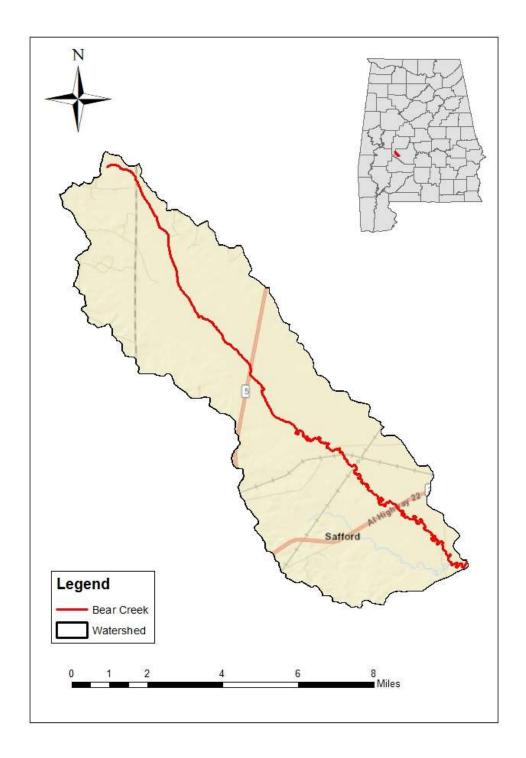


Final Total Maximum Daily Load (TMDL) for Bear Creek


Assessment Unit ID # AL03150203-0108-110

Dallas and Perry Counties

Pathogens (E. coli)

Alabama Department of Environmental Management
Water Quality Branch
Water Division
July 2024

Figure 1: Bear Creek Watershed

Tabl	le of C	ontents	Page			
1.0	Exec	utive Summary	1			
2.0	Basis	Basis for §303(d) Listing				
	2.1	Introduction	3			
	2.2	Problem Definition	3			
3.0	Tech	nical Basis for TMDL Development	5			
	3.1	Water Quality Target Identification	5			
	3.2	Source Assessment	5			
		3.2.1 Point Sources in the Bear Creek Watershed	5			
		3.2.2 Nonpoint Sources in the Bear Creek Watershed	5			
	3.3	Land Use Assessment	6			
	3.4	Linkage Between Numeric Targets and Sources	9			
	3.5	Data Availability and Analysis	9			
	3.6	Critical Conditions/Seasonal Variation	11			
	3.7	Margin of Safety	12			
4.0	TMD	Development	13			
	4.1	Definition of a TMDL	13			
	4.2	Load Calculations	13			
	4.3	TMDL Summary	15			
5.0	Follo	w-up Monitoring	17			
6.0	Publi	c Participation	17			
7.0	Appe	endices	18			
	7.1	References	18			
	7.2	Water Quality Data	19			
	7.3	Bear Creek Watershed Photos (March 19, 2024)	20			

List of Figures

Figure 1 Figure 3-1 Figure 3-2 Figure 3-3	Bear Creek Watershed Land Use Map for the Bear Creek Watershed Primary Land Uses in the Bear Creek Watershed Map of ADEM Sampling Station on Bear Creek	ii 7 8 10
List of Tab	oles	
Table 1-1	E. coli Loads and Required Reductions for Bear Creek	2
Table 1-2	E. coli TMDL for Bear Creek	2
Table 3-1	Land Use Areas for the Bear Creek Watershed	8
Table 3-2	Bear Creek Sampling Station Description	9
Table 3-3	2023 E. coli Exceedances for the Bear Creek Watershed	11
Table 4-1	E. coli Loads and Required Reductions for Bear Creek	15
Table 4-2	E. coli TMDL for Bear Creek	15
Table 5-1	Follow-up Monitoring Schedule	17
Table 7-1	ADEM Pathogen Data Collected on Bear Creek	19
List of Pho	otos	
Photo 7-1	Bear Creek at BARD-1 (County Road 21), looking upstream	20
Photo 7-2	Bear Creek at BARD-1 (County Road 21), looking downstream	20
Photo 7-3	Bear Creek at Highway 22, looking upstream	21
Photo 7-4	Bear Creek at Highway 22, looking downstream	21
Photo 7-5	Bear Creek at County Road 109, looking upstream	22
Photo 7-6	Bear Creek at County Road 109, looking downstream	22
Photo 7-7	Bear Creek at Highway 5, looking upstream	23
Photo 7-8	Bear Creek at Highway 5, looking downstream	23

1.0 Executive Summary

Section 303(d) of the Clean Water Act and EPA's Water Quality Planning and Management Regulations (40 CFR Part 130) require states to identify waterbodies which are not meeting their designated uses and to determine the Total Maximum Daily Load (TMDL) for pollutants causing the use impairment. A TMDL is the sum of individual waste load allocations (WLAs) for point sources, load allocations (LAs) for nonpoint sources including natural background levels, and a margin of safety (MOS).

Bear Creek is currently included on Alabama's §303(d) list for pathogens (*E. coli*) from its source to Bogue Chitto Creek. Bear Creek forms southeast of the town of Uniontown in Perry County and is part of the Alabama River Basin. It flows southeast into Dallas County until its confluence with Bogue Chitto Creek. The total length of Bear Creek is 16.79 miles, and the total drainage area of the Bear Creek watershed is 34.83 square miles. Bear Creek has a use classification of Fish & Wildlife (F&W).

Bear Creek was first included on the §303(d) list for pathogens in 2018 based on ADEM monitoring data collected in 2015-2016 at station BARD-1. Bear Creek has subsequently been listed on the 2020 and 2022 §303(d) lists of impaired waterbodies.

In 2023, sampling studies were performed by ADEM to further assess the water quality of the impaired stream. For purposes of this TMDL, the 2023 data will be used to assess the water quality of Bear Creek because it provides the best picture of the current water quality of the stream. The 2024 edition of *Alabama's Water Quality Assessment and Listing Methodology*, prepared by ADEM, provides the rationale for the Department to use the most recent data to prepare a TMDL for an impaired waterbody. This TMDL will be developed from *E. coli* data collected at station BARD-1. This bacterial data is listed in Appendix 7.2, Table 7-1 for reference. ADEM collected 13 *E. coli* samples and conducted two geometric mean studies on Bear Creek in 2023. According to the data, Bear Creek was not meeting the pathogen criteria applicable to its use classification of F&W. Therefore, this TMDL has been developed for pathogens (*E. coli*) for the listed reach.

A mass balance approach was used for calculating the pathogen TMDL for Bear Creek. The mass balance approach utilizes the conservation of mass principle. The TMDL was calculated using the single sample or geometric mean sample exceedance event which resulted in the highest percent reduction. Existing loads were calculated by multiplying the *E. coli* concentrations times the respective in-stream flows and a conversion factor. In the same manner as existing loads were calculated, allowable loads were calculated for the single sample *E. coli* target of 268.2 colonies/100 ml (298 colonies/100 ml – 10% Margin of Safety) and geometric mean *E. coli* target of 113.4 colonies/100 ml (126 colonies/100 ml – 10% Margin of Safety). In this case, it was determined that the highest percent reduction was calculated from a single sample maximum *E. coli* exceedance at station BARD-1 (September 6, 2023) with a value of 1607 colonies/100 ml. This violation calls for a reduction of 83%.

Table 1-1 is a summary of the estimated existing load, allowable load, and percent reduction for the geometric mean and single sample criteria. Table 1-2 provides the details of the TMDL along

with the corresponding reductions for Bear Creek, which are protective of the *E. coli* water quality criteria year-round.

Table 1-1. E. coli Loads and Required Reductions for Bear Creek

Source	Existing Load (colonies/day)	Allowable Load (colonies/day)	Required Reduction (colonies/day)	% Reduction
Single Sample Load	1.93E+10	3.22E+9	1.60E+10	83%
Geometric Mean Load	1.49E+10	4.66+9	1.02E+10	69%

Table 1-2. E. coli TMDL for Bear Creek

		Waste Load Allocation (WLA) ^a				
TMDLe	Margin of Safety (MOS)	WWTPs ^b	Stormwater (MS4s and other NPDES sources) ^c	Leaking Collection Systems ^d	Load Allocation (LA	location (LA)
(col/day)	(col/day)	(col/day)	(% reduction)	(col/day)	(col/day)	(% reduction)
3.57E+9	3.57E+8	NA	NA	0	3.22E+9	83%

Note: NA = not applicable

Compliance with the terms and conditions of existing and future NPDES permits will effectively implement the WLA and demonstrate consistency with the assumptions and requirements of the TMDL. Required load reductions in the LA portion of this TMDL can be implemented through voluntary measures and may be eligible for CWA §319 grants.

The Department recognizes that adaptive implementation of this TMDL will be needed to achieve applicable water quality criteria and we are committed to targeting the load reductions to improve water quality in the Bear Creek watershed. As additional data and/or information become available, it may become necessary to revise and/or modify the TMDL accordingly.

a. There are no CAFOs in the Bear Creek watershed. Future CAFOs will be assigned a waste load allocation (WLA) of zero.

b. Future WWTPs must meet the applicable instream water quality criteria for pathogens at the point of discharge.

c. Future MS4 areas and other NPDES stormwater sources would be required to demonstrate consistency with the assumptions and requirements of this TMDL through implementation and maintenance of BMPs on a case-by-case basis.

d. The objective for leaking collection systems is a WLA of zero. It is recognized, however, that a WLA of 0 colonies/day may not be practical. For these sources, the WLA is interpreted to mean a reduction in *E. coli* loading to the maximum extent practicable, consistent with the requirement that these sources not contribute to a violation of the water quality criteria for *E. coli*.

e. TMDL was established using the single sample criterion of 298 colonies/100ml.

2.0 Basis for §303(d) Listing

2.1 Introduction

Section 303(d) of the Clean Water Act and EPA's Water Quality Planning and Management Regulations (40 CFR Part 130) require states to identify waterbodies which are not meeting their designated uses and to determine the total maximum daily load (TMDL) for pollutants causing use impairment. The TMDL process establishes the allowable loading of pollutants for a waterbody based on the relationship between pollution sources and instream water quality conditions, so that states can establish water-quality based controls to reduce pollution and restore and maintain the quality of their water resources (USEPA, 1991).

The State of Alabama has identified the 16.79 miles of Bear Creek as impaired for pathogens. The §303(d) listing for pathogens was originally reported on Alabama's 2018 List of Impaired Waters based on 2015-2016 ADEM monitoring data from station BARD-1 and was subsequently included on the 2020 and 2022 lists. The potential sources of the impairment on the 2022 §303(d) list are aquaculture and pasture grazing.

2.2 Problem Definition

<u>Waterbody Impaired:</u> Bear Creek – From Bogue Chitto Creek to

its source

Impaired Reach Length: 16.79 miles

<u>Impaired Drainage Area:</u> 34.83 square miles

Water Quality Standard Violation: Pathogens (single sample, geometric mean)

Pollutant of Concern: Pathogens (*E. coli*)

Water Use Classification: Fish and Wildlife

Usage Related to Classification:

The impaired stream segment is classified as Fish and Wildlife (F&W). Usage of waters in the F&W classification is described in ADEM Admin. Code R. 335-6-10-.09(5)(a), (b), (c), and (d).

- (a) Best usage of waters: fishing, propagation of fish, aquatic life, and wildlife.
- (b) Conditions related to best usage: the waters will be suitable for fish, aquatic life and wildlife propagation. The quality of salt and estuarine waters to which this classification is assigned will also be suitable for the propagation of shrimp and crabs.
- (c) Other usage of waters: it is recognized that the waters may be used for incidental water contact year-round and whole body water-contact recreation during the months of May through October, except that water contact is strongly discouraged in the vicinity of

discharges or other conditions beyond the control of the Department or the Alabama Department of Public Health.

(d) Conditions related to other usage: the waters, under proper sanitary supervision by the controlling health authorities, will meet accepted standards of water quality for outdoor swimming places and will be considered satisfactory for swimming and other whole body water-contact sports.

E. coli Criteria:

Criteria for acceptable bacteria levels for the F&W use classification are described in ADEM Admin. Code R. 335-6-10-.09(5)(e)7(i) and (ii) as follows:

7. Bacteria

- (i) In non-coastal waters, bacteria of the E. coli group shall not exceed a geometric mean of 548 colonies/100 ml; nor exceed a maximum of 2,507 colonies/100 ml in any sample. In coastal waters, bacteria of the enterococci group shall not exceed a maximum of 275 colonies/100 ml in any sample. The geometric mean shall be calculated from no less than five samples collected at a given station over a 30-day period at intervals not less than 24 hours.
- (ii) For incidental water contact and whole body water-contact recreation during the months of May through October, the bacterial quality of water is acceptable when a sanitary survey by the controlling health authorities reveals no source of dangerous pollution and when the geometric mean E. coli organism density does not exceed 126 colonies/100 ml nor exceed a maximum of 298 colonies/100 ml in any sample in non-coastal waters. In coastal waters, bacteria of the enterococci group shall not exceed a geometric mean of 35 colonies/100 ml nor exceed a maximum of 158 colonies/100 ml in any sample. The geometric mean shall be calculated from no less than five samples collected at a given station over a 30-day period at intervals not less than 24 hours. When the geometric bacterial coliform organism density exceeds these levels, the bacterial water quality shall be considered acceptable only if a second detailed sanitary survey and evaluation discloses no significant public health risk in the use of the waters. Waters in the immediate vicinity of discharges of sewage or other wastes likely to contain bacteria harmful to humans, regardless of the degree of treatment afforded these wastes, are not acceptable for swimming or other whole body water-contact sports.

Criteria Exceeded:

Bear Creek was first included on the §303(d) list for pathogens in 2018 based on ADEM's 2015-2016 *E. coli* data from station BARD-1. Of the nine *E. coli* samples collected at station BARD-1 in 2015-2016, two violated the applicable single sample maximum criterion of 298 col/100 ml. The listing data can be found in Appendix 7.2, Table 7.1.

3.0 Technical Basis for TMDL Development

3.1 Water Quality Target Identification

For the purpose of this TMDL, a single sample *E. coli* target of 268.2 colonies/100 ml will be used. This target was derived by using a 10% explicit margin of safety from the single sample maximum criterion of 298 colonies/100 ml. This target is considered protective of water quality standards and should not allow the single sample maximum criterion to be exceeded. In addition, a geometric mean target of 113.4 colonies/100 ml will be used for a series of five samples taken at least 24 hours apart over the course of 30 days. This target was also derived by using a 10% explicit margin of safety from the geometric mean criterion of 126 colonies/100 ml. This target is considered protective of water quality standards and should not allow the geometric mean criterion to be exceeded.

3.2 Source Assessment

3.2.1 Point Sources in the Bear Creek Watershed

A point source can be defined as a discernable, confined, and discrete conveyance from which pollutants are or may be discharged to surface waters. Point source contributions can typically be attributed to municipal wastewater facilities, illicit discharges, and leaking sewer systems in urban areas. Municipal wastewater treatment facilities are permitted through the National Pollutant Discharge Elimination System (NPDES) process administered by ADEM. In urban settings, sewer lines typically run parallel to streams in the floodplain. If a leaking sewer line is present, high concentrations of bacteria can flow into the stream or leach into the groundwater. Illicit discharges are found at facilities that are discharging bacteria when not permitted, or when the pathogens criterion established in the issued NPDES permit is not being upheld.

There are currently no NPDES-regulated point sources in the Bear Creek watershed. In addition, the Bear Creek watershed does not presently qualify as a municipal separate storm sewer system (MS4) area. Any future NPDES-regulated discharger that is considered by the Department to be a pathogen source will be required to demonstrate consistency with the assumptions and requirements of this TMDL.

There are currently no Animal Feeding Operation/Concentrated Animal Feeding Operation (AFO/CAFO) facilities located within the Bear Creek watershed. The ADEM AFO/CAFO rules prohibit discharges of pollutants from the facilities and their associated waste land application activities. As a result, future AFOs/CAFOs will receive a waste load allocation of zero.

3.2.2 Nonpoint Sources in the Bear Creek Watershed

Nonpoint sources of *E. coli* bacteria do not have a defined discharge point, but rather occur over the entire length of a stream or waterbody. On the land surface, *E. coli* bacteria can accumulate over time in the soil and then are washed off during rain events. As the runoff transports the sediment over the land surface, more *E. coli* bacteria are collected and carried to the stream or

waterbody. Therefore, there is some net loading of *E. coli* bacteria into the stream as dictated by the watershed hydrology.

Nonpoint sources are the primary source of *E. coli* bacteria in the Bear Creek watershed. Land use in this watershed is primarily agriculture (48.72%) and forested/natural (43.81%), along with some open water (5.00%) and developed land (2.47%).

Agricultural land can be a source of *E. coli* bacteria. Runoff from pastures, animal feeding areas, improper land application of animal wastes, and animals with direct access to streams are all mechanisms that can contribute *E. coli* bacteria to waterbodies. To account for the potential influence from animals with direct access to stream reaches in the watershed, *E. coli* loads can be calculated as a direct source into the stream.

E. coli bacteria can also originate from forested areas due to the presence of wild animals such as deer, raccoons, turkey, waterfowl, etc. Wildlife deposit feces onto land surfaces where it can be transported during rainfall events to nearby streams. Control of these sources is usually limited to land management BMPs and may be impracticable in most cases. As a result, forested areas are not specifically targeted in this TMDL.

E. coli loading from urban areas is potentially attributable to multiple sources including storm water runoff, unpermitted discharges of wastewater, runoff from improper disposal of waste materials, failing septic tanks, and domestic animals. Septic systems may be direct or indirect sources of bacterial pollution via ground and surface waters. Onsite septic systems have the potential to deliver E. coli bacteria to surface waters due to system failure and malfunction.

3.3 Land Use Assessment

Land use for the Bear Creek watershed was determined using ArcMap with land use datasets derived from the 2021 National Land Cover Dataset (NLCD). Figure 3-1 and Table 3-1 display the land use areas for the Bear Creek watershed. Figure 3-2 is a graph depicting the primary land uses in the Bear Creek watershed.

The majority of the Bear Creek watershed is agriculture (48.72%) and forested/natural (43.81%). Other land uses include open water (5.00%) and developed land (2.47%). Developed land includes both commercial and residential land uses. If not managed properly, agriculture can have significant nonpoint source impacts. Also, septic systems can be a main source of bacteria if not properly installed and maintained.

Figure 3-1. Land Use Map for the Bear Creek Watershed

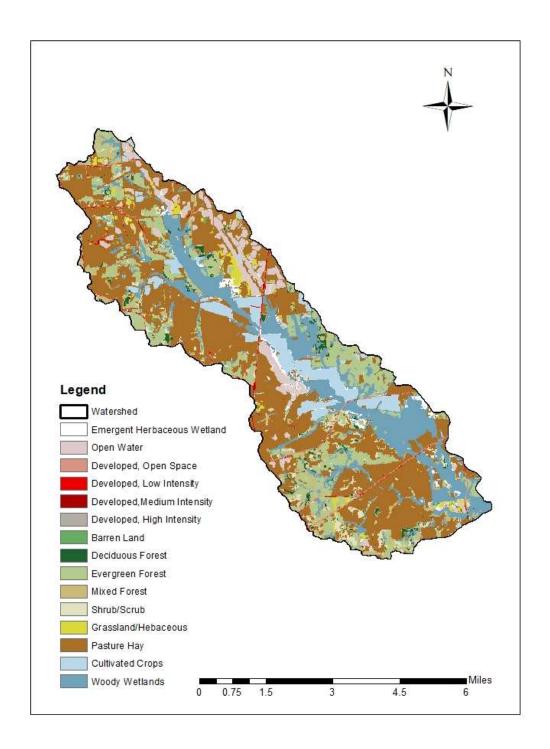


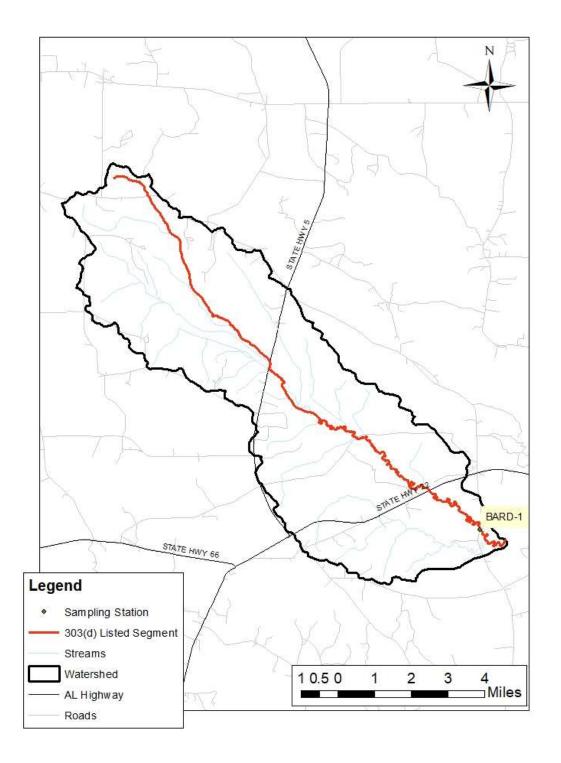

Table 3-1. Land Use Areas for the Bear Creek Watershed

Class Description	Mi ²	Acres	Percent
Open Water	1.72	1113.44	5.00%
Agricultural Lands	16.97	10862.05	48.72%
Forested / Natural	15.26	9764.79	43.81%
Developed Land (Grouped)	0.86	550.85	2.47%
TOTALS →	34.83	22291.11	100.00%

Figure 3-2. Primary Land Uses in the Bear Creek Watershed

3.4 Linkage Between Numeric Targets and Sources

The Bear Creek watershed's main land uses are agriculture and forested/natural. The most likely sources of pathogen loadings in Bear Creek are from the agricultural land uses, aquaculture activities, urban run-off from rain events, and failing septic systems. It is not considered a logical approach to calculate individual components for nonpoint source loadings. Hence, there will not be individual loads or reductions calculated for the various nonpoint sources. The loadings and reductions will only be calculated as a single total nonpoint source load and reduction.


3.5 Data Availability and Analysis

In 2023, ADEM collected water quality data on Bear Creek at station BARD-1. Table 3-2 and Figure 3-3 display the description and location for the ADEM sampling station. As previously mentioned, the 2023 data will be used for this TMDL. The January 2024 edition of *Alabama's Water Quality Assessment and Listing Methodology*, prepared by ADEM, provides the rationale for the Department to use the most recent data to prepare a TMDL for an impaired waterbody.

Table 3-2. Bear Creek Sampling Station Description

Station ID	Data Source	Station Location	Latitude	Longitude
BARD-1	ADEM	Bear Creek at Dallas County	32.28938	-87.30493
		Road 21		

Figure 3-3. Map of ADEM Sampling Station on Bear Creek

Of the 13 *E. coli* samples collected at station BARD-1 during 2023, six violated the single sample maximum criterion of 298 col/100 ml for the Fish & Wildlife use classification. In addition, there were exceedances of the geometric mean criterion of 126 col/100ml at station BARD-1 in June/July 2023 and September 2023. This data can be viewed in Table 3-3 below and in Appendix 7.2, Table 7-1.

E. coli E. coli **Station ID** Date Single Sample Geometric mean (col/100ml) (col/100ml)BARD-1 4/6/2023 613.1 BARD-1 6/29/2023 488.4 BARD-1 7/18/2023 291 BARD-1 7/20/2023 218.7 361.9 BARD-1 7/25/2023 344.8 7/27/2023 579.4 BARD-1 BARD-1 8/1/2023 90.6 8/3/2023 77.1 BARD-1 BARD-1 9/6/2023 1607.0 BARD-1 9/18/2023 435.2 1046.2 BARD-1 9/20/2023 291.9 9/25/2023 99.2 BARD-1 9/27/2023 29.2 BARD-1

Table 3-3. 2023 E. coli Exceedances for the Bear Creek Watershed

3.6 Critical Conditions/Seasonal Variation

Critical conditions typically occur during the summer months (May-October). This can be explained by the nature of storm events in the summer versus the winter. In summer, periods of dry weather interspersed with thunderstorms allow for the accumulation and washing off of *E. coli* bacteria into streams, resulting in spikes of *E. coli* bacteria counts. In winter, frequent low intensity rain events are more typical and do not allow for the build-up of *E. coli* bacteria on the land surface, resulting in a more uniform loading rate.

Bear Creek generally follows the trends described above for the summer months of May through October. The critical condition for this pathogen TMDL was taken to be the one with the highest *E. coli* single sample exceedance value. That value was 1607 colonies/100 ml that occurred on September 6, 2023, at station BARD-1. A flow of 0.49 cfs was calculated for this sampling event. The use of the highest exceedance to calculate the TMDL is expected to be protective of water quality in Bear Creek year-round.

3.7 Margin of Safety

There are two methods for incorporating a Margin of Safety (MOS) in the analysis: 1) by implicitly incorporating the MOS using conservative model assumptions to develop allocations, or 2) by explicitly specifying a portion of the TMDL as the MOS and using the remainder for allocations.

The MOS accounts for the uncertainty associated with the limited availability of *E. coli* data used in this analysis. An explicit MOS was applied to the TMDL by reducing the appropriate target criterion concentration by ten percent and calculating a mass loading target with measured or calculated flow data. The single sample *E. coli* maximum value of 298 colonies/100 ml was reduced by 10% to 268.2 colonies/100 ml, while the geometric mean criterion was reduced in the same fashion to 113.4 colonies/100 ml.

4.0 TMDL Development

4.1 Definition of a TMDL

A total maximum daily load (TMDL) is the sum of individual waste load allocations (WLAs) for point sources, load allocations (LAs) for nonpoint sources including natural background levels, and a margin of safety (MOS). The margin of safety can be included either explicitly or implicitly and accounts for the uncertainty in the relationship between pollutant loads and the quality of the receiving waterbody. As discussed earlier, the MOS is explicit in this TMDL. A TMDL can be denoted by the equation:

$$TMDL = \Sigma WLAs + \Sigma LAs + MOS$$

The TMDL is the total amount of pollutant that can be assimilated by the receiving waterbody while achieving water quality standards under critical conditions.

For some pollutants, TMDLs are expressed on a mass loading basis (e.g. pounds per day). However, for pathogens, TMDL loads are typically expressed in terms of organism counts per day (colonies/day), in accordance with 40 CFR 130.2(i).

4.2 Load Calculations

A mass balance approach was used to calculate the pathogen TMDL for Bear Creek. The mass balance approach utilizes the conservation of mass principle. Total mass loads can be calculated by multiplying the *E. coli* concentration times the instream flow times a conversion factor. Existing loads were calculated for the highest single sample exceedance and the highest geometric mean sample exceedance. In the same manner, allowable loads were calculated for both the single sample criterion of 298 col/100 ml and the geometric mean criterion of 126 col/100 ml. The TMDL was based on the violation that produced the highest percent reduction of *E. coli* loads necessary to achieve applicable water quality criteria, whether it be the single sample or geometric mean.

Existing Conditions

The **single sample** mass loading was calculated by multiplying the highest single sample exceedance concentration of 1607 colonies/100 ml times the estimated flow at the time the sample was collected. This concentration was measured at BARD-1 on September 6, 2023. The stream flow was calculated to be 0.49 cfs at the time of the violation. The product of these two values times the conversion factor gives the total mass loading (colonies per day) of *E. coli* to Bear Creek.

$$\frac{0.49 \text{ ft}^3}{s} \times \frac{1607 \text{ colonies}}{100 \text{ml}} \times \frac{24,465,755 \ 100 \text{ml} * s}{\text{ft}^3 * \text{day}} = \frac{1.93 \times 10^{10} \text{colonies}}{\text{day}}$$

The **geometric mean** mass loading was calculated by multiplying the highest geometric mean exceedance concentration of 361.9 colonies/100 ml times the average of the five stream flows. This concentration was calculated based on measurements at BARD-1 between June 29, 2023, and July 27, 2023, which are shown above in Table 3-4. The average stream flow was determined to be 1.68 cfs. The product of these two values times the conversion factor gives the total mass loading (colonies per day) of *E. coli* to Bear Creek under the geometric mean exceedance condition.

$$\frac{1.68 \text{ ft}^3}{s} \times \frac{361.9 \text{ colonies}}{100 \text{ml}} \times \frac{24,465,755 \ 100 \text{ml} * s}{\text{ft}^3 * \text{day}} = \frac{1.49 \times 10^{10} \text{colonies}}{\text{day}}$$

Allowable Conditions

The **allowable load** to the watershed was calculated under the same physical conditions as discussed above for the single sample and geometric mean criteria. This was done by taking the product of the flow used for the violation event times the conversion factor times the allowable concentration.

For the **single sample** *E. coli* target concentration of 268.2 colonies/100 ml, the allowable *E. coli* loading is:

$$\frac{0.49 \text{ ft}^3}{s} \times \frac{268.2 \text{ colonies}}{100 \text{ml}} \times \frac{24,465,755 \ 100 \text{ml} * s}{\text{ft}^3 * \text{day}} = \frac{3.22 \times 10^9 \text{colonies}}{\text{day}}$$

The explicit margin of safety of 29.8 colonies/100 ml equals a daily loading of:

$$\frac{0.49 \text{ ft}^3}{s} \times \frac{29.8 \text{ colonies}}{100 \text{ml}} \times \frac{24,465,755 \ 100 \text{ml} * s}{\text{ft}^3 * \text{day}} = \frac{3.57 \times 10^8 \text{colonies}}{\text{day}}$$

For the **geometric mean** *E. coli* target concentration of 113.4 colonies/100 ml, the allowable *E. coli* loading is:

$$\frac{1.68 \text{ ft}^3}{s} \times \frac{113.4 \text{ colonies}}{100 \text{ml}} \times \frac{24,465,755 \ 100 \text{ml} * s}{\text{ft}^3 * \text{day}} = \frac{4.66 \times 10^9 \text{colonies}}{\text{day}}$$

The explicit margin of safety of 12.6 colonies/100 ml equals a daily loading of:

$$\frac{1.68 \text{ ft}^3}{s} \times \frac{12.6 \text{ colonies}}{100 \text{ml}} \times \frac{24,465,755 \ 100 \text{ml} * s}{\text{ft}^3 * \text{day}} = \frac{5.18 \times 10^8 \text{colonies}}{\text{day}}$$

The difference in the pathogen loading between the existing condition (violation event) and the allowable condition converted to a percent reduction represents the total load reduction needed to achieve the *E. coli* water quality criteria. The TMDL was calculated as the total daily *E. coli* load to Bear Creek as evaluated at station BARD-1. Table 4-1 shows the existing and allowable *E. coli* loads and required reductions for the Bear Creek watershed.

Source	Existing Load (colonies/day)	Allowable Load (colonies/day)	Required Reduction (colonies/day)	% Reduction
Single Sample Load	1.93E+10	3.22E+9	1.60E+10	83%
Geometric Mean Load	1.49E+10	4.66E+9	1.02E+10	69%

Table 4-1. E. coli Loads and Required Reductions for Bear Creek

From Table 4-1, compliance with the single sample criterion of 298 colonies/100 ml requires a reduction in the *E. coli* load of 83%. The TMDL, WLA, LA and MOS values necessary to achieve the applicable *E. coli* criterion are provided in Table 4-2 below.

		Waste Load Allocation (WLA) ^a					
TMDLe	Margin of Safety (MOS)	WWTPs ^b	Stormwater (MS4s and other NPDES sources) ^c	Leaking Collection Systems ^d	Load Allocation (LA)		
(col/day)	(col/day)	(col/day)	(% reduction)	(col/day)	(col/day)	(% reduction)	
3.57E+9	3.57E+8	NA	NA	0	3.22E+9	83%	

Table 4-2. E. coli TMDL for Bear Creek

Note: NA = not applicable

4.3 TMDL Summary

Bear Creek was first included on the §303(d) list for pathogens in 2018 based on ADEM's 2015-2016 *E. coli* data from station BARD-1. In 2023, ADEM collected water quality data that confirmed the pathogen impairment and provided the basis for TMDL development.

A mass balance approach was used to calculate the *E. coli* TMDL for Bear Creek. Based on the TMDL analysis, it was determined that an 83% reduction in *E. coli* loading was necessary to achieve compliance with applicable water quality standards.

Compliance with the terms and conditions of existing and future NPDES sanitary and stormwater permits will effectively implement the WLA and demonstrate consistency with the assumptions and requirements of the TMDL.

a. There are no CAFOs in the Bear Creek watershed. Future CAFOs will be assigned a waste load allocation (WLA) of zero.

b. Future WWTPs must meet the applicable instream water quality criteria for pathogens at the point of discharge.

c. Future MS4 areas and other NPDES stormwater sources would be required to demonstrate consistency with the assumptions and requirements of this TMDL through implementation and maintenance of BMPs on a case-by-case basis.

d. The objective for leaking collection systems is a WLA of zero. It is recognized, however, that a WLA of 0 colonies/day may not be practical. For these sources, the WLA is interpreted to mean a reduction in *E. coli* loading to the maximum extent practicable, consistent with the requirement that these sources not contribute to a violation of the water quality criteria for *E. coli*.

e. TMDL was established using the single sample criterion of 298 colonies/100ml.

Required load reductions in the LA portion of this TMDL will be implemented through voluntary measures/best management practices (BMPs). Cooperation and active participation by the general public and various other groups is critical to successful implementation of TMDLs. Local citizenled and implemented management measures offer the most efficient and comprehensive avenue for reduction of loading rates from nonpoint sources. Therefore, TMDL implementation activities for nonpoint sources will be coordinated through interaction with local entities and may be eligible for CWA §319 grants through the Department's Nonpoint Source Unit.

The Department recognizes that adaptive implementation of this TMDL will be needed to achieve applicable water quality criteria, and we are committed to targeting the load reductions to improve water quality in the Bear Creek watershed. As additional data and/or information become available, it may become necessary to revise and/or modify the TMDL accordingly.

5.0 Follow-up Monitoring

ADEM has adopted a basin approach to water quality monitoring, an approach that divides Alabama's sixteen major river basins into three groups. Each year, ADEM's water quality resources are concentrated in one of the three basin groups and are divided among multiple priorities including §303(d) listed waterbodies, waterbodies with active TMDLs, and other waterbodies as determined by the Department. Monitoring will help further characterize water quality conditions resulting from the implementation of best management practices and load reductions in the watershed. This monitoring will occur in each basin according the schedule shown in Table 5-1.

Table 5-1. Follow-up Monitoring Schedule

River Basin Group	Years to be Monitored
Black Warrior, Blackwater, Chattahoochee, Chipola, Choctawhatchee, Escambia, Perdido, Tennessee (Wheeler), Yellow	2024/2027
Coosa, Escatawpa, Tennessee (Guntersville), Tombigbee	2025/2028
Alabama, Cahaba, Mobile, Tallapoosa, Tennessee (Pickwick and Wilson)	2026/2029

6.0 Public Participation

As part of the public participation process, this TMDL was placed on public notice and made available for review and comment. The public notice was prepared and published in four newspapers in Montgomery, Huntsville, Birmingham, and Mobile, as well as submitted to persons who requested to be on ADEM's postal and electronic mailing distributions. In addition, the public notice and subject TMDL were made available on ADEM's Website: www.adem.alabama.gov. The public could also request paper or electronic copies of the TMDL by contacting Ms. Kimberly Minton at 334-271-7826 or kminton@adem.alabama.gov. The public was given an opportunity to review the TMDL and submit comments to the Department in writing. No written comments were received during the public notice period.

7.0 Appendices

7.1 References

ADEM Administrative Code, 2021. Water Division - Water Quality Program, Chapter 335-6-10, Water Quality Criteria.

ADEM Administrative Code, 2021. Water Division - Water Quality Program, Chapter 335-6-11, Use Classifications for Interstate and Intrastate Waters.

Alabama's Monitoring Program. 2015, 2016, & 2023. ADEM.

Alabama Department of Environmental Management (ADEM), Alabama's Water Quality Assessment and Listing Methodology, January 2024.

Alabama Department of Environmental Management, 2018, 2020, & 2022 §303(d) Lists and Fact Sheets. ADEM.

Alabama Department of Environmental Management (ADEM), Laboratory Data Qualification SOP #4910 Revision 7.2, 2022.

United States Environmental Protection Agency, 1991. *Guidance for Water Quality-Based Decisions: The TMDL Process.* Office of Water. EPA 440/4-91-001.

United States Environmental Protection Agency, 1986. *Quality Criteria for Water*. Office of Water. EPA 440/4-91-001.

7.2 Water Quality Data

Table 7-1. ADEM Pathogen Data Collected on Bear Creek

STATIO N ID	DATE	Flow (cfs)	Single Sample <i>E. coli</i> (col/100 ml)	E. coli dc^	Geomean <i>E. coli</i> (col/100 ml)
BARD-1	3/30/2015	9.22	186.6		
BARD-1	4/15/2015		248.1		
BARD-1	5/12/2015		186.0	Н	
BARD-1	3/8/2016	7.00	142.1	Н	
BARD-1	4/13/2016		2419.6	GH	
BARD-1	5/4/2016		1095	Н	
BARD-1	6/9/2016		1732.9		
BARD-1	7/14/2016	0.075	285.1		
BARD-1	8/4/2016		135.4		
BARD-1	4/6/2023	5.99*	613.1		
BARD-1	6/29/2023	2.81*	488.4		
BARD-1	7/18/2023	1.51	291.0		
BARD-1	7/20/2023	1.23*	218.7		361.9
BARD-1	7/25/2023	1.48*	344.8		
BARD-1	7/27/2023	1.35*	579.4		
BARD-1	8/1/2023	1.19*	90.6		
BARD-1	8/3/2023	1.01*	77.1		
BARD-1	9/6/2023	0.49*	1607.0		
BARD-1	9/18/2023	0.71*	435.2		
BARD-1	9/20/2023	0.59*	1046.2		291.9
BARD-1	9/25/2023	0.54*	99.2		
BARD-1	9/27/2023	0.54*	29.2		

[^]H = The analytical holding times for analysis are exceeded. G = The actual number was probably greater than the number reported.

^{*}Flow was estimated by calculating the average ratio of known 2023 flows at BARD-1 to USGS 02427250 gauge flows for the corresponding date and multiplying that ratio by the gauge flow for the sampling dates when flow was not measured.

7.3 Bear Creek Watershed Photos (March 19, 2024)

Photo 7-1 Bear Creek at BARD-1 (County Road 21), Looking Upstream

Photo 7-2 Bear Creek at BARD-1 (County Road 21), Looking Downstream

Photo 7-3 Bear Creek at Highway 22, Looking Upstream

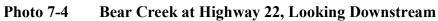


Photo 7-5 Bear Creek at County Road 109, Looking Upstream

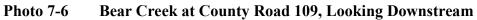


Photo 7-7 Bear Creek at Highway 5, Looking Upstream

