

2014 Monitoring Summary

Jernigan Mill Creek at Louisville Street in Escambia County (31.03388/-87.16451)

BACKGROUND

Jernigan Mill Creek was monitored as part of the 2014 assessment of the Southeast Alabama River Basins. The objectives of the project were to provide data to fully assess the reach and to estimate overall water quality within the basin.

A previous survey of Jernigan Mill Creek at Louisville Street conducted by the Geological Survey of Alabama indicated the fish community to be in *good* condition. The reach is among the least-disturbed watersheds in the Southern Pine Plains and Hills ecoregion based on landuse, road density, and population density. Therefore, these data will also be used to evaluate the use of Jernigan Mill Creek as a "*best attainable*" condition reference watershed for comparison with other streams in ecoregion 65f.

Figure 1. Jernigan Mill Creek at JGME-1, September 3, 2014.

WATERSHED CHARACTERISTICS

Watershed characteristics are summarized in Table 1. Jernigan Mill Creek at JGME-1 is a *Fish & Wildlife (F&W)* stream located in the small town of Pollard. Based on the 2011 National Land Cover Dataset, landuse within the watershed is forest (37%) with some shrubs and cultivated crops. As of April 1, 2016, no NPDES outfalls were active within the watershed (ADEM NPDES Management System).

REACH CHARACTERISTICS

General observations (Table 2) and a habitat assessment (Table 3) were completed during the macroinvertebrate assessment. In comparison with reference reaches in the same ecoregion, they give an indication of the physical condition of the site and the quality and availability of habitat. Jernigan Mill Creek is a riffle-run stream with a bottom substrate dominated by gravel and sand (Figure 1). Habitat quality and availability were rated *sub-optimal* for supporting diverse aquatic macroinvertebrate communities.

BIOASSESSMENT RESULTS

Benthic macroinvertebrate communities were sampled using ADEM's Intensive Multi-habitat Bioassessment methodology (WMB-I). The WMB-I uses measures of taxonomic richness, community composition, and community tolerance to assess the overall health of the macroinvertebrate community. Each metric is scored on a 100 point scale. The final score is the average of all individual metric scores. Metric results indicated the macroinvertebrate community to be in *fair* condition (Table 4).

Table 1 Summary of watershed characteristics						
Watershed Characteristics						
Basin	Conecuh R					
Drainage Area (mi ²	²)	8				
Ecoregion ^a		65F				
% Landuse ^b						
Open water		<1%				
Wetland	Woody	14%				
Er	1%					
Forest	Deciduous	1%				
	Evergreen	17%				
	Mixed	4%				
Shrub/scrub		17%				
Grassland/herbac	eous	5%				
Pasture/hay		12%				
Cultivated crops		22%				
Development	Open space	4%				
	Low intensity	1%				
Moderate intensity		<1%				
	High intensity	<1%				
Population/km ^{2c}	19					

a.Southern Pine Plains & Hills

b.2011 National Land Cover Dataset

c.2010 US Census

Table 2, Physical characteristics of Jemigan Mill Creek at JGMB-1, May 8, 2014.

Physical Characteristics				
Width (ft)	15			
Canopy Cover	Shaded			
Depth (ft)				
Riffle	0.3			
Run	0,5			
Pool	1.7			
% of Reach				
Riffle	3			
Run	80			
Pool	17			
% Substrate				
Gravel	60			
Send	22			
Sih	10			
Organic Matter	8			

Table 3. Results of the habitat assessment conducted on JerniganMill Creek at JGME-1, May 8, 2014.

Habitat Assessment	% Maximum Score	Rating			
Instream Habitat Quality	63	Sub-Optimal (55-79)			
Sediment Deposition	59	Sub-Optimal (55-79)			
Riffle frequency	72.5	Sub-Optimal (55-79)			
Bank Vegetative Stability	74	Sub-Optimal (58-79)			
Riparian Buffer	75	Sub-Optimal (60-84)			
Habitat Assessment Score	136				
% Maximum Score	68	Sub-Optimal (57-80)			

Table 4. Results of the macroinvertebrate bioassessment conducted inJernigan Mill Creek at JGME-1, May 8, 2014.

Macroinvertebrate Assessment						
	Results	Scores				
Taxa richness and diversity measures		(0-100)				
% EPC taxa	18	15				
% Trichoptera & Chironomidae Taxa	41	43				
Taxonomic composition measures						
% EP Individuals	17	33				
Functional feeding group						
% Collector-Filterer Individuals	18	74				
Community tolerance						
% Nutrient Tolerant individuals	32	58				
WMB-I Assessment Score		44				
WMB-I Assessment Rating		Fair (31-45)				

WATER CHEMISTRY

Results of water chemistry analyses are presented in Table 5. In situ measurements and water samples were collected March through October of 2014 to help identify any stressors to the biological communities. Organics were collected at Jernigan Mill Creek on April 2nd; with the exception of atrazine, all parameters were below detection limits. Median values for specific conductance, nitrate+nitrite nitrogen, total nitrogen, total and dissolved manganese, and chlorophyll *a* were higher than background levels, based on reference reach data from streams in ecoregion 65f. Stream pH was typical of the ecoregion.

SUMMARY

Condition of the macroinvertebrate community was rated as fair. In-stream habitat quality at Jernigan Mill Creek was rated as *sub-optimal*. Conductivity and nitrogen concentrations were higher than expected, based on ecoregional reference reach data. Monitoring should continue to ensure that water quality and biological conditions remain stable.

FOR MORE INFORMATION, CONTACT: Alicia K. Phillips, ADEM Environmental Indicators Section 1350 Coliseum Boulevard Montgomery, AL 36110 (334) 260-2797 akphillips@adem.state.al.us **Table 5.** Summary of water quality data collected March-October, 2014. Minimum (Min) and maximum (Max) values calculated using minimum detection limits (MDL) when results were less than this value. Median, average (Avg), and standard deviations (SD) values were calculated by multiplying the MDL by 0.5 when results were less than this value.

Parameter	N		Min		Max	Med	Avg	SD	ΕQ
Physical									
Temperature (*C)	10		160		244	20 0	203	32	
Turbidity (NTU)	10		39		43.1	5.1	<u>9.6</u>	120	
Total Dissolved Solids (mg/L)	8	<	1.0		74.0	50.5	46.4	21.8	
Total Suspended Solids (mg.L)	8		20		47 0	65	139	159	
Spealic Conductance (urrhos)	10		32 1		409	3773	375	23	
Hardness (mg/L)	4		70		106	91	89	15	
· Alkalnity (mg/L)	8		29		6.0	4.9	4.8	0.9	
Monthly Stream Flow (cfs)	9		35		19.9	7.0	8.1	5.1	
Stream Now during Sample Collection (ds)	9		35		199	70	81	51	
Chemical									
Dissolved Oxygen (mg L)	10		78		92	84	86	05	
pH (su)	10		5.6 ⁻	2	6.7	6.3	6.2	0.4	2
· Ammonia Nikrogen (mg L)	8	<	0.006		0.014	0.004	0.005	0.004	
Nitrate +Nitnte Nitrogen (mg/L)	8		0261		0 649	0 430 ×	0 450	0 134	
• Total Kjeldahl Nirogen (mgil.)	8		0 105		0 730	0 3 18	0 363	0 229	
 Total Nitrogen (mgrL) 	8		0.510		0.993	0.834 *	0.813	0.160	
· Dissolved Reactive Phosphorus (mg·L)	8	<	0.002		0.005	0.004	0.003	0.001	
· Total Phosphorus (mg. L)	8		8000		0 038	0012	0018	0011	
• C800-5 (mg/L)	8	<	20	<	20	10	10	00	
COD (mg:L)	8	<	16		184	112	107	62	
TOC (mg:L)	8		25		6.6	4.2	4.5	1.6	
Chlondes (mg/L)	8		43		6.0	5.2	5.2	0.6	
Airaane (µg·L)	1						034		
Total Metals									
· Aluminum (mg/L)	4		0 084		1 320	0 226	0 464	0 574	
iron (mgfL)	4		0.753		1.770	1.212	1.236	0.504	
· Manganese (mg L)	4		0.018		0.113	0.098 ^w	0.082	0.043	
Dissolved Metals									
· Aluminum (mg/L)	4	<	0 0 5 0		0 180	0 085	0 094	0 068	
Animany (µg/L)	4	<	0.2	<	0.4	0.1	0.1	0.1	
· Arsenic (µg:L)	4	<	0.3		0.6 -	0.4	0.4	0.2	3
Cadmum(µg/L)	- 4	<	0246	<	0 390	0 124	0 142	0036	
· Chromium{µgiL}	4	<	0 4 3 0		1 135	0 5 10	0 592	0 390	
· Copper (mg·L)	4	<	0 0003		00004	0 0003	0 0003	0 000	
)ron (mgfL)	4		0.414		0.830	0.514	0.568	0.184	
Lead (µg·L)	4	<	0.2	<	0.5	0.1	0.2	0.1	
· Manganese (mg L)	4		8000		0 089	0 081 *	0 065	0 0 38	
· Nickel (mg L)	4		0 0003		0 002	0 0005	0 00 1	0001	
Selenium (µg/L)	4	<	04	<	05	02	02	00	
Silver (µgL)	4	<	0.252	<	0.460	0.126	0.152	0.052	
Thallum (µg/L)	4	<	02	<	06	01	02	01	
·Zinc (mg·L)	4		0 004		0 012	0 007	0 007	0 004	
Biological									
Chlorophyll a (ug L)	8	<	0.10		8.01	222×	3.14	2.79	
E colution 100 mit	R		70		966	163	310	332	

C= F&W use class criteria exceeded; E=# samples with exceedances; G=value higher than median concentration of all verified ecoregional reference reach data collected in the ecoregion 65f; H=F&W human health criteria exceeded; J=estimate; M=value >90% of all verified ecoregional reference reach data collected in the ecoregion 65f; N=# samples Q=# samples with uncertain exceedances.