

WHO AM I?

Bart Kauffmann

Filter Media Cleaning

- What is a Chemical Cleaning?
- Qualification Process
- Why You Would or Wouldn't
- Results
- Examples
- Concerns
- Costs

Filters

Suitable Filters

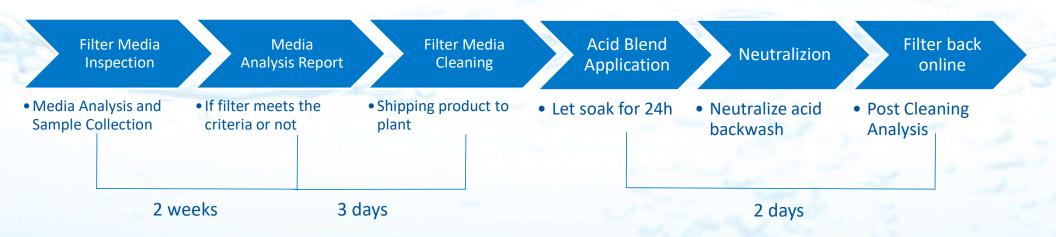
Unsuitable Filter

Filter Media

Media

- Anthracite
- Silica Sand
- Greensand
- **Support Gravel**
- GAC?

Fouling

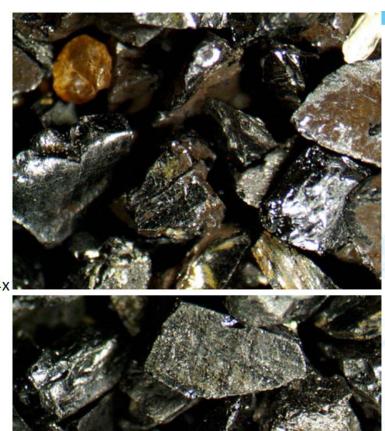


Iron

Process

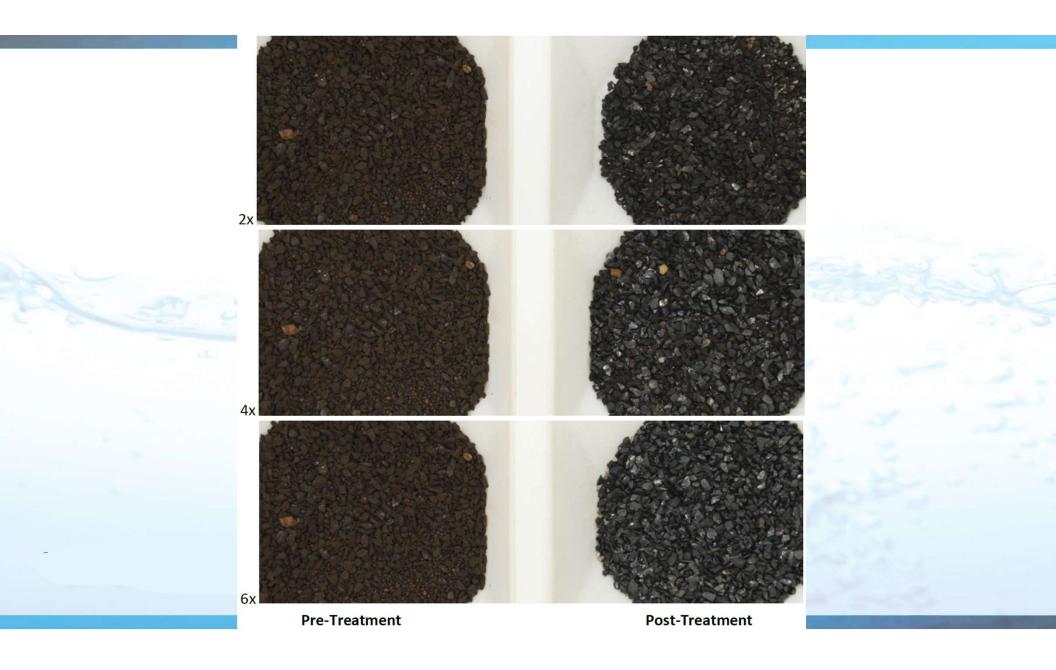
Is It Right For You?

- 1st step Filter Inspection
- What we look for
 - Mounding
 - Mudballs
 - Channeling
 - Cracking
 - Media Interface
 - Uneven Airscour
 - Grab Media Samples



Is It Right For You?

• 2nd Step – Filter Media Analysis



Pre-Treatment

Post-Treatment

Pre-Treatment

Post-Treatment

Sieve Analysis

Ciava dia (mana)	Anthracite %	Sand % Weight
Sieve dia. (mm)	Weight Passing	Passing
2.800	100.00	100.00
2.000	100.00	100.00
1.700	95.43	100.00
1.400	64.52	100.00
1.000	16.36	100.00
0.850	8.35	97.92
0.710	4.15	63.27
0.500	0.00	12.00
0.355	0.00	4.00
0.250	0.00	1.21
0.180	0.00	0.74
0.125	0.00	0.07
0.090	0.00	0.07

UC Anth 1.0-1.7 ES Anth 0.6-1.6

UC Sand < 1.7 ES Sand 0.35-0.65

_	Anthracite	Sand
Effective Size (mm):	0.88	0.46
60% passing (mm):	1.36	0.70
Uniformity		
Coefficient:	1.55	1.50

ICP

Analytical Method: EPA 6010 Preparation Method: EPA

6010 MET ICP 3010

Parameters	ICP Results	Units	Report Limit	Wt. %
Aluminum	102.6	mg/L	0.075	4.1%
Barium	0.3	mg/L	0.01	0.0%
Boron	ND	mg/L	0.1	
Cadmium	0.0	mg/L	0.005	0.0%
Calcium	170.2	mg/L	0.1	6.8%
Chromium	0.3	mg/L	0.005	0.0%
Copper	4.7	mg/L	0.01	0.2%
Iron	1789.3	mg/L	0.05	71.2%
Lead	0.3	mg/L	0.005	0.0%
Magnesium	59.0	mg/L	0.05	2.3%
Manganese	24.9	mg/L	0.005	1.0%
Nickel	53.6	mg/L	0.005	2.1%
Phosphorus	1.5	mg/L	0.1	0.1%
Potassium	6.1	mg/L	0.5	0.2%
Silicon	281.9	mg/L	0.5	11.2%
Sodium	1.5	mg/L	0.5	0.1%
Zinc	18.5	mg/L	0.05	0.7%
			Total:	100.0%

Table 4: Metals analysis of deposits removed from media.

Dosing and Neutralization

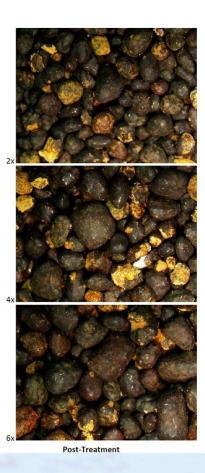
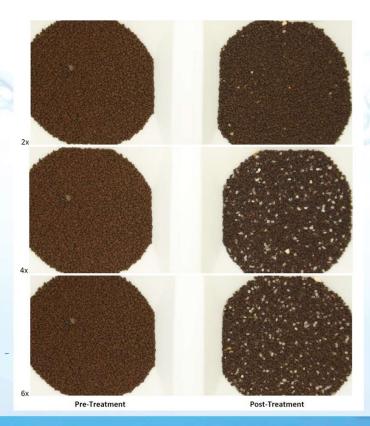

ilter ID: 1,2		Dosage		
osing	2x	4x	6х	
neXt (lbs)	2574	5148	7722	
Note: No Floran Catalyst is Required		>		
Deposits Removed (lbs)	1442	1885	2021	
Final Runoff pH	2.6	2.3	1.7	
Containers of neXt (50 lbs each)	51	103	154	
eutralization Options				
pHinish-S (lbs)	482	958	1903	
pHinish-L (gal)	182	362	718	
pHaze (lbs)	1206	2395	4756	
Iternative Treatment Chemistry (Equivalent Do	sage by Calcul	ation)		
Media Master RR (lbs)	2358	4716	7074	
Floran Catalyst (gal) for Media Master RR	60	120	180	
Media Master (lbs)	1800	3600	5400	
Floran Catalyst (gal) for Media Master	60	120	180	
CSR Plus (gallons)	494	989	1483	
Floran Catalyst (gal) for CSR Plus	60	120	180	
Filter Fit (gallons)	323	647	970	
Floran Catalyst (gal) for Filter Fit	60	120	180	

Table 6: Chemical dosing and neutralization requirements for each dosage tested.

It's Not Right For You

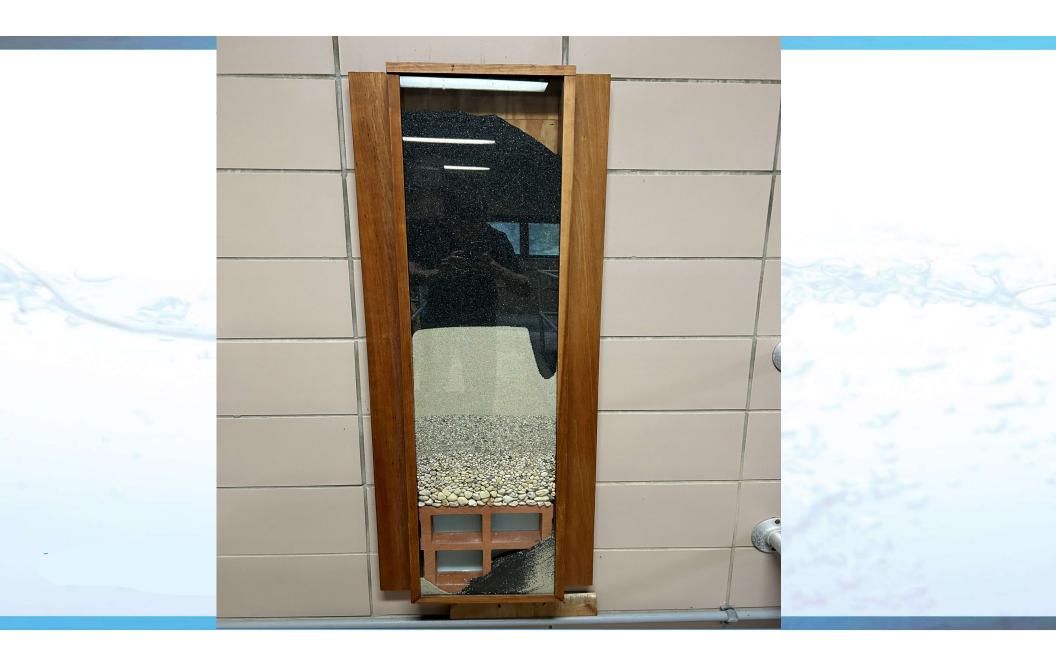
- Analysis Makes It Clear
 - Doesn't Clean up Well
 - Media Out of Spec
 - UC & ES



Pre-Treatment

Local Example

- Northeast AL Water
- Didn't Recommend Cleaning

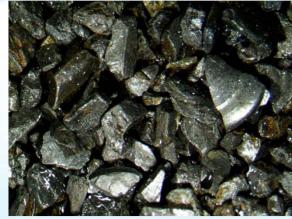


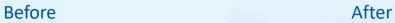
It's Not Right For You

- Inspection makes it clear due to
 - Depressions: Potential Underdrain Issues

How You Do It

Air Strippers


Air Strippers



Local Stories

- Alexander City, AL
- Cleaned all 7 dual bay filters

- What happens when media and underdrains are fouled
- Loss of Angularity Raisins vs Raisinets
- Turbidities

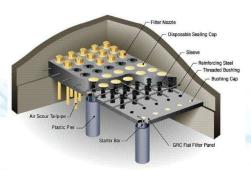
- Headloss
- Backwash frequency
- Runtimes

- Mudballs
- Channeling
- Mounding

Problems

- Filter Performance
- Headloss
- Turbidities
- Decrease run times
- High backwash frequency
- Mudballs, channeling, mounding
- Fouled underdrains
- Uneven airscour

But Wait! There's Another Reason!


• Preventative Maintenance?!?!?!?!

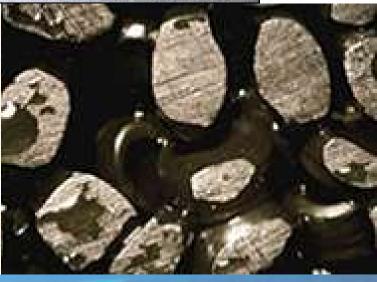
Underdrains

False Floor

Nozzle Bottom

Wheeler Bottom

Lateral Type



Stainless

Clay Tile

3.3 I.M.S® Media Retainer

1. Inspection

It is important that the I.M.S Media Retainer is inspected during regular media change out procedures. Inspection should include, but not be limited to; pore openings not clogged, screws secure and sealant intact. Should you require support from a qualified Xylem Service Representative for such inspections, please contact the Xylem Service Manager at 724-452-6300.

2. Cleaning--General

It may be necessary, after periods of unoptimized operation or process upsets, to clean the I.M.S Media Retainer of biological growth, scale or chemical fouling. Due to an unknown cause of the deposition, testing may need to be conducted to determine the best cleaning chemical.

a. In order to determine the chemical that most efficiently removes the deposition, testing must be performed on a sample of the material to be cleaned. Some chemicals that should be tested are hydrochloric, sulfuric, muriatic, acetic or citric acid, sodium hydroxide, sodium hexametaphospahte, salt, chlorine, and hydrogen peroxide. There are also a great many proprietary-cleaning

©2009 - 2012 Xylem Water Solutions Zelienople LLC. All rights reserved.

ENGINEERING GUIDELINES	FILTERS		
I.M.S® CAP AND I.M.S® 200	REV.	6	
MEDIA RETAINERS MONITORING.	August 15, 2012		
OPERATION, AND MAINTENANCE	5 of 8		

chemicals that could be tested if deemed necessary. Use the minimum percentage of cleaning chemical required to remove the deposits.

CAUTION: THERE ARE HAZARDS WITH USING MOST CHEMICALS AND APPROPRIATE PRECAUTIONS MUST BE FOLLOWED.

b. Blue Earth Labs is one company that has NSF certified chemicals that have shown success in cleaning both organic and inorganic materials.

Chemical Cleaning Results

- Restored Filter Conditions = Restored Filter Performance
 - Increase Run Times
 - Decrease Backwash Frequency
 - Reduced Headloss
 - Reduced Turbidities
 - Removed Mudballs, channeling, mounding
 - Even airscour

Concerns

- Will this damage my grout?
- Will this damage my filter?
- Over 1000 Chemical Cleanings
- Products Specifically designed for filters

Concerns

• Age? – Breaking Down & Rounding Vs. Encapsulating

Pre-Treatment Post-Treatment

Concerns

- Leaking effluent valves?
 - Main Risk
- What to do
 - Hand tighten effluent and influent valves
 - Leak test prior
 - Blind flange
 - Filter to waste
 - Neutralization ready

Cost

- 1/3rd the Cost of Media Replacement
- 1/10th the Cost of Filter Rehabilitation
- Money for Other Projects
- Timely Product in Stock and Ready to Ship

Questions?

- Thank You!
- Bart Kauffmann
 - 678-763-9227

