Table of Contents

List of Acronyms .. 3
1.0 Introduction .. 4
2.0 Alabama’s Water Quality Standards.. 4
3.0 Waterbody Categorization ... 6
4.0 The Water Quality Assessment Process .. 10
 4.1 Outstanding Alabama Waters (OAW) ... 13
 4.1.1 Minimum Data Requirement for OAW Waters .. 13
 4.1.2 Use Support Assessment for OAW Waters .. 17
 4.2 Public Water Supply (PWS) .. 20
 4.2.1 Minimum Data Requirement for PWS Waters ... 20
 4.2.2 Use Support Assessment for PWS Waters ... 24
 4.3 Swimming and Other Whole Body Water-Contact Sports (S) .. 27
 4.3.1 Minimum Data Requirement for S Waters ... 27
 4.3.2 Use Support Assessment for S Waters ... 31
 4.4 Shellfish Harvesting (SH) .. 33
 4.4.1 Minimum Data Requirement for SH Waters .. 33
 4.4.2 Use Support Assessment for SH Waters ... 34
 4.5 Fish and Wildlife (F&W) ... 37
 4.5.1 Minimum Data Requirement for F&W Waters .. 37
 4.5.2 Use Support Assessment for F&W Waters ... 41
 4.6 Limited Warmwater Fishery (LWF).. 44
 4.6.1 Minimum Data Requirement for LWF Waters ... 44
 4.6.2 Use Support Assessment for LWF Waters ... 47
 4.7 Agricultural and Industrial Water Supply (A&I) ... 50
 4.7.1 Minimum Data Requirement for A&I Waters .. 50
 4.7.2 Use Support Assessment for A&I Waters ... 52
 4.8 Other Data considerations and Requirements.. 55
 4.8.1 Use of the 10% Rule ... 55
 4.8.2 Use of Data Older than Six Years... 55
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.8.3 Use of Accurate Location Data</td>
<td>56</td>
</tr>
<tr>
<td>4.8.4 Use of Temporally Independent Samples and Data from Continuous Monitoring</td>
<td>56</td>
</tr>
<tr>
<td>4.8.5 Use of Fish / Shellfish Consumption Advisories and Shellfish Growing Area Classifications</td>
<td>57</td>
</tr>
<tr>
<td>4.8.6 Use of Biological Assessments</td>
<td>59</td>
</tr>
<tr>
<td>4.8.7 Use of Data Collected by Others</td>
<td>60</td>
</tr>
<tr>
<td>4.8.8 Use of Bacteria Data</td>
<td>61</td>
</tr>
<tr>
<td>4.8.9 Consideration of Stream Flow and Method Detection Limits</td>
<td>63</td>
</tr>
<tr>
<td>4.9 Quality Control / Quality Assurance Requirements</td>
<td>63</td>
</tr>
<tr>
<td>4.10 Minimum Sample Size and Allowable Number of Water Quality Criterion Exceedances</td>
<td>63</td>
</tr>
<tr>
<td>5.0 Removing a Waterbody from Category 5</td>
<td>65</td>
</tr>
<tr>
<td>6.0 Estimating the Size of the Assessed Waterbody</td>
<td>67</td>
</tr>
<tr>
<td>7.0 Ranking and Prioritizing Impaired Waters</td>
<td>67</td>
</tr>
<tr>
<td>8.0 Schedule for Assessing State Waters</td>
<td>70</td>
</tr>
<tr>
<td>9.0 Public Participation</td>
<td>70</td>
</tr>
<tr>
<td>10.0 References</td>
<td>72</td>
</tr>
</tbody>
</table>

Error! Bookmark not defined.
List of Acronyms

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A&I</td>
<td>Agriculture and Industry water supply use classification</td>
</tr>
<tr>
<td>ADB</td>
<td>Assessment Database</td>
</tr>
<tr>
<td>ADEM</td>
<td>Alabama Department of Environmental Management</td>
</tr>
<tr>
<td>ADPH</td>
<td>Alabama Department of Public Health</td>
</tr>
<tr>
<td>AEMC</td>
<td>Alabama Environmental Management Commission</td>
</tr>
<tr>
<td>AWIC</td>
<td>Alabama Water Improvement Commission</td>
</tr>
<tr>
<td>CaCO₃</td>
<td>Calcium Carbonate</td>
</tr>
<tr>
<td>CBOD₅</td>
<td>Five-Day Carbonaceous Biochemical Oxygen Demand</td>
</tr>
<tr>
<td>CI⁻¹</td>
<td>Chlorides</td>
</tr>
<tr>
<td>CWA</td>
<td>Clean Water Act</td>
</tr>
<tr>
<td>DO</td>
<td>Dissolved Oxygen</td>
</tr>
<tr>
<td>DRP</td>
<td>Dissolved Reactive Phosphorus</td>
</tr>
<tr>
<td>EPA</td>
<td>Environmental Protection Agency</td>
</tr>
<tr>
<td>EPT</td>
<td>Ephemeroptera/Plecoptera/Trichoptera</td>
</tr>
<tr>
<td>F&W</td>
<td>Fish and Wildlife</td>
</tr>
<tr>
<td>GIS</td>
<td>Geographical Information System</td>
</tr>
<tr>
<td>GPS</td>
<td>Global Positioning System</td>
</tr>
<tr>
<td>IBI</td>
<td>Index of Biotic Integrity</td>
</tr>
<tr>
<td>LWF</td>
<td>Limited Warmwater Fishery</td>
</tr>
<tr>
<td>MDL</td>
<td>Method Detection Limit</td>
</tr>
<tr>
<td>NH3-N</td>
<td>Ammonia Nitrogen</td>
</tr>
<tr>
<td>NHD</td>
<td>National Hydrography Dataset</td>
</tr>
<tr>
<td>NO₃⁺ NO₂⁻</td>
<td>Nitrate + Nitrite Nitrogen</td>
</tr>
<tr>
<td>NPDES</td>
<td>National Pollutant Discharge Elimination System</td>
</tr>
<tr>
<td>NTU</td>
<td>Nephelometric Turbidity Units</td>
</tr>
<tr>
<td>OAW</td>
<td>Outstanding Alabama Waters</td>
</tr>
<tr>
<td>ONRW</td>
<td>Outstanding National Resource Water</td>
</tr>
<tr>
<td>PWS</td>
<td>Public Water Supply</td>
</tr>
<tr>
<td>QAPP</td>
<td>Quality Assurance Project Plan</td>
</tr>
<tr>
<td>S</td>
<td>Swimming and Other Whole Body Water-Contact Sports</td>
</tr>
<tr>
<td>SH</td>
<td>Shellfish Harvesting</td>
</tr>
<tr>
<td>SOP/QCA</td>
<td>Standard Operating Procedures/Quality Control Assurance</td>
</tr>
<tr>
<td>SW</td>
<td>Surface Water</td>
</tr>
<tr>
<td>TDS</td>
<td>Total Dissolved Solids</td>
</tr>
<tr>
<td>TKN</td>
<td>Total Kjeldahl Nitrogen</td>
</tr>
<tr>
<td>TMDL</td>
<td>Total Maximum Daily Load</td>
</tr>
<tr>
<td>Total-P</td>
<td>Total Phosphorus</td>
</tr>
<tr>
<td>TSS</td>
<td>Total Suspended Solids</td>
</tr>
<tr>
<td>USEPA</td>
<td>United States Environmental Protection Agency</td>
</tr>
<tr>
<td>USGS</td>
<td>United States Geological Survey</td>
</tr>
<tr>
<td>WMB-EPT</td>
<td>Wadeable Multi-habitat Bioassessment - EPT Families</td>
</tr>
<tr>
<td>WMB-I</td>
<td>Intensive Wadeable Multi-habitat Bioassessment</td>
</tr>
</tbody>
</table>
1.0 Introduction

Alabama has long been recognized for its abundant water resources. With over 77,000 miles of perennial and intermittent streams and rivers, 481,757 acres of publicly-owned lakes and reservoirs, 610 square miles of estuaries, and 50 miles of coastal shoreline, the state is faced with a tremendous challenge to monitor and accurately report on the condition of its surface waters (ADEM, 2004).

Sections 305(b) and 303(d) of the federal Clean Water Act direct states to monitor and report the condition of their water resources. Recent guidance published by the Environmental Protection Agency (EPA) provides a basic framework that states may use to fulfill this reporting requirement. Guidance for 2006 Assessment, Listing and Reporting Requirements Pursuant to Sections 303(d), 305(b) and 314 of the Clean Water Act provides recommendations on the delineation of assessment units, reporting the status and progress towards comprehensive assessment of state waters, attainment of state water quality standards and the basis for making attainment decisions, schedules for additional monitoring, listing waters which do not fully support their designated uses (i.e. impaired waters), and schedules to address impaired waters (EPA, 2005).

Alabama’s assessment and listing methodology establishes a process, consistent with EPA’s guidance, to assess the status of surface waters in Alabama relative to the designated uses assigned to each waterbody. The methodology will also describe the procedure to assign the size or extent of assessed waterbodies. This methodology is not intended to limit the data or information that the State considers as it prepares an integrated water quality assessment report. Rather, it is intended to establish a rational and consistent process for reporting the status of Alabama’s surface waters relative to their designated uses.

2.0 Alabama’s Water Quality Standards

State water quality standards are the yardstick by which the condition of the nation’s waters is measured. They are intended to protect, restore and maintain the condition of the nation’s waters. In Alabama, water quality standards were first adopted in 1967 by the Alabama Water Improvement Commission (AWIC). In 1982 the Alabama Department of Environmental Management (ADEM) was formed by merging AWIC with elements of the Alabama Department of Public Health (ADPH). Since first being adopted in 1967, Alabama’s water quality standards have been amended on numerous occasions (ADEM, 2005).

The Alabama Environmental Management Commission (AEMC) has the authority to adopt revisions to the ADEM Administrative Code. The Designated Uses (Chapter 335-6-11 of the Administrative Code) and the Water Quality Criteria (Chapter 335-6-10 of the Administrative Code) are reviewed once every three years pursuant to EPA regulations at 40 CFR Part 131.20. This review process is known as the triennial review and affords the public the opportunity to make comments and suggestions regarding Alabama’s water quality standards. Any changes that ADEM may propose as a result of the review process are subject to further public comment before consideration by the AEMC.
Water quality standards consist of three components: designated uses, numeric and narrative criteria, and an antidegradation policy. These three components have been compared to the three legs of a stool which work together to provide water quality protection for the nation’s surface waters.

Designated uses describe the best uses reasonably expected of waters. These uses should include such activities as recreation in and on the water, public water supply, agricultural and industrial water supply, and habitat for fish and wildlife. While all waters may not support all of these uses, the goal of the Clean Water Act is to provide protection of water quality consistent with “fishable/swimable” uses, where attainable. In Alabama, waters can be assigned one or more of seven designated uses pursuant to ADEM Administrative Code 335-6-11. These uses include:

1. Outstanding Alabama Water (OAW)
2. Public Water Supply (PWS)
3. Shellfish Harvesting (SH)
4. Swimming and Other Whole Body Water-Contact Sports (S)
5. Fish and Wildlife (F&W)
6. Limited Warmwater Fishery (LWF)
7. Agricultural and Industrial Water Supply (A&I)

Designated uses 1 through 5 in the list above are considered by EPA to be consistent with the “fishable/swimable” goal and, therefore, provide for protection of aquatic life and human health.

The State also has one special designation – Outstanding National Resource Water (ONRW). These high quality waters are protected from new or expanded point sources of pollutants and may be assigned to any one of the first five designated uses in the list above.

Numeric and narrative criteria provide the means to measure the degree to which the quality of waters is consistent with their designated use or uses. The criteria are intended to provide protection of the water quality commensurate with the water’s use, to include protection of human health. Narrative criteria generally describe minimum conditions necessary for all uses and may include certain restrictions for specific uses. Numeric criteria include pollutant concentrations or physical characteristics necessary to protect a specific designated use. Alabama’s narrative and numeric criteria are defined in ADEM Administrative Code 335-6-10.

The state’s antidegradation policy provides for protection of high quality waters that constitute an outstanding national resource (Tier 3), waters whose quality exceeds the levels necessary to support propagation of fish, shellfish, and wildlife and recreation in and on the water (Tier 2), and existing instream water uses and the level of water quality necessary to protect the existing uses (Tier 1). In Tier 3 waters, ADEM Administrative Code 335-6-10-.10 prohibits new or expanded point source discharges. In Tier 2 waters, ADEM Administrative Code 335-6-10-.04 provides for new or expanded discharge of pollutants only after intergovernmental coordination, public participation, and a demonstration that the new or expanded discharge is necessary for important economic or social development. Alabama’s water quality standards regulations (ADEM Administrative Code 335-6-10 and 335-6-11) may be found at the Departments web page at: http://www.adem.state.al.us/alEnviroRegLaws/files/Division6Vol1.pdf
3.0 Waterbody Categorization

The water quality assessment process begins with the collection, compilation, and evaluation of water quality data and information for the purpose of determining if a waterbody is supporting all of its designated uses. It is imperative that the data and information used in the process be of adequate quality and provides an accurate indication of the water quality conditions in the waterbody since decisions arising from the assessment process may have long-term consequences. Issues of data sufficiency and data quality must be addressed to ensure that use support decisions are based on accurate data and information. However, the minimum data requirements discussed in this methodology are not intended to exclude data and information from the assessment process but are a guide for use in designing monitoring activities to assess the State’s surface waters and to ensure that decisions are made using the best available data. The goal is to accurately describe the status of surface waters where possible and to identify waters where more information is needed to make use support decisions.

The use support assessment process considers all existing and readily available data and information with a goal of placing waterbodies in one of five separate categories. This process is specific to the highest designated use assigned to the waterbody and is described by the flow chart depicted in Figure 1.
Figure 1
Alabama’s Waterbody Assessment Process
Waterbody data and information are evaluated using the use support assessment methodology and the waterbody is assigned to one of the following categories.

Category 1
Waters that are attaining all applicable water quality standards.

Category 2
Waters for which existing and readily available data, which meets the State’s requirements as described in Section 4.9, supports a determination that some water quality standards are met and there is insufficient data to determine if remaining water quality standards are met. Attainment status of the remaining standards is unknown because data is insufficient. Waters for which the minimum data requirements (as described later) have not been met will be placed in Category 2.

1. **Category 2A**
 For these waters available data does not satisfy minimum data requirements but there is a high potential for use impairment based on the limited data. These waters will be given a higher priority for additional data collection.

2. **Category 2B**
 For these waters available data does not satisfy minimum data requirements but there is a low potential for use impairment based on the limited data. These waters will be included in future basin monitoring rotations as resources allow.

Category 3
Waters for which there is no data or information to determine if any applicable water quality standard is attained or impaired. These waters will be considered unassessed.

Category 4
Waters in which one or more applicable water quality standards are not met but establishment of a TMDL is not required.

1. **Category 4A**
 Waters for which all TMDLs needed to result in attainment of all applicable WQSs have been approved or established by EPA.

2. **Category 4B**
 Waters for which other required control measures are expected to attain applicable water quality standards in a reasonable period of time. Adequate documentation is required to indicate that the proposed control mechanisms will address all major pollutant sources and should result in the issuance of more stringent effluent limitations required by either Federal, State, or local authority or the implementation of “other pollution control requirements (e.g., best management practices) required by local, state, or federal authority” that are stringent enough to implement applicable water quality standards. Waters will be evaluated on a case by case basis to determine if the proposed control measures or activities
under another program can be expected to address the cause of use impairment within a reasonable time period. A reasonable time period may vary depending on the degree of technical difficulty or extent of the modifications to existing measures needed to achieve water quality standards. EPA’s 2006 assessment and listing guidance offers additional clarification of what might be expected of waters placed in Category 4b.

3. \textit{Category 4C}

Waters in which the impairment is not caused by a pollutant. This would include waters which are impaired due to natural causes or pollution. A pollutant is defined in Section 502(6) of the Clean Water Act (CWA) as “spoil, solid waste, incinerator residue, sewerage, garbage, sewage sludge, munitions, chemical wastes, biological materials, radioactive materials, heat, wrecked or discarded equipment, rock, sand, cellar dirt, and industrial, municipal, and agricultural waste discharged into water.” Pollution is defined as “the man-made or man-induced alteration of the chemical, physical, or radiological integrity of a waterbody.” Invasive plants and animal species are considered pollution.

\textit{Category 5}

Waters in which a pollutant has caused or is suspected of causing impairment. If the impairment is caused by an identified pollutant the water should be placed in Category 5. All “existing and readily available data and information” will be used to determine when a water should be placed in Category 5. Waters in this category comprise the State’s list of impaired waters or §303(d) list.

When the information used to assess the waterbody consist primarily of observed conditions, (limited water quality data, water quality data older than six years, or estimated impacts from observed or suspected activities), the assessment is generally referred to as an evaluated assessment (Category 2). Evaluated assessments usually require the use of some degree of professional judgment by the person making the assessment and these assessments are not considered sufficient to place waters in or to remove waters from the impaired category (Category 5) or the fully supporting category (Category 1).

Monitored assessments (Categories 1 and 5) are based on existing and readily available chemical, physical, and/or biological data collected during the previous six years, using commonly accepted and well-documented methods. Existing and readily available data are data that have been collected or assembled by the Department or other groups or agencies and are available to the public. Data older than six years old may be used on a case-by-case basis when assessing waters that are not currently included in Category 1 or Category 5. (For example, older data could be used if conditions, such as land use, have not changed.) Much of the remainder of this document will pertain to the use of monitoring data to make use support determinations.
4.0 The Water Quality Assessment Process

The water quality assessment process is different for each of Alabama’s seven designated uses because each use is protected by specific numeric and narrative water quality criteria. As such, the methodology for assigning a given waterbody to one of the five categories may have different data requirements and thresholds for determining the waterbody’s use support status. In addition, interpretation of narrative criteria may differ by classified use and waterbody type. Data and information that may be considered when assessing state waters could include water chemistry data such as chemical specific concentration data, land use or land cover data, physical data such as water temperature and conductivity, habitat evaluations, biological data such as macroinvertebrate and fish community assessments, and bacteriological data such as fecal coliform or enterococci counts. Waters classified as “Fish and Wildlife” or higher must provide protection of the aquatic life use. All classifications must provide protection of the human health use.

Alabama’s designated uses embody a tiered approach to aquatic life protection. The assessment process recognizes this by allowing for different minimum data requirements and varying criteria exceedance thresholds. For example, in waters classified as OAW, Alabama’s highest designated use, the assessment methodology requires less data and allows for fewer exceedances of a toxic criterion to be considered for inclusion in Category 5. The assessment process for waters classified as A&I, Alabama’s lowest designated use, requires more data and allows for slightly more exceedances of toxic criteria. This sliding scale assessment approach provides for existing differences in the aquatic communities and habitat conditions represented by streams with Alabama’s various designated uses.

In order to ensure consistent and accurate assessment of a waterbody’s support status and proper categorization of the waterbody, minimum data requirements must be defined that address data quality and data quantity. Data requirements will not only be dictated by the classified use of the waterbody but also by the waterbody type to account for the different monitoring strategies that may be used for different waterbody types. The minimum data requirements are expected to guide future water quality monitoring activities and provide the basis for making use support decisions. However, in those cases where a data set may not include all of the elements specified by the minimum data requirements, a decision to include the water in Category 5 can still be made provided the available data indicates a clear impairment and the cause of the impairment is evident. These decisions will be made on a case by case basis and the decision will be documented in the ADB.

In the assessment methodology, the terms “Level IV WMB-I”, “Level III WMB-EPT”, “Fish IBI”, “habitat assessment”, “conventional parameter samples”, “pesticide/herbicide samples”, “inorganic samples”, “chlorophyll a samples”, and “fish tissue analysis” are used. For the purposes of this assessment methodology, these terms will have the following meanings.

Level IV WMB-I:
- An intensive multihabitat assessment of the macroinvertebrate community in a wadeable stream involving the collection of macroinvertebrates for identification and enumeration in a laboratory
Level III WMB-EPT:
- A screening-level multihabitat assessment of the macroinvertebrate community in a stream focusing on the collection, field processing and enumeration of the pollution-sensitive Ephemeroptera, Plecoptera, and Trichoptera taxa

Fish IBI:
- A multihabitat fish community assessment method developed by the Geological Survey of Alabama (O’Neil and Shepard, 1998) for streams in the Black Warrior and Cahaba River basins

Habitat assessment:
- An assessment of available aquatic habitat in a stream which considers habitat characteristics important to supporting a diverse and health aquatic community

Conventional parameter samples will include analyses for the following constituents:
- Collector Name
- Date (Month, Day, Year)
- Time (24 hr)
- Air Temperature, °C
- Water Temperature, °C
- Total Stream Depth at Sampling Point, feet
- Sample Collection Depth, feet
- Dissolved Oxygen (DO), mg/l
- Conductivity, µmhos/cm @ 25°C
- Salinity, ppt (coastal waters only)
- pH, s.u.
- Turbidity, NTU (with Nephelometer, not multiprobe)
- Weather Conditions
- Stream Flow (where appropriate)
- Five-day Carbonaceous Biochemical Oxygen Demand (CBOD5), mg/l
- Alkalinity, mg/l
- Total Suspended Solids (TSS), mg/l
- Total Dissolved Solids (TDS), mg/l
- Dissolved Reactive Phosphorus (DRP), mg/l (field filtered, separate bottle)
- Ammonia Nitrogen (NH3-N), mg/l
- Nitrate + Nitrite Nitrogen (NO3+ NO2-N), mg/l
- Total Kjeldahl Nitrogen (TKN), mg/l
- Total Phosphorus (Total-P), mg/l
- Hardness, mg/l as CaCO₃ (measured when metals samples are collected)

Pesticide/Herbicide samples will include analyses for the following constituents:
- Organochlorine Pesticides by method SW8081A
- Organophosphorus Pesticides by method SW8141
- Chlorinated Herbicides by method SW8151
• Atrazine by Immunoassay

Inorganic (metals) samples will include analyses for the following constituents:

- "Dissolved" Antimony (Sb), ug/l
- "Dissolved" Arsenic$^{+3}$ (As$^{+3}$), ug/l
- "Dissolved" Cadmium (Cd), ug/l
- "Dissolved" Chromium$^{+3}$ (Cr$^{+3}$), ug/l
- "Dissolved" Copper (Cu), ug/l
- "Dissolved" Lead (Pb), ug/l
- "Dissolved" Nickel (Ni), ug/l
- "Dissolved" Silver (Ag), ug/l
- "Dissolved" Thallium (Tl), ug/l
- "Dissolved" Zinc (Zn), ug/l
- "Total" Mercury (Hg), ug/l
- "Total" Selenium (Se), ug/l
- "Dissolved" Selenium (Se), ug/l

Bacteriological Samples

- Fecal coliform, colonies/100 ml in non-coastal waters and Shellfish Harvesting waters
- Enterococci, colonies/100 ml in coastal waters

Chlorophyll a samples will include the collection of photic zone composite water samples to be processed in accordance with ADEM SOP # 2063 Chlorophyll a Collection and Processing.

Fish tissue analysis will include collection and analyses of fish for the following constituents:

- Arsenic
- Cadmium
- Mercury
- Selenium
- Lead
- Chlordane
- 4,4-DDD
- 4,4-DDE
- 4,4-DDT
- 2,4-DDD
- 2,4-DDE
- 2,4-DDT
- Chlorpyrifos
- Dieldrin
- Endosulfan I
- Endosulfan II
- Endrin
- Lindane
- Heptachlor
- Heptachlor Epoxide
- Hexachlorobenzene
- Mirex
- Toxaphene
- PCBs
- Dioxin
- Percent lipids
Fish sampling and tissue preparation procedures are described in the ADEM *Standard Operating Procedures And Quality Control Assurance Manual Volume III – Fish Sampling And Tissue Preparation For Bioaccumulative Contaminants* (SOP).

Chronic aquatic life criteria will be used to assess a waterbody’s use support where the designated use specifies such criteria. In those cases where both human health criteria and chronic aquatic life criteria are included, the more stringent of the criteria will determine the waterbody’s use support status. The assessment process, including minimum data requirements and the number of chronic criteria exceedances, is described for each designated use in the remainder of the document.

4.1 Outstanding Alabama Waters (OAW)

The best usage of waters assigned this classification are those activities consistent with the natural characteristics of the waters. Waterbodies assigned the OAW use are high quality waters that constitute an outstanding Alabama resource, such as waters of state parks and wildlife refuges and waters of exceptional recreational or ecological significance. Beneficial uses encompassed within this classification include: aquatic life support and wildlife propagation, fish and shellfish harvesting and consumption, water contact recreation, agricultural irrigation, livestock watering and industrial cooling and process water supply.

4.1.1 Minimum Data Requirement for OAW Waters

For waters with the OAW classification the available data must have been collected consistent with the following standard operating procedures (SOP) manuals:

<table>
<thead>
<tr>
<th>SOP#</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>2040</td>
<td>Stream Flow Abbreviated Measurement Method</td>
</tr>
<tr>
<td>2041</td>
<td>SW Temperature Field Measurements</td>
</tr>
<tr>
<td>2042</td>
<td>SW pH Field Measurements</td>
</tr>
<tr>
<td>2043</td>
<td>SW Specific Conductivity Field Measurements</td>
</tr>
<tr>
<td>2044</td>
<td>SW Turbidity Field Measurements</td>
</tr>
<tr>
<td>2045</td>
<td>SW Dissolved Oxygen Field Measurements</td>
</tr>
<tr>
<td>2046</td>
<td>Photic Zone Measurements and Visibility Determinations</td>
</tr>
<tr>
<td>2048</td>
<td>Continuous SW Quality Monitoring Using Datasondes</td>
</tr>
<tr>
<td>2061</td>
<td>General SW Quality Sample Collection</td>
</tr>
<tr>
<td>2062</td>
<td>Dissolved Reactive Phosphorus (DRP) Collection & Field Processing</td>
</tr>
<tr>
<td>2063</td>
<td>Chlorophyll (a) Collection & Field Processing</td>
</tr>
<tr>
<td>2064</td>
<td>Fecal Coliform Sample Collection</td>
</tr>
<tr>
<td>2065</td>
<td>Sediment Sampling</td>
</tr>
<tr>
<td>9021</td>
<td>Quality Control Samples and Field Measurements</td>
</tr>
<tr>
<td>9025</td>
<td>Field Equipment Cleaning Procedures</td>
</tr>
<tr>
<td>9040</td>
<td>Station, Sample ID & Chain of Custody Procedures</td>
</tr>
<tr>
<td>6300</td>
<td>Physical Characterization</td>
</tr>
<tr>
<td>6301</td>
<td>Habitat Assessment</td>
</tr>
</tbody>
</table>
In addition, the data must have been collected within the last six years. The six year timeframe would capture all data collected by ADEM during one complete rotation of the five year monitoring schedule currently used by the Department. Failure to satisfy both of these conditions places the waterbody in Category 2. If these two conditions are met, the determination of the minimum data requirement is dependent upon the waterbody type. Waterbody types include wadeable rivers and streams, non-wadeable rivers and streams, reservoirs and reservoir embayments, and estuary and coastal waters. In addition, the minimum data requirement may change if pollutant sources upstream of the monitoring location are likely. Failure to meet the minimum data requirement for any waterbody type will place the waterbody in Category 2. The following list and Figure 2 describe the minimum data requirements for assessing waters classified as OAW.

- **Wadeable River or Stream**
 - 1 Level IV Intensive Wadeable Multi-habitat Bioassessment (WMB-I) or 1 Level III Wadeable Multi-habitat Bioassessments – EPT Families (WMB-EPT) or 1 Level III WMB-EPT plus 1 fish community assessment (IBI). In addition, a habitat assessment must be completed with each biological assessment. Currently, metrics for the fish IBI have been calibrated only in the Black Warrior and Cahaba River basins.
 - 3 conventional parameter samples (including samples for nutrient analysis)
 - 3 bacteriological samples
 - 3 pesticide / herbicide samples
 - 3 inorganic samples

- **Non-wadeable River or Stream**
 - 8 conventional parameter samples (including samples for nutrient analysis)
 - 5 bacteriological samples (1 geometric mean)
 - 3 pesticide / herbicide samples
 - 3 inorganic samples

- **Reservoirs and Embayments**
 - 8 conventional parameter samples (including samples for nutrient analysis)
 - 3 bacteriological samples
 - 1 fish tissue analysis from the reservoir mainstem
7 chlorophyll a samples collected between April and October (For the Tennessee River Basin: 6 chlorophyll a samples collected between April and September). Results from critical period sampling (i.e., August sample only) will be used with other critical period data to evaluate chlorophyll a trends at a given sampling location.

- Estuary or Coastal Waters
 - 8 conventional parameter samples (including samples for nutrient analysis)
 - 10 bacteriological samples (2 geometric means)
 - 1 fish tissue analysis
Biological community assessment means:
1 Level IV Intensive Wadeable Multi-habitat Bioassessment (WMB-I) or
1 Level III Wadeable Multi-habitat Bioassessment – EPT Families (WMB-EPT) or
Level III WMB-EPT plus 1 fish community assessment (IBI)

Figure 2
Minimum Data Requirements for the OAW Designated Use
4.1.2 Use Support Assessment for OAW Waters

Once the minimum data requirements have been met, an assessment of the data can be completed resulting in the categorization of the waterbody as either fully supporting the OAW use (Category 1) or not fully supporting the OAW use (Category 5). The assessment process considers the available data and may include any fish consumption advisories, shellfish harvesting closure notices, chemical specific data, bacteriological data, biological community assessments, habitat assessments, periphyton assessments, and toxicity evaluations.

The OAW-classified waterbody is placed in Category 1 if all of the following are true:

- There is no fish/shellfish consumption advisory issued by the Alabama Department of Public Health (ADPH) for the waterbody.
- The Level IV WMB-I assessment result is “good” or “excellent”, or the Level III WMB-EPT assessment is “good” or “excellent” or the Level III WMB-EPT assessment is “good” or “excellent” and the fish community IBI is “fair”, “good”, or “excellent” (Wadeable streams only).
- The growing season mean chlorophyll a criterion has not been exceeded where such a criterion has been established. In making this determination, chlorophyll a values in excess of the criterion which are due to extreme hydrologic events (i.e., droughts and floods) will not be considered as an exceedance of the criterion.
- There is not an exceedance of any toxic pollutant criterion during the previous six years.
- There are no exceedances of conventional parameters, except due to natural conditions.
- Bacteriological sample results from a single sample in excess of 200 colonies fecal coliform per 100 ml will require a follow-up collection of 5 samples collected during a 30 day period to calculate the geometric mean fecal coliform density in reservoirs and wadeable streams. If the geometric mean fecal coliform density is less than or equal to 200 colonies/100 ml the waterbody will be considered fully meeting the bacteria criteria for this designated use. In coastal waters designated as OAW the geometric mean of enterococci sample must be less than 35 colonies/100 ml and not more than 10% of the individual samples (as determined by the binomial distribution function and Table 2) can exceed 104 colonies/100 ml.

The OAW-classified waterbody is placed in Category 5 if any of the following are true:

- There is a fish consumption advisory issued by the ADPH.
- The Level IV WMB-I assessment result is less than “good”, or the Level III WMB-EPT assessment is less than “good” or the Level III WMB-EPT assessment is less than “good” or the fish community IBI is less than “fair”. In addition, a potential anthropogenic cause for the degraded condition must be identified (Wadeable streams only).
• There is an exceedance of a conventional parameter for other than natural causes.
• There is an exceedance of any toxic pollutant criterion during the previous six years.
• The geometric mean fecal coliform density exceeds 200 colonies/100 ml in follow-up samples collected in response to an exceedance of 200 colonies/100 ml in a single sample. In coastal waters the geometric mean enterococci density exceeds 35 colonies/100 ml.
• The growing season mean chlorophyll a criterion has been exceeded where such a criterion has been established. In making this determination, chlorophyll a values in excess of the criterion which are due to natural conditions (e.g., extreme hydrologic events such as drought or floods) will not be considered as an excursion of the criterion. When a growing season mean chlorophyll a value exceeds the criterion, the reservoir will be identified for resampling the following year and enough samples will be collected to ensure that the minimum data requirements necessary to calculate a growing season mean are met.

Figure 3 illustrates the assessment process for OAW waters.
Figure 3
Outstanding Alabama Water (OAW) Assessment Methodology

1 Water Quality Criterion refers to pH, Dissolved Oxygen, turbidity, and temperature resulting from heat sources
2 Bacteriological Criterion refers to both the single sample maximum and geometric mean, see discussion in Section 4.1.2
3 Biological community refers to macroinvertebrates and/or fish in wadeable rivers/streams only (See Minimum Data Requirments)
4 Toxicant Criterion refers to toxics listed in 335-6-10-.07
5 Applies only to reservoirs with established Chlorophyll a criteria and not during extreme hydrologic events

Special Note - Natural waters may, on occasion, have characteristics outside of the limits established by these criteria. These
4.2 Public Water Supply (PWS)

The best usage of waters assigned this classification is as a source of water supply for drinking or food-processing purposes after approved treatment. Waterbodies assigned the PWS use are considered safe for drinking or food-processing purposes if subjected to treatment approved by the Department equal to coagulation, sedimentation, filtration and disinfection, with additional treatment if necessary to remove naturally present impurities. Beneficial uses encompassed within this classification include: aquatic life support and wildlife propagation, fish and shellfish harvesting and consumption, drinking and food-processing water supply, water contact recreation, agricultural irrigation, livestock watering and industrial cooling and process water supply.

4.2.1 Minimum Data Requirement for PWS Waters

For waters with the PWS classification the available data must have been collected consistent with the following standard operating procedures (SOP) manuals:

<table>
<thead>
<tr>
<th>SOP#</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>2040</td>
<td>Stream Flow Abbreviated Measurement Method</td>
</tr>
<tr>
<td>2041</td>
<td>SW Temperature Field Measurements</td>
</tr>
<tr>
<td>2042</td>
<td>SW pH Field Measurements</td>
</tr>
<tr>
<td>2043</td>
<td>SW Specific Conductivity Field Measurements</td>
</tr>
<tr>
<td>2044</td>
<td>SW Turbidity Field Measurements</td>
</tr>
<tr>
<td>2045</td>
<td>SW Dissolved Oxygen Field Measurements</td>
</tr>
<tr>
<td>2046</td>
<td>Photic Zone Measurements and Visibility Determinations</td>
</tr>
<tr>
<td>2048</td>
<td>Continuous SW Quality Monitoring Using Datasondes</td>
</tr>
<tr>
<td>2061</td>
<td>General SW Quality Sample Collection</td>
</tr>
<tr>
<td>2062</td>
<td>Dissolved Reactive Phosphorus (DRP) Collection & Field Processing</td>
</tr>
<tr>
<td>2063</td>
<td>Chlorophyll a Collection & Field Processing</td>
</tr>
<tr>
<td>2064</td>
<td>Fecal Coliform Sample Collection</td>
</tr>
<tr>
<td>2065</td>
<td>Sediment Sampling</td>
</tr>
<tr>
<td>9021</td>
<td>Quality Control Samples and Field Measurements</td>
</tr>
<tr>
<td>9025</td>
<td>Field Equipment Cleaning Procedures</td>
</tr>
<tr>
<td>9040</td>
<td>Station, Sample ID & Chain of Custody Procedures</td>
</tr>
<tr>
<td>6300</td>
<td>Physical Characterization</td>
</tr>
<tr>
<td>6301</td>
<td>Habitat Assessment</td>
</tr>
</tbody>
</table>

In addition, the data must have been collected within the last six years. The six year timeframe would capture all data collected by ADEM during one complete rotation of the five year monitoring schedule currently used by the Department. Failure to satisfy both of these conditions places the waterbody in Category 2. If
these two conditions are met, the determination of the minimum data requirement is dependent upon the waterbody type. Waterbody types include wadeable rivers and streams, non-wadeable rivers and streams, reservoirs and reservoir embayments, and estuary and coastal waters. Failure to meet the minimum data requirement will place the waterbody in Category 2. The following list and Figure 4 describe the minimum data requirement for assessing waters classified as PWS.

- **Wadeable River or Stream**
 - 1 Level IV Intensive Wadeable Multi-habitat Bioassessment (WMB-I) or 2 Level III Wadeable Multi-habitat Bioassessments – EPT Families (WMB-EPT) or 1 Level III WMB-EPT plus 1 fish community assessment (IBI). In addition, a habitat assessment must be completed with each biological assessment. Currently, metrics for the fish IBI have been calibrated only in the Black Warrior and Cahaba River basins.
 - 3 conventional parameter samples (including samples for nutrient analysis)
 - 3 bacteriological samples
 - OR
 - 8 conventional parameter samples (including samples for nutrient analysis)
 - 10 bacteriological samples (2 geometric mean samples)
 - 3 pesticide / herbicide samples
 - 3 inorganic samples

- **Non-wadeable River or Stream**
 - 8 conventional parameter samples (including samples for nutrient analysis)
 - 10 bacteriological samples (2 geometric mean samples)
 - 3 pesticide / herbicide samples
 - 3 inorganic samples

- **Reservoirs and Embayments**
 - 8 conventional parameter samples (including samples for nutrient analysis)
 - 3 bacteriological samples
 - 1 fish tissue analysis from the reservoir mainstem
 - 7 chlorophyll a samples collected between April and October (For the Tennessee River Basin: 6 chlorophyll a samples collected between April and September). Results from critical period sampling (i.e., August sample only) will be used with other critical period data to evaluate chlorophyll a trends at a given sampling location.
• Estuary or Coastal Waters
 o 8 conventional parameter samples (including samples for nutrient analysis)
 o 10 bacteriological samples (2 geometric mean samples)
 o 1 fish tissue analysis
Biological community assessment means:
1 Level IV Intensive Wadeable Multi-habitat Bioassessment (WMB-I) or
2 Level III Wadeable Multi-habitat Bioassessments – EPT Families (WMB-EPT) or
1 Level III WMB-EPT plus 1 fish community assessment (IBI)

Figure 4
Minimum Data Requirements for the PWS Designated Use

START HERE

Data collected consistent with ADEM Standard Operating Procedures and Quality Assurance Manual, Volumes 1 - 8?

Water quality data collected during the past 6 years?

Is the waterbody a wadeable river/stream?

Minimum Data Requirement = Biological Community Assessment + 3 samples for conventional parameters + 3 bacteriological samples

OR

Minimum Data Requirement = 8 samples for conventional parameters + 10 bacteriological samples + 3 pesticide/herbicide samples + 3 inorganic samples

Is the waterbody a non-wadeable river/stream?

Minimum Data Requirement = 8 samples for conventional parameters + 10 bacteriological samples + 3 pesticide/herbicide samples + 3 inorganic samples

Is the waterbody a reservoir?

Minimum Data Requirement = 8 samples for conventional parameters + 3 bacteriological samples + 1 fish tissue analysis from reservoir mainstem + 7 Chlorophyll a samples (6 samples on Tenn. River) April - Oct.

Category II

Minimum Data Requirement = 8 samples for conventional parameters + 3 bacteriological samples + 1 fish community assessment (IBI)
4.2.2 Use Support Assessment for PWS Waters

Once the minimum data requirement has been met an assessment of the data can be completed resulting in the categorization of the waterbody as either fully supporting the PWS use (Category 1) or not fully supporting the PWS use (Category 5). The assessment process considers the available data and may include any fish consumption advisories, shellfish harvesting closure notices, chemical specific data, bacteriological data, biological community assessments, habitat assessments, periphyton assessments, drinking water system compliance records, and toxicity evaluations.

The PWS-classified waterbody is placed in Category 1 if all of the following are true:

- There is no fish/shellfish consumption advisory issued by the Alabama Department of Public Health (ADPH) for the waterbody.
- The Level IV WMB-I assessment result is “fair”, “good” or “excellent”, or both Level III WMB-EPT assessments are “fair”, “good” or “excellent” or the Level III WMB-EPT assessment is “fair”, “good” or “excellent” and the fish community IBI is “fair”, “good”, or “excellent”. (Wadeable streams only)
- The growing season mean chlorophyll a criterion has not been exceeded in two consecutive years where such a criterion has been established unless a drinking water system withdrawing from waterbody is not in compliance with a THM requirement. In making this determination, chlorophyll a values in excess of the criterion which are due to extreme hydrologic events (i.e., droughts and floods) will not be considered as an exceedance of the criterion.
- There is no more than one exceedance of a particular toxic pollutant criterion during the previous six years.
- The water quality criteria exceedance rate for conventional parameters is not more than 10% as determined using the binomial distribution function and Table 2. Conventional parameters include dissolved oxygen, pH, temperature (where influenced by a heated discharge), and turbidity.
- Bacteriological sample results from a single sample in excess of 200 colonies fecal coliform per 100 ml in non-coastal waters and in excess of 35 colonies enterococci per 100 ml in coastal waters will necessitate a follow-up collection of 5 samples during a 30 day period to calculate the geometric mean density. If the geometric mean fecal coliform density in non-coastal waters is less than or equal to 200 colonies/100 ml (June through September) or less than or equal to 1000 colonies/100 ml (October through May) the waterbody will be considered fully meeting the bacteria criteria for this designated use. In coastal waters (June through September) the geometric mean enterococci density must be less than 35 colonies / 100 ml and 10% or less (as determined using the binomial distribution function and Table 2) of the single samples must be less than 158 colonies/100 ml (June through September) or less than 275 colonies/100 ml (October through May).
The PWS-classified waterbody is placed in Category 5 if any of the following are true:

- There is a fish consumption advisory issued by the ADPH.
- The Level IV WMB-I assessment result is less than “fair”, or either of the Level III WMB-EPT assessments are less than “fair”, or the Level III WMB-EPT assessment is less than “fair” and the fish community IBI is less than “fair”. In addition, a potential anthropogenic cause for the degraded condition must be identified using observations made during the sampling events or from information contained in the Department’s geographic information system. (Wadeable streams only)
- The water quality criteria exceedance rate for conventional parameters is more than 10% as defined in Table 2.
- There is more than one exceedance of a particular toxic pollutant criterion during the previous six years.
- In non-coastal waters the geometric mean fecal coliform density exceeded 200 colonies/100 ml in follow-up samples collected between June and September in response to an exceedance of 200 colonies/100 ml in a single sample. During October through May the geometric mean fecal coliform density exceeded 1000 colonies/100ml. In coastal waters the enterococci geometric mean density exceeded 35 colonies/100 ml during June through September or more than 10% of the individual samples (as defined in Table 2) exceeded 158 colonies/100 ml or 275 colonies/100 ml during October through May.
- The growing season mean chlorophyll a criterion has been exceeded in two consecutive years or three times during the previous six years where such a criterion has been established or after one exceedance of the chlorophyll a criterion if a drinking water system is out of compliance with the THM requirement. In making this determination, chlorophyll a values in excess of the criterion which are due to extreme hydrologic events (i.e., droughts and floods) will not be considered as an exceedance of the criterion. However, one exceedance of the chlorophyll a criterion may be sufficient justification for inclusion of a water in Category 5 when the exceedance is determined to be result of increasing nutrient loading from anthropogenic sources. These determinations will be made on a case by case basis and the decision will be documented in the ADB. In any case, when a growing season mean chlorophyll a value exceeds the criterion, the reservoir will be identified for re-sampling the following year and enough samples will be collected to ensure that the minimum data requirements necessary to calculate a growing season mean are met.

Figure 5 illustrates the assessment process for PWS waters.
Figure 5
Public Water Supply (PWS) Categorization Methodology

1 Water Quality Criterion refers to pH, Dissolved Oxygen, turbidity, and temperature resulting from heat sources
2 Bacteriological Criterion refers to both the single sample maximum and geometric mean, see discussion in Section 4.2.2
3 Biological community refers to macroinvertebrates and/or fish in wadeable rivers/streams only (See Minimum Data Requirement)
4 Toxicant Criterion refers to toxics listed in 335-6-10-.07
5 Applies only to reservoirs with established Chlorophyll a criteria and not during extreme hydrologic events

Special Note - Natural waters may, on occasion, have characteristics outside of the limits established by these criteria. These
4.3 Swimming and Other Whole Body Water-Contact Sports (S)
The best usage of waters assigned this classification is for swimming and other whole body water-contact sports. Waterbodies assigned the S use, under proper sanitary supervision by the controlling health authorities, will meet accepted standards of water quality for outdoor swimming places and will be considered satisfactory for swimming and other whole body water-contact sports. Beneficial uses encompassed within this classification include: aquatic life support and wildlife propagation, fish and shellfish harvesting and consumption, water contact recreation, agricultural irrigation, livestock watering and industrial cooling and process water supply.

4.3.1 Minimum Data Requirement for S Waters
For waters with the S classification the available data must have been collected consistent with the following standard operating procedures (SOP) manuals:

<table>
<thead>
<tr>
<th>SOP#</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>2040</td>
<td>Stream Flow Abbreviated Measurement Method</td>
</tr>
<tr>
<td>2041</td>
<td>SW Temperature Field Measurements</td>
</tr>
<tr>
<td>2042</td>
<td>SW pH Field Measurements</td>
</tr>
<tr>
<td>2043</td>
<td>SW Specific Conductivity Field Measurements</td>
</tr>
<tr>
<td>2044</td>
<td>SW Turbidity Field Measurements</td>
</tr>
<tr>
<td>2045</td>
<td>SW Dissolved Oxygen Field Measurements</td>
</tr>
<tr>
<td>2046</td>
<td>Photic Zone Measurements and Visibility Determinations</td>
</tr>
<tr>
<td>2048</td>
<td>Continuous SW Quality Monitoring Using Datasondes</td>
</tr>
<tr>
<td>2061</td>
<td>General SW Quality Sample Collection</td>
</tr>
<tr>
<td>2062</td>
<td>Dissolved Reactive Phosphorus (DRP) Collection & Field Processing</td>
</tr>
<tr>
<td>2063</td>
<td>Chlorophyll a Collection & Field Processing</td>
</tr>
<tr>
<td>2064</td>
<td>Fecal Coliform Sample Collection</td>
</tr>
<tr>
<td>2065</td>
<td>Sediment Sampling</td>
</tr>
<tr>
<td>9021</td>
<td>Quality Control Samples and Field Measurements</td>
</tr>
<tr>
<td>9025</td>
<td>Field Equipment Cleaning Procedures</td>
</tr>
<tr>
<td>9040</td>
<td>Station, Sample ID & Chain of Custody Procedures</td>
</tr>
<tr>
<td>6300</td>
<td>Physical Characterization</td>
</tr>
<tr>
<td>6301</td>
<td>Habitat Assessment</td>
</tr>
</tbody>
</table>

• ADEM SOP/QCA Manual Volume 2 – Aquatic Macroinvertebrate Assessment (2005)

In addition, the data must have been collected within the last six years. The six year timeframe would capture all data collected by ADEM during one complete rotation of the five year monitoring schedule currently used by the Department. Failure to satisfy both of these conditions places the waterbody in Category 2. If these two conditions are met, the determination of the minimum data requirement is dependent upon the waterbody type. Waterbody types include wadeable rivers.
and streams, non-wadeable rivers and streams, reservoirs and reservoir embayments, and estuary and coastal waters. Failure to meet the minimum data requirement will place the waterbody in Category 2. The following list and Figure 6 describe the minimum data requirement for assessing waters classified as S.

- **Wadeable River or Stream**
 - 1 Level IV Intensive Wadeable Multi-habitat Bioassessment (WMB-I) or 2 Level III Wadeable Multi-habitat Bioassessments – EPT Families (WMB-EPT) or 1 Level III WMB-EPT plus 1 fish community assessment (IBI). In addition, a habitat assessment must be completed with each biological assessment. Currently, metrics for the fish IBI have been calibrated only in the Black Warrior and Cahaba River basins.
 - 3 conventional parameter samples (including samples for nutrient analysis)
 - 10 bacteriological samples (2 geometric mean samples)

OR

- 8 conventional parameter samples (including samples for nutrient analysis)
- 10 bacteriological samples (2 geometric mean samples)
- 3 pesticide / herbicide samples

- **Non-wadeable River or Stream**
 - 8 conventional parameter samples (including samples for nutrient analysis)
 - 10 bacteriological samples (2 geometric mean samples)
 - 3 pesticide / herbicide samples
 - 3 inorganic samples

- **Reservoirs and Embayments**
 - 8 conventional parameter samples (including samples for nutrient analysis)
 - 3 bacteriological samples
 - 1 fish tissue analysis from the reservoir mainstem
 - 7 chlorophyll \(a \) samples collected between April and October (For the Tennessee River Basin: 6 chlorophyll \(a \) samples collected between April and September). Results from critical period sampling (i.e., August sample only) will be used with other critical period data to evaluate chlorophyll \(a \) trends at a given sampling location.

- **Estuary or Coastal Waters**
- 8 conventional parameter samples (including samples for nutrient analysis)
- 10 bacteriological samples (2 geometric mean samples)
Figure 6

Minimum Data Requirements for the S Designated Use

Data collected consistent with ADEM Standard Operating Procedures and Quality Assurance Manual, Volumes 1-8?

START HERE

Category II

Water quality data collected during the past 6 years?

Category II

Is the waterbody a wadeable river/stream?

Minimum Data Requirement = Biological Community Assessment + 3 samples for conventional parameters + 2 geometric mean bacteriological samples

OR

Minimum Data Requirement = 10 samples for conventional parameters + 2 geometric mean bacteriological samples + 3 pesticide/herbicide samples

Is the waterbody a non-wadeable river/stream?

Minimum Data Requirement = 8 samples for conventional parameters + 2 geometric mean bacteriological samples + 3 pesticide/herbicide + 3 inorganic samples

Is the waterbody a reservoir?

Minimum Data Requirement = 8 samples for conventional parameters + 3 bacteriological samples + 1 fish tissue analysis from reservoir mainstem + 7 Chlorophyll a samples (6 samples on Tenn. River) April - Oct.

Is the waterbody an estuary or coastal water?

Minimum Data Requirement = 8 samples for conventional parameters + 2 geometric mean bacteriological samples

Biological community assessment means:
1 Level IV Intensive Wadeable Multi-habitat Bioassessment (WMB-I) or
2 Level III Wadeable Multi-habitat Bioassessments – EPT Families (WMB-EPT) or
3 Level III WMB-EPT plus 1 fish community assessment (IBI)
4.3.2 Use Support Assessment for S Waters

Once the minimum data requirement has been met an assessment of the data can be completed resulting in the categorization of the waterbody as either fully supporting the S use (Category 1) or not fully supporting the S use (Category 5). The assessment process considers the available data and may include any fish consumption advisories, shellfish harvesting closure notices, chemical specific data, bacteriological data, biological community assessments, habitat assessments, periphyton assessments, beach closure notices and toxicity evaluations.

The S-classified waterbody is placed in Category 1 if all of the following are true:

- There is no fish/shellfish consumption advisory issued by the Alabama Department of Public Health (ADPH) for the waterbody.
- The Level IV WMB-I assessment result is “fair”, “good” or “excellent”, or at least one of the Level III WMB-EPT assessments is “fair”, “good” or “excellent” or the Level III WMB-EPT assessment is “fair”, “good” or “excellent” and the fish community IBI is “fair”, “good”, or “excellent”. (Wadeable streams only)
- There is no more than one exceedance of a particular toxic pollutant criterion during the previous six years.
- The water quality criteria exceedance rate for conventional parameters is not more than 10% as determined using the binomial distribution function and Table 2. Conventional parameters include dissolved oxygen, pH, temperature (where influenced by a heated discharge), and turbidity. Determination of the 10% exceedance rate is discussed in Section 4.8.
- Bacteriological sample results from a single sample in excess of 200 colonies fecal coliform per 100 ml will require a follow-up collection of 5 samples collected during a 30 day period to calculate the geometric mean fecal coliform density in reservoirs. If the geometric mean fecal coliform density is less than or equal to 200 colonies/100 ml the waterbody will be considered fully meeting the bacteria criteria for this designated use. In coastal waters designated as S the geometric mean of enterococci sample must be less than 35 colonies/100 ml and not more than 10% of the individual samples (as determined by the binomial distribution function and Table 2) can exceed 104 colonies/100 ml.
- The growing season mean chlorophyll a criterion has not been exceeded in two consecutive years where such a criterion has been established. In making this determination, chlorophyll a values in excess of the criterion which are due to extreme hydrologic events (i.e., droughts and floods) will not be considered as an exceedance of the criterion.

The S-classified waterbody is placed in Category 5 if any of the following are true:

- There is a fish consumption advisory issued by the ADPH.
- The Level IV WMB-I assessment result is less than “fair”, or both of the Level III WMB-EPT assessments are less than “fair” or the Level III WMB-EPT assessment is less than “fair” and the fish community IBI is
less than “fair”. In addition, a potential anthropogenic cause for the degraded condition must be identified. (Wadeable streams only)

- The water quality criteria exceedance rate for conventional parameters is more than 10% as defined in Table 2.
- There is more than one exceedance of a particular toxic pollutant criterion during the previous six years.
- In reservoirs the geometric mean fecal coliform density exceeds 200 colonies/100 ml in follow-up samples collected in response to an exceedance of 200 colonies/100 ml in a single sample. In coastal waters designated as S the geometric mean of enterococci sample must be less than 35 colonies/100 ml and not more than 10% of the individual samples (as determined by the binomial distribution function and Table 2) can exceed 104 colonies/100 ml.
- For reservoirs with established chlorophyll a criteria, a criterion has been exceeded in two consecutive years or three times during the previous six years. In making this determination, chlorophyll a values in excess of the criterion which are due to extreme hydrologic events (i.e., droughts and floods) will not be considered as an exceedance of the criterion. However, one exceedance of the chlorophyll a criterion may be sufficient justification for inclusion of a water in Category 5 when the exceedance is determined to be the result of increasing nutrient loading from anthropogenic sources. These determinations will be made on a case by case basis and the decision will be documented in the ADB. In any case, when a growing season mean chlorophyll a value exceeds the criterion, the reservoir will be identified for re-sampling the following year and enough samples will be collected to ensure that the minimum data requirements necessary to calculate a growing season mean are met.

Figure 7 illustrates the assessment process for S waters.
4.4 Shellfish Harvesting (SH)
The best usage of waters assigned this classification is the propagation and harvesting of shellfish (oysters) for sale or for use as a food product. Waterbodies assigned the SH use will meet the sanitary and bacteriological standards included in the *National Shellfish Sanitation Program Model Ordinance, 1999, Chapter IV*, published by the Food and Drug Administration, U.S. Department of Health and Human Services and the requirements of the Alabama Department of Public Health. The waters will also be of a quality suitable for the propagation of fish and other aquatic life, including shrimp and crabs. Beneficial uses encompassed within this classification include: aquatic life support and wildlife propagation, fish and shellfish harvesting and consumption, water contact recreation, agricultural irrigation, livestock watering and industrial cooling and process water supply.

4.4.1 Minimum Data Requirement for SH Waters
For waters with the SH classification the available data must have been collected consistent with the following standard operating procedures (SOP) manual:

<table>
<thead>
<tr>
<th>SOP#</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>2040</td>
<td>Stream Flow Abbreviated Measurement Method</td>
</tr>
<tr>
<td>2041</td>
<td>SW Temperature Field Measurements</td>
</tr>
<tr>
<td>2042</td>
<td>SW pH Field Measurements</td>
</tr>
<tr>
<td>2043</td>
<td>SW Specific Conductivity Field Measurements</td>
</tr>
<tr>
<td>2044</td>
<td>SW Turbidity Field Measurements</td>
</tr>
<tr>
<td>2045</td>
<td>SW Dissolved Oxygen Field Measurements</td>
</tr>
<tr>
<td>2046</td>
<td>Photic Zone Measurements and Visibility Determinations</td>
</tr>
<tr>
<td>2048</td>
<td>Continuous SW Quality Monitoring Using Datasondes</td>
</tr>
<tr>
<td>2061</td>
<td>General SW Quality Sample Collection</td>
</tr>
<tr>
<td>2062</td>
<td>Dissolved Reactive Phosphorus (DRP) Collection & Field Processing</td>
</tr>
<tr>
<td>2063</td>
<td>Chlorophyll_a Collection & Field Processing</td>
</tr>
<tr>
<td>2064</td>
<td>Fecal Coliform Sample Collection</td>
</tr>
<tr>
<td>2065</td>
<td>Sediment Sampling</td>
</tr>
<tr>
<td>9021</td>
<td>Quality Control Samples and Field Measurements</td>
</tr>
<tr>
<td>9025</td>
<td>Field Equipment Cleaning Procedures</td>
</tr>
<tr>
<td>9040</td>
<td>Station, Sample ID & Chain of Custody Procedures</td>
</tr>
<tr>
<td>6300</td>
<td>Physical Characterization</td>
</tr>
<tr>
<td>6301</td>
<td>Habitat Assessment</td>
</tr>
</tbody>
</table>

In addition, the data must have been collected within the last six years. The six year timeframe would capture all data collected by ADEM during one complete rotation of the five year monitoring schedule currently used by the Department. Failure to satisfy both of these conditions places the waterbody in Category 2. The following list and Figure 8 describe the minimum data requirement for assessing waters classified as SH.
- 8 conventional parameter samples (including samples for nutrient analysis)
- 10 bacteriological samples (2 geometric mean samples)
- 3 inorganic samples
- 3 pesticide/herbicide samples
- Summary of ADPH shellfish harvesting closure notices for Areas I, II, and III

Figure 8

Minimum Data Requirements for the SH Designated Use

4.4.2 Use Support Assessment for SH Waters

Once the minimum data requirement has been met an assessment of the data can be completed resulting in the categorization of the waterbody as either fully supporting the SH use (Category 1) or not fully supporting the SH use (Category 5). The assessment process considers the available data and may include any fish consumption advisories, shellfish harvesting closure notices, chemical specific data, bacteriological data, and toxicity evaluations.

The SH-classified waterbody is placed in Category 1 if:
- There is no fish/shellfish consumption advisory issued by the Alabama Department of Public Health (ADPH) for the waterbody and the ADPH...
“conditionally approved” shellfish harvesting areas (Areas I, II, and III) are open at least 75% of the year;

- There is no more than one exceedance of a particular toxic pollutant criterion during the previous six years and;
- The water quality criteria exceedance rate for conventional parameters is not more than 10% as determined using the binomial distribution function for the sample sizes shown in Table 2. Conventional parameters include dissolved oxygen, pH, temperature (where influenced by a heated discharge), and turbidity. Determination of the 10% exceedance rate is discussed in Section 4.8.
- The geometric mean of 5 fecal coliform samples collected during a 30-day period must be less than or equal to 14 colonies/100 ml and no more than 10% of the samples can exceed 43 colonies/100 ml. In addition, during June through September the geometric mean enterococci density must be less than 35 colonies/100 ml and 10% or less (as determined using the binomial distribution function and Table 2) of the single samples must be less than 104 colonies/100 ml.

The SH-classified waterbody is placed in Category 5 if:

- There is a fish consumption advisory issued by the ADPH or the shellfish growing areas are “conditionally open” or “conditionally restricted” or;
- The water quality criteria exceedance rate for conventional parameters is more than 10% as determined using the binomial distribution function for the sample sizes shown in Table 2 or;
- The geometric mean of 5 fecal coliform samples collected during a 30-day period is greater than 14 colonies/100 ml or more than 10% of the samples exceed 43 colonies/100 ml. In addition, during June through September the geometric mean enterococci density is greater than 35 colonies/100 ml and more than 10% (as determined using the binomial distribution function and Table 2) of the single samples are greater than 104 colonies/100 ml.
- There is more than one exceedance of a particular toxic pollutant criterion during the previous six years.

Figure 9 illustrates the assessment process for SH waters.
See SH Minimum Data Requirement Flowchart

Shellfish Harvesting Areas Open > 75% of harvesting season

D.O. > 5.0 mg/l (Except as noted in 335-6-10-.09)

6.0 < pH < 8.5, Δ < 1 s.u. (non-coastal waters)

6.5 < pH < 8.5, Δ < 1 s.u. (coastal waters)

Turbidity < 50 NTU above background

Temperature < 90° F, Δ < 5° F (non-coastal) except Cahaba Basin, Tennessee Basin, Below Thurlow Dam

Temperature < 86° F, Δ < 5° F (Cahaba Basin, Tennessee Basin, Below Thurlow Dam)

Temperature < 90° F, Δ < 4° F (coastal, October through May)

Temperature < 90° F, Δ < 1.5° F (coastal, June through September)

Fecal Coliform Geomean < 14/100 ml

Fecal Coliform Geomean < 200/100 ml (non-coastal, June - September)

Enterococci Geomean < 35/100 ml (coastal, June - September)

Enterococci Maximum < 104/100 ml (coastal, June - September)

See Table 1 of Rule 335-6-10-.07

Aquatic Life and Human Health

1 Water Quality Criterion refers to pH, Dissolved Oxygen, turbidity, and temperature resulting from heat sources

2 Bacteriological Criterion refers to both the single sample maximum and geometric mean

3 Toxicant Criterion refers to toxics listed in 335-6-10-.07

Special Note - Natural waters may, on occasion, have characteristics outside of the limits established by these criteria. These criteria relate to condition of waters as affected by the discharge of sewage, industrial wastes, or other wastes, not to conditions resulting from natural forces. See 335-6-10-.05(4)
4.5 Fish and Wildlife (F&W)
The best usage of waters assigned this classification includes fishing, the propagation of fish, aquatic life, and wildlife, and any other usage except swimming and water-contact sports or as a source of water supply for drinking or food-processing purposes. Waterbodies assigned the F&W classification will be suitable for fish, aquatic life and wildlife propagation. The quality of salt and estuarine waters to which this classification is assigned will also be suitable for the propagation of shrimp and crabs. In addition, it is recognized that these waters may be used for incidental water contact and recreation during June through September, except in the vicinity of wastewater discharges or other conditions beyond the control of the ADPH. These waters will, under proper sanitary supervision by the controlling health authorities, meet accepted standards of water quality for outdoor swimming places and will be considered satisfactory for swimming and other whole body water-contact sports during the months of June through September.

4.5.1 Minimum Data Requirement for F&W Waters
For waters with the F&W classification the available data must have been collected consistent with the following standard operating procedures (SOP) manuals:

<table>
<thead>
<tr>
<th>SOP#</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>2040</td>
<td>Stream Flow Abbreviated Measurement Method</td>
</tr>
<tr>
<td>2041</td>
<td>SW Temperature Field Measurements</td>
</tr>
<tr>
<td>2042</td>
<td>SW pH Field Measurements</td>
</tr>
<tr>
<td>2043</td>
<td>SW Specific Conductivity Field Measurements</td>
</tr>
<tr>
<td>2044</td>
<td>SW Turbidity Field Measurements</td>
</tr>
<tr>
<td>2045</td>
<td>SW Dissolved Oxygen Field Measurements</td>
</tr>
<tr>
<td>2046</td>
<td>Photic Zone Measurements and Visibility Determinations</td>
</tr>
<tr>
<td>2048</td>
<td>Continuous SW Quality Monitoring Using Datasondes</td>
</tr>
<tr>
<td>2061</td>
<td>General SW Quality Sample Collection</td>
</tr>
<tr>
<td>2062</td>
<td>Dissolved Reactive Phosphorus (DRP) Collection & Field Processing</td>
</tr>
<tr>
<td>2063</td>
<td>Chlorophyll a Collection & Field Processing</td>
</tr>
<tr>
<td>2064</td>
<td>Fecal Coliform Sample Collection</td>
</tr>
<tr>
<td>2065</td>
<td>Sediment Sampling</td>
</tr>
<tr>
<td>9021</td>
<td>Quality Control Samples and Field Measurements</td>
</tr>
<tr>
<td>9025</td>
<td>Field Equipment Cleaning Procedures</td>
</tr>
<tr>
<td>9040</td>
<td>Station, Sample ID & Chain of Custody Procedures</td>
</tr>
<tr>
<td>6300</td>
<td>Physical Characterization</td>
</tr>
<tr>
<td>6301</td>
<td>Habitat Assessment</td>
</tr>
</tbody>
</table>

In addition, the data must have been collected within the last six years. The six year timeframe would capture all data collected by ADEM during one complete
rotation of the five year monitoring schedule currently used by the Department. Failure to satisfy both of these conditions places the waterbody in Category 2. If these two conditions are met, the determination of the minimum data requirement is dependent upon the waterbody type. Waterbody types include wadeable rivers and streams, non-wadeable rivers and streams, reservoirs and reservoir embayments, and estuary and coastal waters. Failure to meet the minimum data requirement will place the waterbody in Category 2. The following list and Figure 10 describe the minimum data requirement for assessing waters classified as F&W.

• Wadeable River or Stream
 o 1 Level IV Intensive Wadeable Multi-habitat Bioassessment (WMB-I) or 2 Level III Wadeable Multi-habitat Bioassessments – EPT Families (WMB-EPT) or 1 Level III WMB-EPT plus 1 fish community assessment (IBI). In addition, a habitat assessment must be completed with each biological assessment. Currently, metrics for the fish IBI have been calibrated only in the Black Warrior and Cahaba River basins.
 o 3 conventional parameter samples (including samples for nutrient analysis)
 o 3 bacteriological samples

OR
 o 8 conventional parameter samples (including samples for nutrient analysis)
 o 10 bacteriological samples (2 geometric mean samples)
 o 5 pesticide / herbicide samples
 o 5 inorganic samples

• Non-wadeable River or Stream
 o 8 conventional parameter samples (including samples for nutrient analysis)
 o 10 bacteriological samples (2 geometric mean samples)
 o 5 pesticide / herbicide samples
 o 5 inorganic samples

Reservoirs and Embayments
 o 8 conventional parameter samples (including samples for nutrient analysis)
 o 3 bacteriological samples
 o 1 fish tissue analysis from the reservoir mainstem
 o 7 chlorophyll a samples collected between April and October (For the Tennessee River Basin: 6 chlorophyll a samples collected between April and September). Results from critical period sampling (i.e., August sample only) will be used with other critical
period data to evaluate chlorophyll a trends at a given sampling location.

- Estuary or Coastal Waters
 - 8 conventional parameter samples (including samples for nutrient analysis)
 - 10 bacteriological samples (2 geometric mean samples)
 - 1 fish tissue analysis

OR

- 8 conventional parameter samples (including samples for nutrient analysis)
- 10 bacteriological samples (2 geometric mean samples)
- 5 pesticide/herbicide samples
- 5 inorganic samples
Biological community assessment means:
1. Level IV Intensive Wadeable Multi-habitat Bioassessment (WMB-I)
2. Level III Wadeable Multi-habitat Bioassessments – EPT Families (WMB-EPT)
3. Level III WMB-EPT plus 1 fish community assessment (IBI)

Categor y II

Is the waterbody a reservoir?

Minimum Data Requirement = 8 samples for conventional parameters + 10 bacteriological samples + 5 pesticide/herbicide samples + 5 inorganic samples

Is the waterbody a wadeable river/stream?

Minimum Data Requirement = Biological Community Assessment + 3 samples for conventional parameters + 3 bacteriological samples

Is the waterbody a non-wadeable river/stream?

Minimum Data Requirement = 8 samples for conventional parameters + 10 bacteriological samples + 5 pesticide/herbicide samples + 5 inorganic samples

Data collected consistent with ADEM Standard Operating Procedures and Quality Assurance Manual, Volumes 1-8?

Water quality data collected during the past 6 years?

Yes

Minimum Data Requirement = 8 samples for conventional parameters + 3 bacteriological samples + 1 fish tissue analysis from reservoir mainstem + 7 Chlorophyll a samples (6 samples on Tenn. River) April

No

Is the waterbody an estuary or coastal water?

Minimum Data Requirement = 8 samples for conventional parameters + 10 bacteriological samples + 5 pesticide/herbicide samples + 5 inorganic samples

Categor y II

Minimum Data Requirement = 8

Figure 10

Minimum Data Requirements for the F&W Designated Use

Biological community assessment means:
1. Level IV Intensive Wadeable Multi-habitat Bioassessment (WMB-I) or
2. Level III Wadeable Multi-habitat Bioassessments – EPT Families (WMB-EPT) or
3. Level III WMB-EPT plus 1 fish community assessment (IBI)
4.5.2 Use Support Assessment for F&W Waters

Once the minimum data requirement has been met an assessment of the data can be completed resulting in the categorization of the waterbody as either fully supporting the F&W use (Category 1) or not fully supporting the F&W use (Category 5). The assessment process considers the available data and may include any fish consumption advisories, chemical specific data, biological community assessments, bacteriological data, beach closure notices and toxicity evaluations.

The F&W-classified waterbody is placed in Category 1 if all of the following are true:

- There is no fish consumption advisory issued by the Alabama Department of Public Health (ADPH) for the waterbody.
- There are no more than two exceedances of a particular toxic pollutant criterion during the previous six years.
- The Level IV WMB-I assessment result is “fair”, “good” or “excellent”, or either of the Level III WMB-EPT assessments are “fair”, “good” or “excellent” or the Level III WMB-EPT assessment is “fair”, “good” or “excellent” and the fish community IBI is “fair”, “good”, or “excellent”.
 (Wadeable steams only)
- For reservoirs with established chlorophyll \(a \) criteria, a criterion has not been exceeded in two consecutive years. In making this determination, chlorophyll \(a \) values in excess of the criterion which are due to extreme hydrologic events (i.e., droughts and floods) will not be considered as an exceedance of the criterion.
- The water quality criteria exceedance rate for conventional parameters is not more than 10%. Conventional parameters include dissolved oxygen, pH, temperature (where influenced by a heated discharge), and turbidity. Determination of the 10% exceedance rate is discussed in Section 4.8.
- In reservoirs and wadeable streams with biological assessments, bacteriological sample results from a single sample in excess of 200 colonies fecal coliform per 100 ml in non-coastal waters and in excess of 35 colonies enterococci per 100 ml in coastal waters will necessitate a follow-up collection of 5 samples during a 30 day period to calculate the geometric mean density. If the geometric mean fecal coliform density in non-coastal waters is less than or equal to 200 colonies/100 ml (June through September) or less than or equal to 1000 colonies/100ml (October through May) and 10%, as defined in Table 2, or less of the single samples results are less than 2000 colonies/100 ml, the waterbody will be considered fully meeting the bacteria criteria for this designated use. In coastal waters (June through September) the geometric mean enterococci density must be less than 35 colonies / 100 ml and 10% or less (as determined using the binomial distribution function and Table 2) of the single samples must be less than 158 colonies/100 ml (June through September) or less than 275 colonies/100 ml (October through May). Use
of the 10% rule will only be applied when there is at least the minimum number of samples.

The F&W-classified waterbody is placed in Category 5 if any of the following are true:

- There is a fish consumption advisory issued by the ADPH.
- The water quality criteria exceedance rate for conventional parameters is more than 10% as defined in Table 2.
- The Level IV WMB-I assessment result is less than “fair”, or both of the Level III WMB-EPT assessments are less than “fair” or the Level III WMB-EPT assessment is less than “fair” and the fish community IBI is less than “fair”. In addition, a potential anthropogenic cause for the degraded condition must be identified. (Wadeable streams only)
- The geometric mean fecal coliform density in non-coastal waters is greater than 200 colonies/100 ml (June through September) or more than 1000 colonies/100ml (October through May) and or more than 10% of the single samples results are greater than 2000 colonies/100 ml. In coastal waters (June through September) the geometric mean enterococci density is greater than 35 colonies / 100 ml and more than 10% (as determined using the binomial distribution function and Table 2) of the single samples is greater than 158 colonies/100 ml (June through September) or more than 275 colonies/100 ml (October through May). Use of the 10% rule will only be applied to data sets containing at least the minimum number of samples.
- There are more than two exceedances of a particular toxic pollutant criterion during the previous six years.
- For reservoirs with established chlorophyll a criteria, a criterion has been exceeded in two consecutive years or three times during the previous six years. In making this determination, chlorophyll a values in excess of the criterion which are due to extreme hydrologic events (i.e., droughts and floods) will not be considered as an exceedance of the criterion. However, one exceedance of the chlorophyll a criterion may be sufficient justification for inclusion of a water in Category 5 when the exceedance is determined to be the result of increasing nutrient loading from anthropogenic sources. These determinations will be made on a case by case basis and the decision will be documented in the ADB. In any case, when a growing season mean chlorophyll a value exceeds the criterion, the reservoir will be identified for re-sampling the following year and enough samples will be collected to ensure that the minimum data requirements necessary to calculate a growing season mean are met.

Figure 11 illustrates the assessment process for F&W waters.
Figure 11

Fish and Wildlife (F&W) Categorization Methodology

1. Water Quality Criterion refers to pH, Dissolved Oxygen, turbidity, and temperature resulting from heat sources.
2. Bacteriological Criterion refers to both the single sample maximum and geometric mean, see discussion in Section 4.5.2.
3. Biological community refers to macroinvertebrates and/or fish in wadeable rivers/streams only (See Minimum Data Requirements).
4. Toxicant Criterion refers to toxics listed in 335-6-10-.07.
5. Applies only to reservoirs with established Chlorophyll a criteria and not during extreme hydrologic events.

See Table 1 of Rule 335-6-10-.07.
4.6 Limited Warmwater Fishery (LWF)

For the months of December through April the best usage of waters assigned this classification includes fishing, the propagation of fish, aquatic life, and wildlife, and any other usage except swimming and water-contact sports or as a source of water supply for drinking or food-processing purposes. Waterbodies assigned the LWF classification will be suitable for fish, aquatic life and wildlife propagation except during the months of May through November. During May through November the quality of waters to which this classification is assigned will be suitable for agricultural irrigation, livestock watering, industrial cooling and process water supplies, and any other usage, except fishing, bathing, recreational activities, including water-contact sports, or as a source of water supply for drinking or food-processing purposes.

4.6.1 Minimum Data Requirement for LWF Waters

For waters with the LWF classification the available data must have been collected consistent with the following standard operating procedures (SOP) manuals:

<table>
<thead>
<tr>
<th>SOP#</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>2040</td>
<td>Stream Flow Abbreviated Measurement Method</td>
</tr>
<tr>
<td>2041</td>
<td>SW Temperature Field Measurements</td>
</tr>
<tr>
<td>2042</td>
<td>SW pH Field Measurements</td>
</tr>
<tr>
<td>2043</td>
<td>SW Specific Conductivity Field Measurements</td>
</tr>
<tr>
<td>2044</td>
<td>SW Turbidity Field Measurements</td>
</tr>
<tr>
<td>2045</td>
<td>SW Dissolved Oxygen Field Measurements</td>
</tr>
<tr>
<td>2046</td>
<td>Photic Zone Measurements and Visibility Determinations</td>
</tr>
<tr>
<td>2048</td>
<td>Continuous SW Quality Monitoring Using Datasondes</td>
</tr>
<tr>
<td>2061</td>
<td>General SW Quality Sample Collection</td>
</tr>
<tr>
<td>2062</td>
<td>Dissolved Reactive Phosphorus (DRP) Collection & Field Processing</td>
</tr>
<tr>
<td>2064</td>
<td>Fecal Coliform Sample Collection</td>
</tr>
<tr>
<td>2065</td>
<td>Sediment Sampling</td>
</tr>
<tr>
<td>9021</td>
<td>Quality Control Samples and Field Measurements</td>
</tr>
<tr>
<td>9025</td>
<td>Field Equipment Cleaning Procedures</td>
</tr>
<tr>
<td>9040</td>
<td>Station, Sample ID & Chain of Custody Procedures</td>
</tr>
<tr>
<td>6300</td>
<td>Physical Characterization</td>
</tr>
<tr>
<td>6301</td>
<td>Habitat Assessment</td>
</tr>
</tbody>
</table>

In addition, the data must have been collected within the last six years. The six year timeframe would capture all data collected by ADEM during one complete rotation of the five year monitoring schedule currently used by the Department. Failure to satisfy both of these conditions places the waterbody in Category 2. If these two conditions are met, the determination of the minimum data requirement is dependent upon the waterbody type. Waterbody types include rivers and streams, reservoirs and reservoir embayments, and estuary and coastal waters. Failure to meet the minimum data requirement will place the waterbody in Category 2. The following list and Figure 12 describe the minimum data requirements for assessing waters classified as LWF.
• River or Stream (Wadeable and Non-wadeable)
 o 8 conventional parameter samples (including samples for nutrient analysis)
 o 5 bacteriological samples (1 geometric mean sample)
 o 3 pesticide / herbicide samples
 o 3 inorganic samples

• Reservoirs and Embayments
 o 8 conventional parameter samples (including samples for nutrient analysis)
 o 3 bacteriological samples
 o 1 fish tissue analysis from the reservoir mainstem

• Estuary or Coastal Waters
 o 8 conventional parameter samples (including samples for nutrient analysis)
 o 5 bacteriological samples (1 geometric mean sample)
Figure 12

Minimum Data Requirements for the LWF Designated Use

- **START HERE**
 - Data collected consistent with ADEM Standard Operating Procedures and Quality Assurance Manual, Volumes 1 - 8?
 - **NO** → Category II
 - **YES** → Water quality data collected during the past 6 years?
 - **NO** → Category II
 - **YES** →
 - Is the waterbody a river/stream?
 - **NO** → Category II
 - **YES** → Minimum Data Requirement = 8 samples for conventional parameters + 5 bacteriological samples + 3 pesticide/herbicide samples + 3 inorganic samples
 - Is the waterbody a reservoir?
 - **NO** → Category II
 - **YES** → Minimum Data Requirement = 8 samples for conventional parameters + 3 bacteriological samples + 1 fish tissue analysis from reservoir mainstem
 - Is the waterbody an estuary or coastal water?
 - **NO** → Category II
 - **YES** → Minimum Data Requirement = 8 samples for conventional parameters + 5 bacteriological samples
4.6.2 Use Support Assessment for LWF Waters

Once the minimum data requirement has been met an assessment of the data can be completed resulting in the categorization of the waterbody as either fully supporting the LWF use (Category 1) or not fully supporting the LWF use (Category 5). The assessment process considers the available data and may include any fish consumption advisories, chemical specific data, bacteriological data, and toxicity evaluations. However, at the present time there is no available protocol for use of biological assessment results to assess use support in LWF-classified waters. The Department’s current SOP for conducting biological assessments employs the use of reference sites located in least impacted watersheds and is intended to assess the “fishable” use.

The LWF-classified waterbody is placed in Category 1 if all of the following are true:

- There is no fish consumption advisory issued by the Alabama Department of Public Health (ADPH) for the waterbody.
- There is no more than one exceedance of a toxic pollutant acute criterion (May through November) during the previous six years. There is no more than one exceedance of a particular toxic pollutant chronic criterion (December through April) during the previous six years.
- The water quality criteria exceedance rate for conventional parameters is not more than 10%. Conventional parameters include dissolved oxygen, pH, temperature (where influenced by a heated discharge), and turbidity. Determination of the 10% exceedance rate is discussed in Section 4.8.
- In reservoirs, bacteriological sample results from a single sample in excess of 1000 colonies fecal coliform per 100 ml will necessitate a follow-up collection of 5 samples during a 30 day period to calculate the geometric mean density. If the geometric mean fecal coliform density is less than or equal to 1000 colonies/100 ml and 10% or less of the single sample results are less than 2000 fecal coliform colonies/100 ml, the waterbody will be considered fully meeting the bacteria criteria for this designated use. In coastal waters 10% or less (as determined using the binomial distribution function and Table 2) of the single samples must be less than 275 enterococci colonies/100 ml. In non-coastal rivers and streams the geometric mean fecal coliform density is less than 1000 colonies/100 ml and 10% (as defined in Table 2) or less of the single sample results are less than or equal to 2000 fecal coliform colonies/100 ml. Use of the 10% rule will only be applied when there is at least the minimum number of samples.

The LWF-classified waterbody is placed in Category 5 if any of the following are true:

- There is a fish consumption advisory issued by the ADPH.
- The water quality criteria exceedance rate for conventional parameters is more than 10%.
The geometric mean fecal coliform density is greater than 1000 colonies/100 ml or more than 10% of the single sample results are greater than 2000 fecal coliform colonies/100 ml. In coastal waters more than 10% (as determined using the binomial distribution function and Table 2) of the single samples are greater than 275 enterococci colonies/100 ml. Use of the 10% rule will only be applied when there is at least the minimum number of samples.

There are two or more exceedances of a particular toxic pollutant acute criterion (May through November) during the previous six years. There are two or more exceedances of a particular toxic pollutant chronic criterion (December through April) during the previous six years.

Figure 13 illustrates the assessment process for LWF waters.
Figure 13
Limited Warmwater Fishery (LWF) Categorization Methodology

1. Water Quality Criterion refers to pH, Dissolved Oxygen, turbidity, and temperature resulting from heat sources
2. Bacteriological Criterion refers to both the single sample maximum and geometric mean, see discussion in Section 4.6.2
3. Toxictant Criterion refers to toxics listed in 335-6-10-.07
4. Applies only to reservoirs with established Chlorophyll a criteria and not during extreme hydrologic events

Special Note - Natural waters may, on occasion, have characteristics outside of the limits established by these criteria. These criteria relate to condition of waters as affected by the discharge of sewage, industrial wastes, or other wastes, not to conditions resulting from natural forces. See 335-6-10-.06(4)
4.7 Agricultural and Industrial Water Supply (A&I)

Best usage of waters assigned this classification include agricultural irrigation, livestock watering, industrial cooling and process water supplies, and any other usage, except fishing, bathing, recreational activities, including water-contact sports, or as a source of water supply for drinking or food-processing purposes. The waters, except for the natural impurities that may be present, will be suitable for agricultural irrigation, livestock watering, industrial cooling waters, and fish survival. The waters will be usable after special treatment, as may be needed under each particular circumstance, for industrial process water supplies. This classification includes watercourses in which natural flow is intermittent and non-existent during droughts and which may, of necessity, receive treated waste from existing municipalities and industries, both now and in the future.

4.7.1 Minimum Data Requirement for A&I Waters

For waters with the A&I classification the available data must have been collected consistent with the following standard operating procedures (SOP) manuals:

<table>
<thead>
<tr>
<th>SOP#</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>2040</td>
<td>Stream Flow Abbreviated Measurement Method</td>
</tr>
<tr>
<td>2041</td>
<td>SW Temperature Field Measurements</td>
</tr>
<tr>
<td>2042</td>
<td>SW pH Field Measurements</td>
</tr>
<tr>
<td>2043</td>
<td>SW Specific Conductivity Field Measurements</td>
</tr>
<tr>
<td>2044</td>
<td>SW Turbidity Field Measurements</td>
</tr>
<tr>
<td>2045</td>
<td>SW Dissolved Oxygen Field Measurements</td>
</tr>
<tr>
<td>2046</td>
<td>Photic Zone Measurements and Visibility Determinations</td>
</tr>
<tr>
<td>2048</td>
<td>Continuous SW Quality Monitoring Using Datasondes</td>
</tr>
<tr>
<td>2061</td>
<td>General SW Quality Sample Collection</td>
</tr>
<tr>
<td>2062</td>
<td>Dissolved Reactive Phosphorus (DRP) Collection & Field Processing</td>
</tr>
<tr>
<td>2064</td>
<td>Fecal Coliform Sample Collection</td>
</tr>
<tr>
<td>2065</td>
<td>Sediment Sampling</td>
</tr>
<tr>
<td>9021</td>
<td>Quality Control Samples and Field Measurements</td>
</tr>
<tr>
<td>9025</td>
<td>Field Equipment Cleaning Procedures</td>
</tr>
<tr>
<td>9040</td>
<td>Station, Sample ID & Chain of Custody Procedures</td>
</tr>
<tr>
<td>6300</td>
<td>Physical Characterization</td>
</tr>
<tr>
<td>6301</td>
<td>Habitat Assessment</td>
</tr>
</tbody>
</table>

In addition, the data must have been collected within the last six years. The six year timeframe would capture all data collected by ADEM during one complete rotation of the five year monitoring schedule currently used by the Department. Failure to satisfy both of these conditions places the waterbody in Category 2. If these two conditions are met, the determination of the minimum data requirement is dependent upon the waterbody type. Waterbody types include wadeable rivers and streams, non-wadeable rivers and streams, reservoirs and reservoir embayments, and estuary and coastal waters. Failure to meet the minimum data requirement will place the waterbody in Category 2. The following list and
Figure 14 describe the minimum data requirement for assessing waters classified as A&I.

- River or Stream
 - 8 conventional parameter samples (including samples for nutrient analysis)
 - 5 bacteriological samples (1 geometric mean sample)
 - 3 inorganic samples
 - 3 pesticide / herbicide samples

- Reservoirs and Embayments
 - 8 conventional parameter samples (including samples for nutrient analysis)
 - 3 bacteriological samples
 - 1 fish tissue analysis from the reservoir mainstem

- Estuary or Coastal Waters
 - 8 conventional parameter samples (including samples for nutrient analysis)
 - 5 bacteriological samples (1 geometric mean sample)

Figure 14

Minimum Data Requirements for the A&I Designated Use

1. **START HERE** Data collected consistent with ADEM Standard Operating Procedures and Quality Assurance Manual, Volumes 1 - 8?
 - NO Category II

2. Water quality data collected during the past 6 years?
 - NO Category II

3. Is the waterbody a river/stream?
 - NO Minimum Data Requirement = 8 samples for conventional parameters + 5 bacteriological samples + 3 inorganic samples + 3 pesticide / herbicide samples
 - YES Minimum Data Requirement = 8 samples for conventional parameters + 5 bacteriological samples

4. Is the waterbody an estuary or coastal water?
 - NO Minimum Data Requirement = 8 samples for conventional parameters + 5 bacteriological samples
 - YES Minimum Data Requirement = 8 samples for conventional parameters + 5 bacteriological samples
4.7.2 Use Support Assessment for A&I Waters

Once the minimum data requirement has been met an assessment of the data can be completed resulting in the categorization of the waterbody as either fully supporting the A&I use (Category 1) or not fully supporting the A&I use (Category 5). The assessment process considers the available data and may include any fish consumption advisories, chemical specific data, biological community assessments, bacteriological data, beach closure notices and toxicity evaluations.

The A&I-classified waterbody is placed in Category 1 if all of the following are true:

- There is no fish consumption advisory issued by the Alabama Department of Public Health (ADPH) for the waterbody.
- There are no more than two exceedances of a toxic pollutant acute criterion during the previous six years.
- The water quality criteria exceedance rate for conventional parameters is not more than 10%. Conventional parameters include dissolved oxygen, pH, temperature (where influenced by a heated discharge), and turbidity. Determination of the 10% exceedance rate is discussed in Section 4.8.
- In reservoirs, bacteriological sample results from a single sample in excess of 2000 colonies fecal coliform per 100 ml will necessitate a follow-up collection of 5 samples during a 30 day period to calculate the geometric mean density. If the geometric mean fecal coliform density is less than or equal to 2000 colonies/100 ml and 10% or less of the single sample results are less than 4000 fecal coliform colonies/100 ml, the waterbody will be considered fully meeting the bacteria criteria for this designated use. In coastal waters 10% or less (as determined using the binomial distribution function and Table 2) of the single samples must be less than 500 enterococci colonies/100 ml. In non-coastal rivers and streams the geometric mean fecal coliform density is less than 2000 colonies/100 ml and 10% or less of the single samples have a fecal coliform density of less than or equal to 4000 colonies/100 ml. Use of the 10% rule will only be applied when there is at least the minimum number of samples.

The A&I-classified waterbody is placed in Category 5 if any of the following are true:

- There is a fish consumption advisory issued by the ADPH.
- The water quality criteria exceedance rate for conventional parameters is more than 10% (as defined in Table 2).
- The geometric mean fecal coliform density is greater than 2000 colonies/100 ml or more than 10% (as defined in Table 2) of the single sample results are greater than 4000 fecal coliform colonies/100 ml. In coastal waters more than 10% (as determined using the binomial distribution function and Table 2) of the single samples are more than 500 enterococci colonies/100 ml. In non-coastal rivers and streams the...
• There are more than two exceedances of an acute criterion for a toxic pollutant during the previous six years.

Figure 15 illustrates the assessment process for A&I waters.
Figure 15
Agricultural and Industrial Water Supply (A&I) Categorization Methodology

1 Water Quality Criterion refers to pH, Dissolved Oxygen, turbidity, and temperature resulting from heat sources
2 Bacteriological Criterion refers to both the single sample maximum and geometric mean, see discussion in Section 4.7.2
3 Toxicant Criterion refers to toxics listed in 335-6-10-.07
4 Applies only to reservoirs with established Chlorophyll a criteria and not during extreme hydrologic events

Special Note - Natural waters may, on occasion, have characteristics outside of the limits established by these criteria. These criteria relate to condition of waters as affected by the discharge of sewage, industrial wastes, or other wastes, not to conditions resulting from natural forces. See 335-6-10-.05(4)
4.8 Other Data considerations and Requirements

4.8.1 Use of the 10% Rule
Seasonal variation in water quality conditions, non-anthropogenic impacts (natural conditions), sampling frequency and number of samples collected, and the temporal and spatial sampling coverage of the waterbody must be considered when evaluating water quality data to determine whether a waterbody is fully supporting its designated uses. Most states, including Alabama, determine a waterbody’s use support status based on the percent of measured values exceeding a given water quality criterion. Based on USEPA guidance, 10 percent is commonly used as the maximum percent of measurements that may exceed the criterion for waters fully supporting their designated uses. For any given set of samples the percent exceedance indicated by the number of samples which exceed a given criterion is only an estimate of the true percent exceedance for the waterbody segment. As a result, it is important that a level of confidence be assigned to the estimate of percent exceedance for a given set of samples.

Hypothesis testing can be used to make this estimate. When making a decision about whether a water should be included in Category 5 on the basis of data for conventional pollutants, the null hypothesis is that the water is not impaired and sufficient data must be collected to minimize the probability that this assumption is incorrect (Type I error). For the purpose of this methodology, a 90% confidence level will be used so that we can say for a given sample size with a given number of criterion exceedances we are 90% confident that the true exceedance percentage is greater than 0.1 (10%). Using the binomial distribution it is possible to determine the number of exceedances out of a given number of samples which will result in a greater than 10 percent exceedance rate at approximately the 90% confidence level. This is the number of exceedances need to reject the null hypothesis.

When making a decision about whether a water in Category 5 should be removed to Category 1 for a particular conventional pollutant, the null hypothesis is that the water is impaired and sufficient data must be collected to minimize the probability that this assumption is incorrect. Again, a 90% confidence level will be used in the binomial distribution function to estimate the number of samples required to be 90% confident that the water is truly not impaired.

4.8.2 Use of Data Older than Six Years
More recent data shall take precedence over older data if:
The newer data indicate a change in water quality and the change is related to changes in pollutant loading to the watershed or improved pollution control mechanisms in the watershed contributing to the assessed area. Or, the Department determines that the older data do not meet the data quality requirements of this methodology or are no longer representative of the water quality of the segment.
Data older than six years will generally not be considered valid, for the purpose of initially placing a water in Category 1 or Category 5, except that data and information older than six years will be considered in the assessment process when such data/information is determined to be reliable. Data older than six years may be used to demonstrate that a waterbody was placed in the wrong category (Category 1 or Category 5) when the original water quality assessment was completed. Also, data older that six years may be used if the data was not considered during a previous reporting cycle and there is evidence that conditions affecting water quality have not changed since the original data was collected. Waters will not be removed from Category 5 on the basis of age of data. However, water may be removed from Category 1 to Category 2 on the basis of age of data when there is evidence that water quality conditions are likely to have changed since the water was originally placed in Category 1.

4.8.3 Use of Accurate Location Data
Accurate location data is required to ensure the appropriate use classification is applied, as well as confirming that sampling stations are located outside of regulatory mixing zones where water quality criteria do not apply. The monitoring data is acceptable if the locations are correct to within 200 feet. Digital spatial data (GIS or GPS) or latitude/longitude information obtained from USGS 7.5 minute quadrangle maps are acceptable methods of providing location information.

4.8.4 Use of Temporally Independent Samples and Data from Continuous Monitoring
When relying solely upon chemical data to determine designated use support, at least ten temporally independent samples of chemical and physical conditions obtained during a time period that includes conditions considered critical for the particular pollutant of interest are needed. Independent samples, for the purpose of parameters other than bacteria and in-situ water quality measurements, will have been collected at least four days apart. Samples collected at the same location less than four days apart shall be considered as one sample for the purpose of determining compliance with toxic pollutant criteria, with the mean value used to represent the sampling period.

For conventional parameters measured using continuous monitoring instruments such as multi-probe datasondes, compliance with the applicable criteria will be determined at the regulatory depth established for dissolved oxygen measurements. This depth is five feet in water that is ten feet or more in total depth or is at mid-depth in water that is less than ten feet in total depth. Hourly measurements of dissolved oxygen, temperature, and pH data collected using continuous monitoring equipment will be assessed using the same binomial distribution function used for discrete sampling of these parameters. When measurements are made more frequently than hourly, the hourly values will be calculated as the mean of the measured values within each hour.
Use of Fish / Shellfish Consumption Advisories and Shellfish Growing Area Classifications

In October 2000 EPA issued guidance to states regarding the use of fish and shellfish consumption advisories (EPA, 2000). The guidance recommended that states consider certain information when determining if designated uses were impaired, including consumption advisories for fish and shellfish and certain shellfish growing area classifications. The following is an excerpt from the EPA guidance.

“Certain shellfish growing area classifications should be used as part of determinations of attainment of water quality standards and listing of impaired waterbodies. Shellfish growing area classifications are developed by the National Shellfish Sanitation Program (NSSP) using water column and tissue data (where available), and information from sanitary surveys of the contributing watershed, to protect public health. The States review these NSSP classifications every three years. There are certain NSSP classifications that are not appropriate to consider, and certain data and information that should not be considered independently of the classification (unless the data and information were not used in the development or review of the classification). These instances are: “Prohibited” classifications set as a precautionary measure due to the proximity of wastewater treatment discharges, or absence of a required sanitary survey; shellfish tissue pathogen data (which can fluctuate based on short-term conditions not representative of general water quality); or short-term actions to place growing areas in the closed status.”

The ADPH, Seafood Program, regulates shellfish harvesting in coastal waters of Alabama. The ADPH has designated four areas in Mobile Bay and adjacent coastal waters and classifies shellfish harvesting waters within these areas as “conditionally open”, “conditionally restricted”, “unclassified”, and “prohibited”. Area I waters comprise most of Mobile Bay south of East Fowl River and west of Bon Secour Bay and including Mississippi Sound. Area II waters include Grand Bay and Portersville Bay with exceptions near wastewater discharges. Area III waters are located in Bon Secour Bay and east of a line drawn from Fort Morgan to Mullet Point. Area IV is located in approximately the northern half of Mobile Bay.

Most of the waters designated as Shellfish Harvesting are classified as “conditionally open”. These harvesting areas are closed when the river stage on the Mobile River at Bucks, Alabama reaches a river stage of 8.0 feet above mean sea level and a public notice announcing the closure is published. These procedures are described in detail in the Conditional Area Management Plan developed by ADPH (ADPH, 2001).
For purposes of making use support decisions relative to the SH designated use, the Department will consider “conditionally open” and “conditionally restricted” waters as impaired and will include these water in Category 5. In “prohibited” and “unclassified” waters the Department will use water column bacteria sampling results to determine use support. When the applicable bacteria criterion is exceeded in more than 10% of the samples as determined using the binomial distribution function and Table 2, these waters will be included in Category 5.

The October 2000 EPA guidance concerning the use of fish and shellfish consumption advisories for protection of human health also recommended that state’s include waters in Category 5 when there was a consumption advisory which suggested either limited consumption or no consumption of fish due to the presence of toxics in fish tissue. The following is an excerpt from the guidance.

“When deciding whether to identify a water as impaired, States, Territories, and authorized Tribes need to determine whether there are impairments of designated uses and narrative criteria, as well as the numeric criteria. Although the CWA does not explicitly direct the use of fish and shellfish consumption advisories or NSSP classifications to determine attainment of water quality standards, States, Territories, and authorized Tribes are required to consider all existing and readily available data and information to identify impaired waterbodies on their section 303(d) lists. For purposes of determining whether a waterbody is impaired and should be included on a section 303(d) list, EPA considers a fish or shellfish consumption advisory, a NSSP classification, and the supporting data, to be existing and readily available data and information that demonstrates non-attainment of a section 101(a) “fishable” use when:

1. the advisory is based on fish and shellfish tissue data,
2. a lower than “Approved” NSSP classification is based on water column and shellfish tissue data (and this is not a precautionary “Prohibited” classification or the state water quality standard does not identify lower than “Approved” as attainment of the standard)
3. the data are collected from the specific waterbody in question and
4. the risk assessment parameters (e.g., toxicity, risk level, exposure duration and consumption rate) of the advisory or classification are cumulatively equal to or less protective than those in the State, Territory, or authorized Tribal water quality standards.”

This listing and assessment methodology will consider fish consumption advisories issued by the ADPH as an indication of impaired use in all State waters. However, there may be circumstances under which these waters could be placed in a category other than Category 5. For example, it may be appropriate to
place certain waters in Category 4b when activities are ongoing under another restoration program with the goal of restoring the water to fully supporting its uses. These decisions will be made on a case by case basis and documented in the ADB.

4.8.6 Use of Biological Assessments

Biological assessments compare data from biological surveys and other direct measurements of resident biota in surface waters to established biological criteria and assess the waterbody’s degree of use support. Alabama has not established numeric biological criteria (except in the case of chlorophyll \(a \) in reservoirs) and, as a result, biological data are used as a means of applying narrative criteria contained in Alabama’s water quality criteria document (ADEM Administrative Code Chapter 335-6-10). ADEM has been gathering biological assessment data for streams across Alabama since the 1970s. In the early 1990’s the Department began assessing the biological health of wadeable streams using the USEPA Rapid Bioassessment Protocol (Level III Wadeable Multi-habitat Bioassessments – EPT Families (WMB-EPT)) and the Intensive Wadeable Multi-habitat Bioassessment (Level IV Intensive Wadeable Multi-habitat Bioassessment (WMB-I)). USEPA has offered the following technical considerations when using biological data to make use support determinations.

- A waterbody’s use support should be based on a comparison of site-specific biological data to a reference condition established for the ecoregion in which the waterbody is located.
- A multimetric approach to bioassessment is recommended.
- The use of a standardized index or sampling period is recommended.
- Standard operation procedures and a quality assurance program should be established.
- A determination of the performance characteristics of the bioassessment methodology is suggested.
- An identification of the appropriate number of sampling sites that are representative of the waterbody is also recommended.

Biological assessment data will be used in combination with other surface water quality data or information to arrive at an overall use support determination. However, EPA recommends that biological data should be weighted more heavily than other types of data when integrating information to make use support determinations since biological data provide a more direct indication of the condition of the aquatic community. Alabama’s assessment methodology has weighted biological data more heavily by requiring at least one biological assessment for certain use classifications and stream types and by reducing the number of water quality samples needed when a biological assessment is available. However, the biological assessment must include a habitat assessment conducted at the time of the biological sampling. When available, periphyton assessment data and algal growth potential tests results will be used to refine stressor identification.
In this methodology, several bioassessment methodologies can be used to assess aquatic life use support. Two Level III Wadeable Multi-habitat Bioassessments – EPT Families (WMB-EPT) are required since these assessments are intended for screening purposes only. A combination of one WMB-EPT assessment and one fish IBI assessment is sufficient but only in the Cahaba and Black Warrior River basins since the metric ranges for the fish IBI have been calibrated only to the Cahaba and Black Warrior River basins. Alternatively, one Level IV Intensive Wadeable Multi-habitat Bioassessment (WMB-I) would be sufficient for assessing aquatic life use support. These methodologies are described in detail in the Department’s SOPs referenced earlier. Occasionally it may be appropriate to place a water in Category 5 based on a single screening level assessment (WMB-EPT) when there is a clear indication of impairment and the cause is readily apparent. In addition, when assessment results vary significantly between the macroinvertebrate and fish communities, it may be appropriate place the waterbody in Category 5 when there is an indication of the cause for the discrepancy. These decisions will be made on a case by case basis in consultation with the biologist(s) responsible for conducting the assessment and will be documented in the ADB.

A multi-agency, multi-year effort is currently underway to develop fish IBI metrics for all of Alabama’s river basins. As the effort progresses across the state, fish IBI assessments will be incorporated into the use support assessment process. The project is expected be completed by 2011, provided that sufficient funding is available.

4.8.7 Use of Data Collected by Others
Data collected by other agencies, industry or industry groups, neighboring states, and watershed groups will be considered and evaluated provided the data meet the minimum data requirements specified for each designated use and comply with the quality control and quality assurance requirements discussed in Section 4.9. Examples of other agencies and groups collecting water quality data in Alabama include, but are not limited to, the following agencies and groups:

- USGS
- USEPA
- Tennessee Valley Authority
- National Oceanic and Atmospheric Administration
- United States Fish and Wildlife Service
- Mobile Bay National Estuary Program
- Dauphin Island Sea Lab
- Geological Survey of Alabama
- Natural Resources Conservation Service
- Soil and Water Conservation Districts
- Alabama Department of Conservation and Natural Resources
- Alabama Clean Water Partnership
- Alabama Department of Public Health
- Alabama Department of Transportation
• Citizen and Watershed Groups
• Industries and municipalities conducting river monitoring pursuant to NPDES or CWA Section 401 requirements

Data submitted by third parties for consideration should include documentation describing the data, including a study plan or SOP, and certification that the data were (or were not) collected consistent with the requirements presented in this methodology.

4.8.8 Use of Bacteria Data
Waterbody segments are sampled for bacteria either as part of a special study, routine ambient monitoring, or as part of the Department’s Beach Monitoring Program. Bacteria of the fecal coliform group are currently used as indicators of the possible presence of pathogens in non-coastal waters. In coastal waters, bacteria of the enterococci group are used as indicators of the possible presence of pathogens. Alabama’s bacteria criteria are summarized for each designated use in Table 1.

When assessing the geometric means of bacteria samples, one excursion will generally be sufficient to determine impairment as long as the total number of geometric means is less than eight. When eight or more geometric means are available for assessment, impairment will be determined using Table 2. In addition, both the geometric mean and single sample maximum criteria must be met when the number of individual samples is less than eight. For eight or more individual samples, Table 2 will be used to determine impairment based on exceedances of the single sample criterion.
Table 1
Alabama’s Bacteria Criteria

<table>
<thead>
<tr>
<th>Outstanding Alabama Water (OAW)</th>
<th>Public Water Supply (PWS)</th>
<th>Swimming and Other Whole Body Water-Contact Sports (S)</th>
<th>Shellfish Harvesting (SH)</th>
<th>Fish and Wildlife (F&W)</th>
<th>Limited Warmwater Fishery (LWF)</th>
<th>Agricultural and Industrial Water Supply (A&I)</th>
</tr>
</thead>
</table>

4.8.9 Consideration of Stream Flow and Method Detection Limits
During toxicant sampling in rivers or streams the measured flow must be at or above the 7Q10 value for that location. In cases where the applicable water quality criterion is less than the method detection limit (MDL) for a particular pollutant and the concentration for the pollutant is reported as less than detection (<MDL), the Department will evaluate the data consistent with EPA guidance provided in “Guidance for Data Quality Assessment”, EPA QA/G-9, QA00 UPDATE, EPA, July 2000 and will use the approach that is appropriate for the data set.

These requirements are intended to ensure that existing water quality conditions are accurately portrayed, do not characterize transitional conditions, and that obsolete or inaccurate data are not used. In addition, the minimum data requirements may change on a case by case basis if pollutant sources upstream of the monitoring locations are likely. This determination will be made using information obtained from the Department’s geographic information system or other databases. Failure to meet the minimum data requirements for any waterbody type will place the waterbody in Category 2.

4.9 Quality Control / Quality Assurance Requirements
All data (including chemical, physical, and biological) should be collected and analyzed consistent with the SOPs presented earlier. Study plans should reference the SOP appropriate for the type of data being collected and should discuss how data quality will be documented. This should include a discussion of the quality control procedures followed during sample collection and analysis. These procedures should describe the number and type of field and laboratory quality control samples for the project, if appropriate for the type of sampling being conducted, field blanks, equipment blanks, split samples, duplicate samples, the name of the laboratory performing the analyses, name of the laboratory contact person, and the number and type of laboratory quality control samples.

While the Department will consider any existing and readily available data and information, the Department reserves the right to not use data or information in making use support decisions which do not comply with the minimum data requirements presented in this document. The decision not to use certain data will be documented in the ADB. The Department applies best professional judgment when considering datasets smaller than the specified minimum data requirements. In such instances, use support decisions are made on a case by case basis in consideration of ancillary data and information such as watershed characteristics, known pollutant sources, water quality trends or other environmental indicators.

4.10 Minimum Sample Size and Allowable Number of Water Quality Criterion Exceedances
Table 2 shows the allowable number of exceedances for various samples sizes up to 199 samples. The Department’s annual sampling plans and available resources generally allow for at least eight samples per sampling location except in reservoirs where fewer samples (i.e. 3 samples) may be collected due to sample holding time and resource
The number of exceedances in each range of sample sizes was calculated using the binomial distribution function. This number is the number of exceedances of a particular water quality criterion needed to say with 90% confidence that the criterion is exceeded in more than 10% of the population represented by the available samples. This table will be used to determine the number of exceedances of Alabama numeric water quality criteria listed in ADEM Administrative Code 335-6-10 (for dissolved oxygen, temperature, turbidity, pH, and bacteria), consistent with the assessment methodology for each use discussed earlier, necessary to establish that a waterbody segment is not fully supporting its designated uses. This approach is consistent with ADEM Administrative Code 335-6-10 which recognizes that natural conditions may cause sporadic excursions of numeric water quality criteria and with EPA’s 1997 305(b) guidance. For conventional water quality parameters, there must be at least eight temporally independent samples collected during the previous six year period to be considered adequate for making use support determinations, except where fewer samples are determined to be adequate as discussed earlier. As used in this context, temporally independent means that the samples were collected at an interval appropriate to capture the expected variation in the parameter. For example, dissolved oxygen, temperature and pH measurements should capture the normal diurnal variation that occurs in the parameters and temporal independence may occur in several hours (i.e. morning versus afternoon). Measurements for turbidity and bacteria should typically be at least 24 hours apart.

It is the intent of the methodology to ensure that an adequate number of samples are available for use in the assessment process and for developing future monitoring plans. Smaller sample sizes may be appropriate in certain circumstances where there is a clear indication that exceedances of the criteria are not due to natural conditions. For example, a data set comprised of fewer than the required minimum number of samples collected monthly may be sufficient to determine that a waterbody is not supporting its use when a significant number (more than two) exceed a particular criterion. Conversely, a data set with fewer than the required minimum number of samples collected monthly may be sufficient to determine that a waterbody is fully supporting its use if none of the samples exceed any of the criteria and there is sufficient supporting information to support this conclusion (i.e. biological assessment indicates full use support). The decision to use smaller data sets for making use support decisions will be made on a case by case basis using best professional judgment. The basis for these decisions will be documented in the ADB.
Table 2

Minimum Number of Samples Exceeding the Numeric Criterion Necessary for Listing*

<table>
<thead>
<tr>
<th>Sample Size</th>
<th>Number of Exceedances</th>
<th>Sample Size</th>
<th>Number of Exceedances</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 thru 11</td>
<td>2</td>
<td>97 thru 104</td>
<td>14</td>
</tr>
<tr>
<td>12 thru 18</td>
<td>3</td>
<td>105 thru 113</td>
<td>15</td>
</tr>
<tr>
<td>19 thru 25</td>
<td>4</td>
<td>114 thru 121</td>
<td>16</td>
</tr>
<tr>
<td>26 thru 32</td>
<td>5</td>
<td>122 thru 130</td>
<td>17</td>
</tr>
<tr>
<td>33 thru 40</td>
<td>6</td>
<td>131 thru 138</td>
<td>18</td>
</tr>
<tr>
<td>41 thru 47</td>
<td>7</td>
<td>139 thru 147</td>
<td>19</td>
</tr>
<tr>
<td>48 thru 55</td>
<td>8</td>
<td>148 thru 156</td>
<td>20</td>
</tr>
<tr>
<td>56 thru 63</td>
<td>9</td>
<td>157 thru 164</td>
<td>21</td>
</tr>
<tr>
<td>64 thru 71</td>
<td>10</td>
<td>165 thru 173</td>
<td>22</td>
</tr>
<tr>
<td>72 thru 79</td>
<td>11</td>
<td>174 thru 182</td>
<td>23</td>
</tr>
<tr>
<td>80 thru 88</td>
<td>12</td>
<td>183 thru 191</td>
<td>24</td>
</tr>
<tr>
<td>89 thru 96</td>
<td>13</td>
<td>192 thru 199</td>
<td>25</td>
</tr>
</tbody>
</table>

* - For conventional parameters, including bacteria, at the 90 percent confidence level

5.0 Removing a Waterbody from Category 5

Waterbodies may be removed from a 303(d) list (category 5) for various reasons, including:

- Assessment of more recent water quality data demonstrates that the waterbody is meeting all applicable water quality standards. (Move to Category 1)
- A review of the original listing decision demonstrates that the waterbody should not have been included in Category 5. (Move to Category 1 or Category 2)
- TMDL has been completed. (Move to Category 4a)
- Other pollution control requirements are reasonably expected to result in the attainment of the water quality standards in the near future. These requirements must be specifically applicable to the particular water quality problem. (Move to Category 4b)
- Impairment is not caused by a pollutant. (Move to Category 4c)
- Natural causes – When it can be demonstrated the exceedance of a numeric water quality criterion is due to natural conditions and not to human disturbance activities, the water may be removed from Category 5. (Move to Category 1)
Table 3 shows the allowable number of exceedances of criteria for conventional pollutants for various sample sizes and a 90% confidence level. This table will be used to determine the number of allowable exceedances of Alabama numeric water quality criteria for pollutants listed in ADEM Administrative Code 335-6-10, with the exception of chlorophyll a criteria and the toxics criteria listed in the appendix to ADEM Administrative Code 335-6-10, for the waterbody to be removed from a 303(d) list for a specific pollutant (move to Category 1). In addition, the original basis for listing the waterbody will be considered as a part of the delisting process. Included in this evaluation will be a review of pollutant sources to determine which ones may have been removed or remediated, changes in land practices or uses, installation of new treatment facilities or best management practices, and changes in stream hydrology or morphology.

Table 3

<table>
<thead>
<tr>
<th>Sample Size</th>
<th>Number of Exceedances</th>
<th>Sample Size</th>
<th>Number of Exceedances</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 thru 21</td>
<td>0</td>
<td>104 thru 115</td>
<td>7</td>
</tr>
<tr>
<td>22 thru 37</td>
<td>1</td>
<td>116 thru 127</td>
<td>8</td>
</tr>
<tr>
<td>38 thru 51</td>
<td>2</td>
<td>128 thru 139</td>
<td>9</td>
</tr>
<tr>
<td>52 thru 64</td>
<td>3</td>
<td>140 thru 151</td>
<td>10</td>
</tr>
<tr>
<td>65 thru 77</td>
<td>4</td>
<td>152 thru 163</td>
<td>11</td>
</tr>
<tr>
<td>78 thru 90</td>
<td>5</td>
<td>164 thru 174</td>
<td>12</td>
</tr>
<tr>
<td>91 thru 103</td>
<td>6</td>
<td>175 thru 186</td>
<td>13</td>
</tr>
</tbody>
</table>

* - For conventional parameters, including bacteria, at the 90 percent confidence level

When a waterbody has been included in Category 5 due to a fish consumption advisory, the waterbody will be moved to Category 1 when subsequent fish tissue results indicate that pollutant concentrations have declined and a fish consumption advisory is no longer needed. The determination that a fish consumption advisory is no longer needed is made by the Alabama Department of Public Health.

For waters originally placed in Category 5 due to a specific toxic pollutant or specific toxic pollutants, there should be no violations of the appropriate criteria in a minimum of 8 samples collected over a three year period before the cause of impairment is removed or the water is placed in Category 1.
6.0 Estimating the Size of the Assessed Waterbody

Waterbodies are assessed on the basis of assessment units. Assessment units vary in size depending on the waterbody type, watershed characteristics, designated use, and the location of monitoring stations. In most cases, individual assessments will lie completely within a designated use or multiple uses. For example, an assessment unit will not generally be partially within one designated use and partially within a different designated use. However, assessment units may be assigned more than one designated use. For example, an assessment unit may have classified uses of both Fish and Wildlife and Public Water Supply provided both uses are assigned to the entire assessment unit. An assessment unit may be defined as a stream, the mainstem of a river, embayment, portion of a lake or reservoir, or a part of an estuary or coastal water.

A monitoring unit is defined as the watershed draining to, or close to, a sampling location and is made up of many assessment units (individual reaches). A monitoring unit will generally have a drainage area of more than 10 square miles and will be characterized by a predominant land use / land cover. When it is necessary to better characterize assessment units within the larger monitoring units, new monitoring units can be delineated based on the location of the additional sampling location or locations. Water quality data and information gathered at a sampling location which defines a monitoring unit will be the primary means for assigning a use support status to assessment units within the monitoring unit.

The spatial extent of each monitoring unit will be determined using information contained in the Department’s Geographic Information System (GIS). Specifically, stream coverages contained within the National Hydrography Dataset (NHD) will be the basis for determining the size of assessed waters. This database of natural and constructed surface waters is a comprehensive set of digital spatial data that contains information about surface water features such as lakes, ponds, streams, rivers, springs and wells. Within the NHD, surface water features are combined to form “reaches”, which provide the framework for linking water-related data to the NHD surface drainage network. These linkages enable the analysis and display of these water-related data in upstream and downstream order. Characteristics such as stream length or reservoir area can be aggregated within a monitoring unit to estimate the size of assessed waters.

7.0 Ranking and Prioritizing Impaired Waters

Waters in Category 5 will be prioritized based on the nature of the pollutant of concern. Pollutants that relate directly to human health issues rank “high”, while more conventional water quality parameters rank “medium” while other non-conventional or legacy pollutant impacts such as contaminated sediments, or impaired habitat rank “low”. An example of high priority pollutants are toxics. Dissolved oxygen, pH, and unionized ammonia are examples of medium priority. Figure 16 describes the general approach to assigning a ranking to each TMDL included in Category 5. However, the TMDL development schedule may not always consider only the ranking of the impaired waterbody. The following factors may be used to determine the timing for the development of the TMDL.
• TMDL complexity
• Pollutants of concern
• Need for additional data and information
• Sources of the pollutants
• Severity of the impairment
• Spatial extent of impairment
• Designated uses of the waterbodies
• General watershed management activities (e.g. 319 grant activities and watershed management planning)
• Existence of endangered and sensitive aquatic species
• Degree of public interest and support for particular waterbodies.
Figure 16
Alabama's TMDL Prioritization Strategy

START

Is there a readily available methodology for developing a TMDL for the pollutant of concern?

YES

Is there sufficient data available to develop a TMDL for the pollutant of concern?

YES

Is the waterbody classified as an Outstanding Alabama Water, designated as an Outstanding National Resource Water, or part of an interstate TMDL?

Yes

High Priority

NO

Does the pollutant of concern present a significant risk to public health or aquatic life that is not being addressed through other means, such as fish consumption advisories, shellfish harvesting closures, or bathing beach closures?

NO

Medium Priority

YES

High Priority

NO

Low Priority

Medium Priority

NO

Low Priority

High Priorit
Waters which are currently listed on the §303(d) list will have their TMDL developed within 8 to 13 years unless they become eligible for delisting. TMDLs for Category 5 waters will be developed no later than 13 years after the water is first placed in Category 5.

The Integrated Monitoring Report will include proposed schedules (both long term and annually) for the development of TMDLs.

The Department will communicate with bordering states concerning the status of shared waters. When requested, the state will provide data concerning shared waters to the adjacent state.

8.0 Schedule for Assessing State Waters

The State has developed a Watershed Management Schedule and has been operating under the rotating basin plan since 1997. This schedule has the state divided into 5 river basin groups which are sampled on a five year rotating basis. The rotating basin schedule is as follows:

- 2005 - Alabama, Coosa, and Tallapoosa River Basins
- 2006 – Escatawpa, Lower Tombigbee, Upper Tombigbee, and Mobile River Basins
- 2007 – Cahaba and Black Warrior River Basins
- 2008 – Chipola, Choctawhatchee, Perdido-Escambia, and Chattahoochee River Basins
- 2009 – Tennessee River Basin
- 2010 – Tallapoosa, Alabama, and Coosa River Basins
- 2011 – Escatawpa, Lower Tombigbee, Upper Tombigbee, and Mobile River Basins

The Integrated Monitoring and Assessment Report will include a comprehensive monitoring and assessment plan that describes the state’s proposed schedule for the following two years. Elements of this plan include: a description of the sampling approach (i.e. rotating basin and fixed ambient), and a list of the parameters to be collected (i.e. physical, chemical, and biological). The report will also include a schedule (both long term and annually) for collecting data and information for basic assessments and for TMDLs.

9.0 Public Participation

The Integrated Report will combine the Water Quality Inventory Report (§305(b)) with the Impaired Waterbodies (§303(d)) listing. Category 5 in the Integrated Report is considered to be the Impaired Waterbodies list. The remaining categories are considered the Water Quality Inventory. This methodology lays out the framework for assessing data and determining which of the five categories the waterbody will be assigned to. The entire Integrated List will follow the same public process as the §303(d) listing but Categories 1 through 4 and the monitoring schedule will be provided for informational purposes only since these schedules are subject to change as resources allow.

The Department will solicit the submittal of data and information for use in developing the Integrated Report. The public notice requesting data will be published in four major newspapers in the state and on the Department’s Website. The time period for submitting data will be
specified in the public notice. The data must be received by the Department by October 31 in the year prior to the report being due to EPA. Data submitted after the specified period will be considered in the development of subsequent Integrated Reports. The Department reviews all existing and readily available data and is committed to using only data with acceptable quality assurance to develop the Integrated Report. Only electronic data or data available in published reports are considered “readily available”. Typically, the Department uses Microsoft databases (i.e., Excel, Access) or the Water Resources Database (WRDB) for database management and retrieval.

The Department will publish notice of the availability of the Integrated Water Quality Monitoring and Assessment Methodology and Draft Integrated Report in four major newspapers of general circulation throughout the State and on the Department Website. Adjacent states, federal and interstate agencies shall also be noticed as necessary. The Department will coordinate with neighboring states during the development of the Integrated Report, as needed. The comment period on a proposed Category 5 (§303(d)) list will be a minimum of 30 days.

The Integrated Report, which will include the integrated List, expected monitoring schedules, TMDL schedules, as well as any other information usually included in the §305(b) Report, will be submitted to the USEPA as required by §305(b) of the Clean Water Act. The Department will post the availability of the Integrated Report on its web page at that time.
10.0 References

EPA, 2005. Guidance for 2006 Assessment, Listing, and Reporting Requirements Pursuant to Sections 303(d), 305(b) and 3314 of the Clean Water Act; United States Environmental Protection Agency. Washington, DC.