

Warrior Creek in Cullman County at County Road 56 (34.27813/-86.47058)

# BACKGROUND

The Alabama Department of Environmental Management (ADEM) selected the Warrior Creek watershed for biological and water quality monitoring as part of the 2012 Cahaba and Black Warrior (CBW) River Basin Assessment Plan. The 2012 data will be used to assess the biological integrity of the site and estimate overall water quality within the Black Warrior River Basin.



Figure 1. Warrior Creek at WARB-2, April 24, 2012.

## WATERSHED CHARACTERISTICS

Watershed characteristics are summarized in Table 1. Warrior Creek at WARB-2 is a small *Fish & Wildlife (F&W)* creek located within the Southern Table Plateaus ecoregion in Cullman County. Based on the 2006 National Land Cover Dataset, land use within the watershed is composed primarily of pasture-land. Population density is low and there is very little development. As of May 13, 2013, ADEM's NPDES Management System database does not show any active outfalls within the watershed.

### **REACH CHARACTERISTICS**

General observations (Table 2) and a habitat assessment (Table 3) were completed during the macroinvertebrate assessment. In comparison with reference reaches in the same ecoregion, they give an indication of the physical condition of the site and the quality and availability of habitat. Warrior Creek at WARB-2 is a high-gradient, riffle-run stream. Instream substrates were dominated by boulders and cobble, with some gravel, silt and sand (Figure 1). Habitat quality and availability within the reach were rated *sub-optimal* for supporting macroinvertebrate communities.

### **BIOASSESSMENT RESULTS**

Benthic macroinvertebrate communities were sampled using ADEM's Intensive Multi-habitat Bioassessment methodology (WMB-I). The WMB-I uses measures of taxonomic richness, community composition, and community tolerance to assess the overall health of the macroinvertebrate community. Each metric is scored on a 100 point scale. The final score is the average of all individual metric scores. The final score indicated the biological community at WARB-2 to be in *fair* condition (Table 4).

| Table 1. Summary of wate | ershed characteristics |
|--------------------------|------------------------|
|--------------------------|------------------------|

| Watershed Characteristics        |               |                     |  |  |
|----------------------------------|---------------|---------------------|--|--|
| Basin                            |               | Black Warrior River |  |  |
| Drainage Area (mi <sup>2</sup> ) |               | 3                   |  |  |
| Ecoregion <sup>a</sup>           |               | 68d                 |  |  |
| % Landuse                        |               |                     |  |  |
| Open water                       |               | <1                  |  |  |
| Wetland                          | Woody         | 1                   |  |  |
| Forest                           | Deciduous     | 18                  |  |  |
|                                  | Evergreen     | 2                   |  |  |
|                                  | Mixed         | 4                   |  |  |
| Shrub/scrub                      |               | 8                   |  |  |
| Grassland/herbaceous             |               | 1                   |  |  |
| Pasture/hay                      |               | 52                  |  |  |
| Cultivated crops                 |               | 6                   |  |  |
| Development                      | Open space    | 6                   |  |  |
|                                  | Low intensity | 1                   |  |  |
| Moderate intensity               |               | <1                  |  |  |
| Barren                           |               | <1                  |  |  |
| Population/km <sup>2b</sup>      |               | 67                  |  |  |
| a Couthom Table Distance         |               |                     |  |  |

a. Southern Table Plateaus

b. 2000 US Census

**Table 2.** Physical characteristics of Warrior Creek at WARB-2,May 8, 2012.

| Physical Characteristics |               |  |  |  |
|--------------------------|---------------|--|--|--|
| Width (ft)               | 12            |  |  |  |
| Canopy Cover             | Mostly Shaded |  |  |  |
| Depth (ft)               |               |  |  |  |
| Riffle                   | 0.4           |  |  |  |
| Run                      | 1.0           |  |  |  |
| Pool                     | 1.5           |  |  |  |
| % of Reach               |               |  |  |  |
| Riffle                   | 35            |  |  |  |
| Run                      | 50            |  |  |  |
| Pool                     | 15            |  |  |  |
| % Substrate              |               |  |  |  |
| Boulder                  | 25            |  |  |  |
| Cobble                   | 30            |  |  |  |
| Mud/Muck                 | 1             |  |  |  |
| Gravel                   | 15            |  |  |  |
| Sand                     | 10            |  |  |  |
| Silt                     | 12            |  |  |  |
| Organic Matter           | 7             |  |  |  |

**Table 3.** Results of the habitat assessment conducted on Warrior Creek at WARB-2, May 8, 2012.

| Habitat Assessment            | %Maximum Score | Rating              |  |  |
|-------------------------------|----------------|---------------------|--|--|
| Instream Habitat Quality      | 67             | Sub-optimal (59-70) |  |  |
| Sediment Deposition           | 56             | Marginal (41-58)    |  |  |
| Sinuosity                     | 83             | Sub-optimal (65-84) |  |  |
| Bank and Vegetative Stability | 60             | Sub-optimal (60-74) |  |  |
| Riparian Buffer               | 53             | Marginal (50-69)    |  |  |
| Habitat Assessment Score      | 150            |                     |  |  |
| % Maximum Score               | 63             | Sub-optimal (59-70) |  |  |

**Table 4.** Results of the macroinvertebrate bioassessment conducted in Warrior

 Creek at WARB-2, May 8, 2012.

| Macroinvertebrate Assessment      |         |              |  |  |  |
|-----------------------------------|---------|--------------|--|--|--|
|                                   | Results | Scores       |  |  |  |
| Taxa richness measures            |         | (0-100)      |  |  |  |
| # EPT taxa                        | 22      | 78           |  |  |  |
| Taxonomic composition measures    |         |              |  |  |  |
| % Non-insect taxa                 | 10      | 62           |  |  |  |
| % Dominant taxon                  | 45      | 5            |  |  |  |
| % EPC taxa                        | 23      | 42           |  |  |  |
| Functional feeding group measures |         |              |  |  |  |
| % Predators                       | 11      | 44           |  |  |  |
| Tolerance measures                |         |              |  |  |  |
| % Taxa as Tolerant                | 29      | 57           |  |  |  |
| WMB-I Assessment Score            |         | 48           |  |  |  |
| WMB-I Assessment Rating           |         | Fair (39-58) |  |  |  |

# WATER CHEMISTRY

Results of water chemistry analyses are presented in Table 5. In situ measurements and water samples were collected monthly and semi-monthly (metals) during April through November of 2012 to help identify any stressors to the biological communities.

The median concentration of specific conductance and hardness was higher than expected based on reference data collected in the Southern Table Plateaus ecoregion. Total suspended solids, nutrients, chlorides, manganese, and copper were higher than expected based on the 90th percentile of all samples collected at reference reaches in ecoregion 68d. No organics samples were collected.

#### SUMMARY

ADEM monitored Warrior Creek as part of the Black Warrior River Basin Assessment in 2012. Overall habitat quality was categorized as *sub-optimal*. Although physical parameters, nutrients, chlorides, manganese, and copper were greater than expected for this ecoregion, bioassessment results indicated the macroinvertebrate community to be in *fair* condition.

> FOR MORE INFORMATION, CONTACT: Tommy Milford, Field Operations Division 2715 Sandlin Road SW, Decatur, AL 35603 (256) 353-1713 tmilford@adem.state.al.us

**Table 5.** Summary of water quality data collected April-November, 2012. Minimum (Min) and maximum (Max) values calculated using minimum detection limits (MDL) when results were less than this value. Median, average (Avg), and standard deviations (SD) values were calculated by multiplying the MDL by 0.5 when results were less than this value.

| Parameter                                            | Ν      |   | Min     |   | Мах     | Med                  | Avg     | SD      |
|------------------------------------------------------|--------|---|---------|---|---------|----------------------|---------|---------|
| Physical                                             |        |   |         |   |         |                      |         |         |
| Temperature (°C)                                     | 4      |   | 13.690  |   | 19.400  | 17.600               | 17.090  | 2.600   |
| Turbidity (NTU)                                      | 4      |   | 1.000   |   | 7.200   | 2.790                | 3.400   | 2.690   |
| <sup>J</sup> Total Dissolved Solids (mg/L)           | 3      |   | 68.000  |   | 75.000  | 71.000               | 71.300  | 3.500   |
| <sup>J</sup> Total Suspended Solids (mg/L)           | 3      | < | 1.000   |   | 55.000  | 11.000 <sup>™</sup>  | 22.190  | 28.900  |
| Specific Conductance (µmhos)                         | 4      |   | 90.000  |   | 120.000 | 108.300 <sup>G</sup> | 106.600 | 13.890  |
| Hardness (mg/L)                                      | 3      |   | 26.900  |   | 48.000  | 44.100 <sup>G</sup>  | 39.690  | 11.200  |
| Alkalinity (mg/L)                                    | 3      |   | 21.700  |   | 33.900  | 32.400               | 29.300  | 6.600   |
| Stream Flow (cfs)                                    | 1      |   |         |   |         |                      | 0.500   |         |
| Chemical                                             |        |   |         |   |         |                      |         |         |
| Dissolved Oxygen (mg/L)                              | 4      |   | 7.090   |   | 8.900   | 7.600                | 7.800   | 0.800   |
| pH (su)                                              | 4      |   | 6.990   |   | 7.500   | 7.390                | 7.300   | 0.200   |
| J Ammonia Nitrogen (mg/L)                            | 3      | < | 0.010   |   | 0.028   | 0.014                | 0.012   | 0.007   |
| J Nitrate+Nitrite Nitrogen (mg/L)                    | 3      |   | 0.695   |   | 2.650   | 0.816 <sup>™</sup>   | 1.387   | 1.095   |
| Total Kjeldahl Nitrogen (mg/L)                       | 3      |   | 0.175   |   | 0.357   | 0.349                | 0.294   | 0.103   |
| J Total Nitrogen (mg/L)                              | 3      |   | 0.991   |   | 2.999   | 1.052 ™              | 1.681   | 1.142   |
| <sup>J</sup> Dissolved Reactive Phosphorus<br>(mg/L) | 3      |   | 0.006   |   | 0.010   | 0.009                | 0.008   | 0.002   |
| Total Phosphorus (mg/L)                              | 3      | < | 0.009   |   | 0.033   | 0.015                | 0.018   | 0.014   |
| CBOD-5 (mg/L)                                        | 3      | < | 1.000   |   | 2.000   | 1.000                | 0.800   | 0.290   |
| Chlorides (mg/L)                                     | 3      |   | 3.600   |   | 4.600   | 3.900 ™              | 4.090   | 0.490   |
| Total Metals                                         |        |   |         |   |         |                      |         |         |
| J Aluminum (mg/L)                                    | 3      | < | 0.030   |   | 0.094   | 0.049                | 0.053   | 0.040   |
| J Iron (mg/L)                                        | 3      | < | 0.100   |   | 0.195   | 0.191                | 0.145   | 0.082   |
| <sup>J</sup> Manganese (mg/L)                        | 3      |   | 0.032   |   | 0.166   | 0.059 ™              | 0.086   | 0.071   |
| Dissolved Metals                                     |        |   |         |   |         |                      |         |         |
| J Aluminum (mg/L)                                    | 3      | < | 0.030   |   | 0.035   | 0.015                | 0.022   | 0.012   |
| J Antimony (µg/L)                                    | 3      | < | 0.800   | < | 0.800   | 0.400                | 0.400   | 0.000   |
| J Arsenic (µg/L)                                     | 3      | < | 1.0     | < | 1.0     | 0.5                  | 0.5     | 0.0     |
| <sup>j</sup> Cadmium (µg/L)                          | 3      | < | 0.090   | < | 0.090   | 0.045                | 0.045   | 0.000   |
| Chromium (mg/L)                                      | 3      | < | 0.005   | < | 0.005   | 0.002                | 0.002   | 0.000   |
| Copper (mg/L)                                        | 3      | < | 0.100   |   | 0.300   | 0.150 <sup>M</sup>   | 0.117   | 0.058   |
| Iron (mg/L)                                          | 3      | < | 0.100   | < | 0.100   | 0.050                | 0.067   | 0.029   |
| Lead (µg/L)                                          | 3      | < | 1.6     | < | 1.6     | 0.8                  | 0.8     | 0.0     |
| Manganese (mg/L)                                     | 3      |   | 0.032   |   | 0.112   | 0.046                | 0.063   | 0.043   |
| Nickel (mg/L)                                        | 3      | < | 0.010   | < | 0.010   | 0.005                | 0.005   | 0.000   |
| Selenium (µg/L)                                      | 3      | < | 2.000   | < | 2.000   | 1.000                | 1.000   | 0.000   |
| Silver (µg/L)                                        | 3      | < | 1.000   | < | 1.000   | 0.500                | 0.500   | 0.000   |
| Thallium (µg/L)                                      | 3      | < | 0.400   | < | 0.400   | 0.200                | 0.200   | 0.000   |
| J Zinc (mg/L)                                        | 3      | < | 0.009   |   | 0.020   | 0.010                | 0.008   | 0.003   |
|                                                      | 2      |   | 1 000   |   | 2 470   | 1.070                | 1 / 00  | 1 570   |
|                                                      | 3<br>2 | < | 1.000   |   | 3.470   | 1.070                | 080.1   | 1.579   |
|                                                      | 5      |   | 107.900 |   | 040.900 | 122.000              | 292.900 | 200.000 |

G=value higher than median concentration of all verified ecoregional reference reach data collected in the ecoregion 68d; J=estimate; M=value >90% of all verified ecoregional reference reach data collected in the ecoregion 68d; N=# samples.