

Ambient Monitoring Site

2012 Monitoring **Summary**



Shades Creek at Parkwood Road in Jefferson County (33.35528, -86.89056)

BACKGROUND

Shades Creek is one of a network of 94 ambient sites monitored annually by the Alabama Department of Environmental Management (ADEM) to identify long-term trends in water quality and to provide data for the development of Total Maximum Daily Loads (TMDL) and water quality criteria. In addition, SH-1a was part of the 2012 Black Warrior and Cahaba (BWC) Basin Assessment Monitoring. The objectives of the BWC Basin Assessments were to assess the biological integrity of each monitoring site and to estimate overall water quality within the basin.

WATERSHED CHARACTERISTICS

Watershed characteristics are summarized in Table 1. Shades Creek at SH-1a is a Fish & Wildlife (F&W) stream located in Jefferson County within the Southern Shale Valleys subecoregion. Based on the 2006 National Land Cover Dataset, landuse within the watershed is primarily development (55%) with some forested areas (41%). As of September 2012, ADEM's NPDES Management System database shows a total of 241 permitted discharges within the watershed.

REACH CHARACTERISTICS

General observations (Table 2) and a habitat assessement (Table 3) were completed during macroinvertebrate assessment. In comparison with reference reaches in the same ecoregion, they give an indication of the physical condition of the site and the quality and availability of habitat. Shades Creek at SH-1a (Figure 1) is a riffle/run stream with predominately sand and gravel substrate. Overall habitat quality was categorized as *sub-optimal* for supporting diverse biological communities.

BIOASSESSMENT RESULTS

Benthic macroinvertebrate communities were sampled using ADEM's Intensive Multi-habitat Bioassessment methodology (WMB-I). The WMB-I uses measures of taxonomic richness, community compositon, and community tolerance to assess the overall health of the macroinvertebrate community. Each metric is scored on a 100 point scale. The final score is the average of all individual metric scores. Metric results indicate the macroinvertebrate community to be in poor condition (Table 4).

Table 1. Summary of watershed cl	naracteristics.				
Watershed Characteristics					
Basin Drainage Area (mi ²) Ecoregion ^a	Cahaba River 45 67g				
% Landuse					
Open water		<1 <1			
Wetland	Woody				
Forest	Deciduous	27			
Eve		9			
	Mixed	5			
Shrub/scrub		1			
Grassland/herbaceous		1			
Pasture/hay		1			
Cultivated crops		<1			
Development	Open space	23			
	Low intensity	20			
	9				
	High intensity	3			
Barren		<1			
Population/km ^{2b}		279			
# NPDES Permits ^c	TOTAL	241			
401 Water Quality Certification	on	3			
Construction Stormwater		200			
Mining		1			
Industrial General		18			
Industrial Individual		6			
Municipal Individual		9			
Underground Injection Control	ol	4			
a Southern Shale Valleys					

a.Southern Shale Valleys

b.2000 US Census

c.#NPDES permits downloaded from ADEM's NPDES Management System database, September 1, 2012.

Table 2. Physical characteristics of Shades Creek at SH-1a, April 26, 2012

Physical Characteristics			
Width (ft)	50		
Canopy Cover	Mostly Shaded		
Depth (ft)			
Riff	le 0.5		
Ru	in 1.0		
Po	ol 2.0		
% of Reach			
Riff	le 15		
Ru	in 35		
Po	ol 50		
% Substrate			
Bedroo	k 10		
Bould	er 1		
Cla	ıy 1		
Cobb	le 13		
Grav	el 20		
Sar	nd 40		
Si	lt 5		
Organic Matt	er 10		

Table 3. Results of the habitat assessment conducted on Shades

 Creek at SH-1a, April 26, 2012.

Habitat Assessment	%Maximum Score	Rating
Instream Habitat Quality	68	Sub-optimal (59-70)
Sediment Deposition	55	Marginal (41-58)
Sinuosity	68	Sub-optimal (65-84)
Bank and Vegetative Stability	51	Marginal (35-59)
Riparian Buffer	65	Marginal (50-69)
Habitat Assessment Score	145	
% Maximum Score	60	Sub-optimal (59-70)

Table 4. Results of macroinvertebrate bioassessment conducted in Shades

 Creek at Sh-1a, April 26, 2012.

Macroinvertebrate Assessment					
	Results	Scores			
Taxa richness and diversity measures		(0-100)			
# EPT taxa	13	39			
Shannon Diversity	3.70	47			
Taxonomic composition measures					
% EPT minus Baetidae and Hydropsychidae	5	10			
% Non-insect taxa	18	26			
Tolerance measures					
% Tolerant taxa	37	34			
WMB-I Assessment Score		31.1			
WMB-I Assessment Rating		Poor (23-46)			

WATER CHEMISTRY RESULTS

Results of water chemistry analysis are presented in Table 5. In situ measurements and water samples were collected monthly and metals quarterly through 2012 to help identify stressors to the biological community. In situ parameters indicate that Shades Creek at SH-1a was meeting water quality criteria for its F&W water use classification. However, median values for some physical parameters were higher than values expected based on reference reach data collected in ecoregion 67.

Although samples of total dissolved arsenic did exceed human health criteria in Shades Creek, ADEM criteria for arsenic are expressed as dissolved trivalent arsenic (arsenite – As III). Presently studies are being conducted in order to provide a better understanding of the prevalence and areal distribution of dissolved trivalent arsenic to total arsenic in the State of Alabama. Upon conclusion of the studies Shades Creek will be reassessed for arsenic violations.

SUMMARY

While the overall habitat assessment rating was *sub-optimal* for supporting biological communities, the macroinvertebrate assessment indicated the community to be in *poor* condition. Water chemistry results indicate several physical parameters at levels that could be stressors to the biological community. Arsenic was found to be above human health criteria. Stormwater runoff from a highly developed urban watershed could be the source of the pollutants.

FOR MORE INFORMATION, CONTACT Steve Bearss, ADEM, Birmingham Field Office, 110 Vulcan Rd. Birmingham, AL 35209 (205) 942-6168 sb@adem.state.al.us **Table 5**. Summary of water quality data collected January-December, 2012. Minimum (Min) and maximum (Max) values calculated using minimum detection limits (MDL) when results were less than this value. Median, average (Avg), and standard deviations (SD) values were calculated by multiplying the MDL by 0.5 when results were less than this value.

Parameter	Ν	Min	Мах	Med	Avg	SD	Е	Q
Physical	-				<u> </u>			
Temperature (°C)	13	11.0	26.7	17.7	18.6	5.6		
Turbidity (NTU)	13	1.4	54.9	5.4	10.4	14.0		
JTotal Dissolved Solids (mg/L)	12	111.0	214.0	156.5™	156.1	31.6		
JTotal Suspended Solids (mg/L)	12	<1.0	36.0	5.0	7.6	9.5		
Specific Conductance (µmhos)	13	158.0	340.0	252.0 ^G	249.7	59.0		
Hardness (mg/L)	4	65.4	129.0	96.0 ^G	96.6	26.8		
Alkalinity (mg/L)	12	17.0	96.8	68.2	67.4	21.0		
Stream Flow (cfs)	12	6.8	86.4	31.5	38.4	27.5		
Chemical								
Dissolved Oxygen (mg/L)	13	6.8	11.6	8.6	9.2	1.6		
pH (su)	13	7.4	8.1	7.7	7.7	0.2		
JAmmonia Nitrogen (mg/L)	12	<0.010	0.129	0.013	0.020	0.035		
JNitrate+Nitrite Nitrogen (mg/L)	12	<0.006	0.678	0.392™	0.379	0.196		
Total Kjeldahl Nitrogen (mg/L)	12	0.148	0.646	0.364	0.366	0.126		
JTotal Nitrogen (mg/L)	12	<0.255	1.165	0.819 ^M	0.746	0.259		
JDissolved Reactive Phosphorus (mg/L)	12	0.006	0.028	0.014	0.014	0.006		
JTotal Phosphorus (mg/L)	12	0.009	0.218	0.027	0.043	0.058		
JCBOD-5 (mg/L)	12	<1.0	<2.0	1.0	0.8	0.2		
JChlorides (mg/L)	11	3.5	9.4	5.2 ^M	5.9	2.0		
Total Metals								
JAluminum (mg/L)	4	0.062	0.218	0.162	0.151	0.078		
JIron (mg/L)	4	0.255	0.395	0.366	0.346	0.063		
JManganese (mg/L)	4	0.026	0.054	0.037	0.038	0.012		
Dissolved Metals								
JAluminum (mg/L)	4	<0.030	< 0.030	0.015	0.015	0.000		
Antimony (µg/L)	4	<0.8	<0.8	0.4	0.4	0.0		
JArsenic (µg/L)	4	<1.0	1.3 ^H	1.2	1.0	0.4	2	1
JCadmium (µg/L)	4	<0.090	<0.090	0.045	0.045	0.000		
Chromium (µg/L)	4	<5.000	<5.000	2.500	2.500	0.000		
Copper (mg/L)	4	<0.100	< 0.300	0.150 [™]	0.125	0.050		
JIron (mg/L)	4	<0.100	<0.100	0.050	0.050	0.000		
JLead (µg/L)	4	<1.6	2.4	0.8	1.2	0.8		
JManganese (mg/L)	4	0.012	0.043	0.019	0.023	0.014		
Nickel (mg/L)	4	<0.010	<0.010	0.005	0.005	0.000		
Selenium (µg/L)	4	<2.0	<2.0	1.0	1.0	0.0		
JSilver (µg/L)	4	<1.000	<1.000	0.500	0.500	0.000		
Thallium (µg/L)	4	<0.4	<0.4	0.2	0.2	0.0		
JZinc (mg/L)	4	<0.020	< 0.020	0.010	0.010	0.000		
Biological								
JChlorophyll a (ug/L)	12	<1.00	4.27	1.20	1.42	1.15		
JE. coli (col/100mL)	12	22	4839	230	811	1427		

E=# samples that exceeded criteria; G=value higher than median concentration of all verified ecoregional reference reach data collected in the ecoregion 67; H=F&W Human Health criterion exceeded; J=estimate; M=value >90% of all verified ecoregional reference reach data collected in the ecoregion 67; N=# samples; Q=# of uncertain exceedances.