

# 2014 Monitoring Summary



**Clear Creek** at Swimming Hole Road in Covington County (31.12192/-86.37575)

# **BACKGROUND**

The Alabama Department of Environmental Management (ADEM), selected the Clear Creek watershed for biological and water quality monitoring as part of the 2008 Southeast Alabama (SEAL) Basin Assessment. The objectives of the SEAL Basin Assessments were to assess the biological integrity of each monitoring site and to estimate overall water quality within the SEAL basins. Monitoring of Clear Creek at CLC-1 continued in 2014 to provide additional biological, chemical, and physical data to fully assess the use support status of Clear Creek for the 2016 Integrated Water Quality Report.



Figure 1. Clear Creek at CLC-1, July 15, 2014.

# WATERSHED CHARACTERISTICS

Watershed characteristics are summarized in Table 1. Clear Creek is a Fish & Wildlife (F&W) stream located in Covington County southwest of Opp, Alabama within the Dougherty Plain (65g) ecoregion. Based on the 2011 National Land Cover Dataset, landuse within the watershed is predominantly forest (58%) with some pasture/hay and grassland/herbaceous areas. As of April 1, 2016, no NPDES outfalls have been issued within this watershed.

# REACH CHARACTERISTICS

General observations (Table 2) and a habitat assessment (Table 3) were completed during the fish community assessment. In comparison with reference reaches in the same ecoregion, they give an indication of the physical condition of the site and the quality and availability of habitat. Clear Creek at CLC-1 is a low-gradient, glide-pool stream with substrate composed primarily of sand and organic matter (Figure 1). Overall habitat quality and availability was rated as *optimal* for supporting diverse aquatic communities.

Table 1. Summary of watershed characteristics.

| Watershed Characteristics     |                     |     |  |  |
|-------------------------------|---------------------|-----|--|--|
| Basin                         | Yellow R            |     |  |  |
| Drainage Area (mi²)           |                     | 39  |  |  |
| <b>Ecoregion</b> <sup>a</sup> |                     | 65G |  |  |
| % Landuse <sup>b</sup>        |                     |     |  |  |
| Open water                    |                     | <1% |  |  |
| Wetland                       | Woody               | 4%  |  |  |
|                               | Emergent herbaceous | <1% |  |  |
| Forest                        | Deciduous           | 3%  |  |  |
|                               | Evergreen           | 47% |  |  |
|                               | Mixed               | 8%  |  |  |
| Shrub/scrub                   |                     | 14% |  |  |
| Grassland/herbaceous          |                     | 11% |  |  |
| Pasture/hay                   |                     | 5%  |  |  |
| Cultivated crops              |                     | 1%  |  |  |
| Development                   | Open space          | 6%  |  |  |
|                               | Low intensity       | 1%  |  |  |
| Moderate intensity            |                     | <1% |  |  |
| Population/km <sup>2c</sup>   |                     | 1   |  |  |
|                               | ·                   |     |  |  |

a. Dougherty Plain

**Table 2.** Physical characteristics of Clear Creek at CLC-1 on July 2, 2014.

| Physical Characteristics |          |        |  |
|--------------------------|----------|--------|--|
| Width (ft)               |          | 22     |  |
| Canopy Cover             |          | Shaded |  |
| Depth (ft)               |          |        |  |
|                          | Run      | 2.0    |  |
|                          | Pool     | 3.0    |  |
| % of Reach               |          |        |  |
|                          | Run      | 50     |  |
|                          | Pool     | 50     |  |
| % Substrate              |          |        |  |
| Mud/Muck                 |          | 2      |  |
|                          | Sand     | 50     |  |
| Organi                   | c Matter | 48     |  |

b. 2011 National Land Cover Dataset

c. 2010 US Census

**Table 3.** Results of the habitat assessment conducted on Clear Creek at CLC-1, July 2, 2014.

| Habitat Assessment           | %Maximum | Score Rating         |
|------------------------------|----------|----------------------|
| Instream Habitat Qualit      | y 76     | Sub-optimal (55-79)  |
| Sediment Depositio           | n 73     | Sub-optimal (55-79)  |
| Sinuosit                     | y 95     | Optimal (>79)        |
| Bank and Vegetative Stabilit | y 85     | Optimal (>79)        |
| Riparian Buffe               | er 90    | Optimal (>84)        |
| Habitat Assessment Scor      | e 149    |                      |
| % Maximum Scor               | e 83     | <b>Optimal</b> (>80) |

#### **BIOASSESSMENT RESULTS**

The fish community in Clear Creek at CLC-1 was sampled using Alabama's Fish Community Index of Biotic Integrity (AL-IBI), developed through a multi-agency (GSA, ADCNR, ADEM) project to establish a comprehensive fish community bioassessment tool for wadeable streams and rivers across the State. The data collected during this survey were used to score the overall health of the fish community, based on conditions expected for wadeable streams and rivers in the *Southern Plains* Ichthyoregion. The AL-IBI uses twelve measures of species richness and diversity, tolerance/intolerance, and abundance, condition, and reproduction to assess the overall health of the fish community. The final IBI score is the sum of all individual metrics on a 60 point scale. The IBI score for Clear Creek at CLC-1 was 36, indicating the fish community to be in *fair* condition (Table 4).

**Table 4.** Results of the fish community bioassessment conducted in Clear Creek at CLC-1 on July 2, 2014.

| Fish Community Assessment                   |         |       |  |  |
|---------------------------------------------|---------|-------|--|--|
|                                             | Results | Score |  |  |
| Species Richness & Diversity                |         |       |  |  |
| Total native species                        | 19      | 3     |  |  |
| Number shiner species                       | 6       | 5     |  |  |
| Number of sucker species                    | 0       | 1     |  |  |
| Number of centrarchid species               | 3       | 1     |  |  |
| Number of darter+madtom species             | 4       | 3     |  |  |
| <b>Tolerance &amp; Intolerance Measures</b> |         |       |  |  |
| Percent of tolerant species                 | 3.3     | 5     |  |  |
| Percent Green Sunfish & Yellow Bullhead     | 2.83    | 1     |  |  |
| Trophic Measures                            |         |       |  |  |
| Percent insectivorous cyprinids             | 68.87   | 5     |  |  |
| Percent invertivores                        | 6.6     | 1     |  |  |
| Percent top carnivores                      | 1.89    | 3     |  |  |
| Abundance, Condition & Reproductive Measur  | es      |       |  |  |
| Percent DELT+hybrids                        | 0       | 5     |  |  |
| Number of lithophilic spawners              | 10      | 3     |  |  |
| IBI Assessment Score                        |         | 36    |  |  |
| Condition                                   |         | Fair  |  |  |

# WATER CHEMISTRY

Results of water chemistry analyses are presented in Table 5. In situ measurements and water samples were collected monthly March through October of 2014 to help identify any stressors to the biological communities. Based on data collected at reference reaches within the Dougherty Plain ecoregion (65g), median total specific conductance, hardness, alkalinity, and dissolved aluminum values were higher than expected.

**Table 5.** Summary of water quality data collected March-October, 2014. Minimum (Min) and maximum (Max) values calculated using minimum detection limits (MDL) when results were less than this value. Median, average (Avg), and standard deviations (SD) values were calculated by multiplying the MDL by 0.5 when results were less than this value.

| Param eter                                   | N | Min     | Max              | Med               | Avg   | SD          | Q |
|----------------------------------------------|---|---------|------------------|-------------------|-------|-------------|---|
| Physical                                     |   |         |                  |                   |       |             |   |
| Temperature (*C)                             | 9 | 12.0    | 25.2             | 23.2              | 21.5  | 4.4         |   |
| Turbidity (NTU)                              | 9 | 2.0     | 14.5             | 4.7               | 6.4   | 4.2         |   |
| Total Dissalved Solids (mg/L)                | 8 | 52.0    | 101.0            | 76.0              | 74.8  | 19.6        |   |
| Total Suspended Solids (mg/L)                | 8 | < 1.0   | 24.0             | 5.0               | 7.6   | 8.2         |   |
| Specific Conductance (µmhos)                 | 9 | 33.8    | 184.8            | 103.3 G           | 104.2 | 52.6        |   |
| Hardness (mg/L)                              | 4 | 18.9    | 87.7             | 48.2 G            | 50.8  | 32.5        |   |
| Alkalinity (mg/L)                            | 8 | 10.5    | 95.9             | 40.3 <sup>№</sup> | 46.1  | 30.1        |   |
| Stream Flow (cfs)                            | 5 | 4.9     | 44.6             | <b>†2.</b> 1      | 18.0  | 15.5        |   |
| Chemical                                     |   |         |                  |                   |       |             |   |
| Dissalv ed Oxygen (mg/L)                     | 9 | 6.7     | 9.8              | 7.3               | 7.5   | 0.9         |   |
| pH (eu)                                      | 9 | 6.4     | 7.7              | 7.2               | 7.0   | 0.5         |   |
| <sup>J</sup> Ammonia Nitrogen (mg/L)         | 8 | < 0.006 | 0.016            | 0.003             | 0.005 | 0.004       |   |
| <sup>J</sup> Nitrate+Nitrite Nitrogen (mg/L) | 8 | 0.012   | 0.136            | 0.050             | 0.052 | 0.040       |   |
| Total Kjeldahl Nitrogen (mg/L)               | 8 | < 0.049 | 1.090            | 0.290             | 0.380 | 0.348       |   |
| J Total Nitrogen (mg/L)                      | 8 | < 0.088 | 1.102            | 0.334             | 0.432 | 0.341       |   |
| J Dissalv ed Reactive Phosphorus (mg/L)      | 8 | < 0.003 | 0.006            | 0.004             | 0.004 | 0.001       |   |
| Total Phosphorus (mg/L)                      | 8 | 0.011   | 0.036            | 0.015             | 0.018 | 0.009       |   |
| CBOD-5 (mg/L)                                | 8 | < 20    | < 20             | 1.0               | 1.0   | 0.0         |   |
| Chlorides (mg/L)                             | 8 | 1.7     | 2.8              | 2.6               | 2.5   | 0.4         |   |
| Total Metals                                 |   |         |                  |                   |       |             |   |
| J Aluminum (mg/L)                            | 4 | < 0.050 | 0.386            | 0.190             | 0.198 | 0.179       |   |
| Iron (mg/L)                                  | 4 | 0.159   | 0.825            | 0.360             | 0.426 | 0.291       |   |
| J Manganese (mg/L)                           | 4 | 810.0   | 0.037            | 0.028             | 0.028 | 0.009       |   |
| Dissolved Metals                             |   |         |                  |                   |       |             |   |
| Aluminum (mg/L)                              | 4 | < 0.050 | 0.277            | 0.142 M           | 0.146 | 0.140       |   |
| Antimony (µg/L)                              | 4 | < 0.2   | < 0.2            | 0.1               | 0.1   | 0.0         |   |
| J Arsenic (µg/L)                             | 4 | 0.3     | 0.4 <sup>H</sup> | 0.4               | 0.4   | 0.1         | 4 |
| Cadmium (µg/L)                               | 4 | < 0.246 | < 0.245          | 0.123             | 0.123 | 0.0         |   |
| J Chromium (µg/L)                            | 4 | 0.541   | 0.935            | 0.780             | 0.759 | 0.164       |   |
| J Copper (mg/L)                              | 4 | < 0.002 | < 0.002          | 0.001             | 0.001 | 0.0         |   |
| J Iron (mg/L)                                | 4 | 0.110   | 0.566            | 0.271             | 0.304 | 0.194       |   |
| J Lead (µg/L)                                | 4 | < 0.2   | 0.3              | 0.1               | 0.2   | Q. <b>1</b> |   |
| <sup>J</sup> Manganese (mg/L)                | 4 | 0.014   | 0.028            | 0.018             | 0.020 | 0.006       |   |
| J Nickel (mg/L)                              | 4 | 0.002   | 0.002            | 0.0020            | 0.000 | 0.0         |   |
| Selenium (µg/L)                              | 4 | < 0.4   | < 0.4            | 0.2               | 0.2   | 0.0         |   |
| Silv er (µg/L)                               | 4 | < 0.252 | < 0.252          |                   | 0.126 | 0.0         |   |
| Thallium (µg/L)                              | 4 | < 0.2   | < 0.2            | 0.1               | 0.1   | 0.0         |   |
| J Zinc (mg/L)                                | 4 | 0.003   | 0.011            | 0.004             | 0.006 | 0.004       |   |
| Biological                                   |   |         |                  |                   |       |             |   |
| Chlorophyll a (ug/L)                         | 8 | < 0.10  | 8.54             | 1.10              | 2.46  | 3.25        |   |
| <sup>J</sup> E. coli (col/†00mL)             | 8 | 37      | 3973             | 200               | 906   | 1477        | 2 |

G = value higher than median concentration of all verified ecoregional reference reach data collected in ecoregion 65g; H = F&W human health criterion exceeded; J = estimate; M = value > 90% of collected samples in ecoregion 65g; N = # of samples; Q = # of uncertain exceedances.

### **SUMMARY**

The overall habitat quality for Clear Creek at CLC-1 was categorized as *optimal* for this stream type. Bioassessment results indicated the fish community to be in *fair* condition. Median total specific conductance, hardness, alkalinity, and dissolved aluminum values were higher than expected based on data collected at reference reaches within the ecoregion.

#### FOR MORE INFORMATION, CONTACT:

Lacey Genard, ADEM Aquatic Assessment Unit 1350 Coliseum Boulevard Montgomery, AL 36110 (334) 260-2703, lacey.genard@adem.alabama.gov