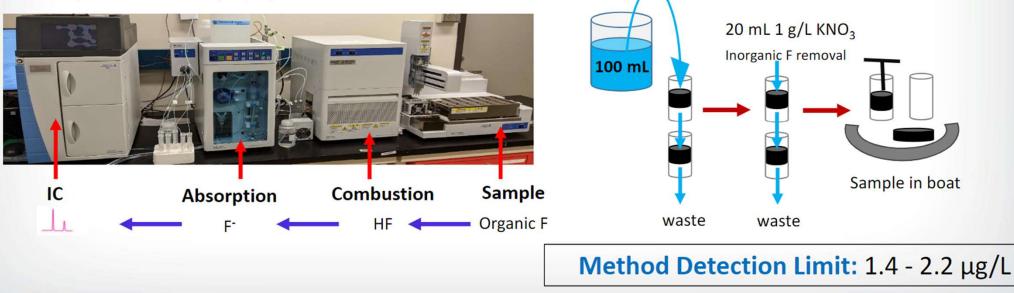
- Speciated PFAS Test Methods
- Organic Fluorine

What is Organic Fluorine?

WATER

Adsorbable Organic Fluorine (AOF) EPA 1621

- SCREENING METHOD
- Method 1621 Screening Method for the Determination of Adsorbable Organic Fluorine (AOF) in Aqueous Matrices by Combustion Ion Chromatography (CIC)
 - "Estimates the concentration of AOF"
 - "...numerical results generated not expected to be as accurate or precise as those from targeted methods for PFAS."
- Screening data can support an intermediate or preliminary decision but should eventually be supported by definitive data before a project is complete.
- **Definitive data** should be suitable for final decision-making (of the appropriate level of sensitivity, precision and accuracy, as well as legally defensible).


pacelabs.com 160

Approach – AOF/CIC

How:

- Screening method adsorbs contaminants onto granular activated carbon, removal of inorganic fluoride with nitrate solution, followed by combustion of the carbon
- Organofluorine compounds are converted to fluoride in the combustion process and measured by ion chromatography

PEOPLE ADVANCING SCIENCE

QUESTIONS?

THANK YOU

Additional resources:

- PFAS.com
- PACELABS.COM | Search: PFAS

Lindsay Boone, M.Sc. Technical Specialist, PFAS Lindsay.Boone@pacelabs.com 910-262-5098

