

2013 Monitoring Summary

Bumpass Creek at Lauderdale County Road 14 (34.94544/-88.06445)

BACKGROUND

The Alabama Department of Environmental Management (ADEM) selected the Bumpass Creek watershed for biological and water quality monitoring as part of the 2013 Assessment of the Tennessee (TN) River Basin. The objectives of the TN Basin Assessments were to assess the biological integrity of each monitoring site to estimate overall water quality within the TN basin.

Figure 1. Bumpass Creek at BMPL-2, July 9, 2013.

WATERSHED CHARACTERISTICS

Watershed characteristics are summarized in Table 1. Bumpass Creek is a Fish & Wildlife (F&W) stream located near Waterloo in the Tennessee River basin. Based on the 2006 National Land Cover Dataset, landuse within the watershed is primarily forested areas (72%). The ADEM has issued no NPDES discharge permits in this monitoring unit.

REACH CHARACTERISTICS

General observations (Table 2) and a habitat assessment (Table 3) were completed during the macroinvertebrate assessment. In comparison with reference reaches in the same ecoregion, they give an indication of the physical condition of the site and the quality and availability of habitat.

Bumpass Creek at BMPL-2 (Figure 1) is a high-gradient, gravel and cobble substrate stream in the Transition Hills ecoregion. Overall habitat quality was categorized as *optimal* .

Table 1. Summary of watershed characteristics.

Watershed Characteristics

water shed characteristics					
Basin		Tennessee River			
Drainage Area (mi²)		16			
Ecoregion ^a		65j			
% Landuse					
Open water		<1			
Wetland	Woody	1			
E	<1				
Forest	Deciduous	57			
	Evergreen	8			
	Mixed	7			
Shrub/scrub		12			
Grassland/herbaceous		<1			
Pasture/hay Cultivated		3			
crops		8			
Development	Open space	3			
	Low intensity	<1			
Population/km ^{2b}		1			

a.Transition Hills b.2000 US Census

Table 2. Physical characteristics of Bumpass Creek at BMPL-2, June 4, 2013.

Physical Characteristics				
Canopy Cover	Estimate 50/50			
Width (ft)		25		
Depth (ft)				
R	iffle	0.7		
	Run	1.0		
	Pool	1.0		
% of Reach				
R	iffle	5		
	Run	90		
	Pool	5		
% Substrate				
Bed	rock	2		
Co	bble	20		
Gı	avel	50		
S	Sand	20		
	Silt	5		
Organic M	atter	3		

BIOASSESSMENT RESULTS

Benthic macroinvertebrate communities were sampled using ADEM's Intensive Multi-habitat Bioassessment methodology (WMB-I). Measures of taxonomic richness, community composition, and community tolerance are used to assess the overall health of the macroinvertebrate community in comparison to conditions expected in north Alabama streams and rivers. Each site is placed in one of six levels, ranging from 1, or *natural* to 6, or *highly altered*. The macroinvertebrate survey conducted in Bumpass Creek at BMPL-2 rated the site as *good-very good*.(Table 4).

Table 3. Results of the habitat assessment conducted on Bumpass Creek at BMPL-2, June 4, 2013.

Habitat Assessment	%Maximum Score	Rating		
RR				
Instream Habitat Quality	63	Sub-optimal (53-65)		
Sediment Deposition	57	Sub-optimal (53-65)		
Sinuosity	58	Marginal (45-64)		
Bank and Vegetative Stability	70	Sub-optimal (60-74)		
Riparian Buffer	85	Sub-optimal (70-89)		
Habitat Assessment Score	160			
% Maximum Score	66	Optimal >65		

Table 4. Results of the macroinvertebrate bioassessment conducted in Bumpass Creek at BMPL-2, June 4, 2013.

Macroinvertebrate Assessment				
	Results			
Taxa richness and diversity measures				
Total # Taxa	79			
# EPT taxa	28			
Shannon Diversity	4.26			
# Highly-sensitive and Specialized Taxa	9			
Taxonomic composition measures				
% EPT minus Baetidae and Hydropsychidae	12			
% Non-insect taxa	9			
% Individuals in Dominant 5 Taxa	53			
Functional feeding group				
% Predator Individuals	11			
Community tolerance				
# Sensitive EPT	16			
% Sensitive taxa	11			
% Tolerant taxa	22			
WMB-I Assessment Score	3+			
WMB-I Assessment Rating	Good-Very Good			

WATER CHEMISTRY

Results of water chemistry analyses are presented in Table 5. In situ measurements and water samples were collected during March, May, July and September of 2013 to help identify any stressors to the biological communities.

The F&W pH criterion for Bumpass Creek at BMPL-2 was exceeded during the March, May, July and September sampling events.

SUMMARY

Bioassessment results indicated the macroinvertebrate community to be in *good-very good* condition. Overall habitat quality was categorized as *optimal*. The *F&W* pH criterion for Bumpass Creek at BMPL-2 was exceeded during the March, May, July and September sampling events. Monitoring should continue to ensure that water quality and biological conditions remain stable.

FOR MORE INFORMATION, CONTACT: Brien Diggs, ADEM Aquatic Assessment Unit 1350 Coliseum Boulevard Montgomery, AL 36110 (334) 260-2750 lod@adem.state.al.us

Table 5. Summary of water quality data collected March, May, July & September, 2013. Minimum (Min) and maximum (Max) values calculated using minimum detection limits (MDL) when results were less than this value. Median, average (Avg), and standard deviations (SD) values were calculated by multiplying the MDL by 0.5 when results were less than this value.

were less than this value.							
Parameter	N	Min	Max	Med	Avg	SD	Ε
Physical							
Temperature (°C)	5	8.7	22.9	19.9	17.1	5.7	
Turbidity (NTU)	5	2.0	5.4	3.4	3.4	1.3	
Total Dissolved Solids (mg/L)	4	<1.0	36.0	17.5	17.9	14.8	
Total Suspended Solids (mg/L)	4	1.0	16.0	2.5	5.5	7.0	
Specific Conductance (µmhos)	5	19.5	21.2	20.4	20.3	0.7	
Hardness (mg/L)	4	5.8	6.4	6.0	6.0	0.3	
JAlkalinity (mg/L)	4	3.5	5.4	4.5	4.5	8.0	
Stream Flow (cfs)	5	13.4	53.5	17.4	29.2	19.2	
Chemical							
Dissolved Oxygen (mg/L)	5	8.2	11.4	8.6	9.3	1.3	
pH (su)	5	5.2 ^C	6.0	5.6	5.6	0.3	4
Ammonia Nitrogen (mg/L)	4	<0.008	0.034	0.009	0.014	0.014	
Nitrate+Nitrite Nitrogen (mg/L)	4	0.136	0.153	0.140	0.142	0.007	
Total Kjeldahl Nitrogen (mg/L)	4	< 0.065	0.182	0.092	0.100	0.078	
Total Nitrogen (mg/L)	4	<0.168	0.323	0.238	0.242	0.076	
^J Dissolved Reactive Phosphorus (mg/L)	4	0.004	0.007	0.004	0.005	0.001	
JTotal Phosphorus (mg/L)	4	0.006	0.020	0.006	0.010	0.007	
CBOD-5 (mg/L)	4	<2.0	<2.0	1.0	1.0	0.0	
Chlorides (mg/L)	4	1.1	1.3	1.2	1.2	0.1	
Total Metals							
JAluminum (mg/L)	4	<0.076	0.172	0.038	0.072	0.067	
Jiron (mg/L)	4	0.063	0.252	0.067	0.112	0.093	
JManganese (mg/L)	4	< 0.009	0.056	0.012	0.021	0.024	
Dissolved Metals							
Aluminum (mg/L)	4	< 0.076	< 0.076	0.038	0.038	0.000	
Antimony (µg/L)	4	<0.1	<2.6	0.7	0.7	0.7	
Arsenic (µg/L)	4	< 0.2	<1.4	0.4	0.4	0.4	
Cadmium (µg/L)	4	< 0.046	<0.170	0.054	0.054	0.036	
^J Chromium (mg/L)	4	0.0004	< 0.032	0.008	0.008	0.009	
JCopper (mg/L)	4	0.0002	< 0.031	0.008	0.008	0.009	
Iron (mg/L)	4	<0.018	<0.018	0.009	0.009	0.000	
Lead (µg/L)	4	<0.1	<1.1	0.3	0.3	0.3	
JManganese (mg/L)	4	< 0.009	0.022	0.004	0.009	0.009	
Mercury (µg/L)	2	< 0.057	< 0.057	0.028	0.028	0.000	
JNickel (mg/L)	4	0.0003	< 0.016	0.004	0.004	0.004	
Selenium (µg/L)	4	< 0.2	<1.4	0.4	0.4	0.3	
Silver (µg/L)	4	<0.215	<2.12	0.584	0.584	0.550	
Thallium (µg/L)	4	<0.1	<1.1	0.3	0.3	0.3	
JZinc (mg/L)	4	<0.003	< 0.017	0.006	0.006	0.003	
Biological							
Chlorophyll a (ug/L)	4	<0.10	1.07	0.27	0.42	0.45	
JE. coli (col/100mL)	4	36	1203	39	329	583	

C=F&W criterionviolated; E=# samples that exceeded criteria; J=estimate; N=# samples.