

## **Ecological Reference Reach**

# 2012 Monitoring **Summary**



# **Hatchet Creek** at Tyler Ford in Coosa County (32.91330/-86.28442)

#### BACKGROUND

Hatchet Creek is one of the streams the Alabama Department of Environmental Management (ADEM) monitors as a "best attainable condition" reference watershed for comparison with streams throughout the Southern Inner Piedmont ecoregion.

Additionally, Hatchet Creek was selected for biological and water quality monitoring as part of the 2012 Assessment of the Alabama, Coosa, and Tallapoosa (ACT) River Basins. The objectives of the ACT Basin Assessments were to assess the biological integrity of each monitoring and to estimate overall water quality within the ACT basin group.



Figure 1. Hatchet Creek at HATC-3, June 8, 2012.

### WATERSHED CHARACTERISTICS

Watershed characteristics are summarized in Table 1. Hatchet Creek at HATC-3 is an Outstanding Alabama Waterway (OAW), Swimming and Other Whole Body Water-Contact Sports (S), and Fish & Wildlife (F&W) stream located in the Coosa River basin. Based on the 2006 National Land Cover Dataset, land cover within the watershed is approximately 78% forested. As of September 1, 2012, ADEM's NPDES Management System database showed 37 permitted discharges located within the watershed.

#### REACH CHARACTERISTICS

General observations (Table 2) and a habitat assessment (Table 3) were completed during the macroinvertebrate assessment. In comparison with reference reaches in the same ecoregion, they give an indication of the physical condition of the site and the quality and availability of habitat. Hatchet Creek is a high-gradient, riffle-run stream characterized by cobble and gravel substrates typical of the Southern Inner Piedmont ecoregion (Figure 1). Overall habitat quality was rated as optimal for supporting macroinvertebrate communities.

#### **BIOASSESSMENT RESULTS**

Benthic macroinvertebrate communities were sampled using ADEM's Nonwadeable Intensive Multi-habitat Bioassessment methodology (NWMB-I). The NWMB-I uses measures of taxonomic richness, community composition, and community tolerance to assess the overall health of the macroinvertebrate community. Each metric is scored on a 100 point scale. The final score is the average of all individual metric scores. The final score indicated the biological community to be in *good* condition (Table 4).

Table 1. Summary of watershed characteristics.

| Watershed Characteristics     |                    |             |  |  |  |
|-------------------------------|--------------------|-------------|--|--|--|
| Basin                         |                    | Coosa River |  |  |  |
| Drainage Area (mi²)           |                    | 268         |  |  |  |
| Ecoregion <sup>a</sup>        |                    | 45a         |  |  |  |
| % Landuse                     |                    |             |  |  |  |
| Open water                    |                    | <1          |  |  |  |
| Wetland                       | Woody              | 2           |  |  |  |
| Forest                        | Deciduous          | 47          |  |  |  |
|                               | Evergreen          | 30          |  |  |  |
|                               | Mixed              | 1           |  |  |  |
| Shrub/scrub                   |                    | 2           |  |  |  |
| Grassland/herbaceous          |                    | 8           |  |  |  |
| Pasture/hay                   |                    | 4           |  |  |  |
| Cultivated crops              |                    | <1          |  |  |  |
| Development                   | Open space         | 4           |  |  |  |
|                               | Low intensity      | <1          |  |  |  |
|                               | Moderate intensity | <1          |  |  |  |
|                               | High intensity     | <1          |  |  |  |
| Barren                        |                    | 1           |  |  |  |
| Population/km <sup>2b</sup>   |                    | 8           |  |  |  |
| # NPDES Permits <sup>c</sup>  | TOTAL              | 37          |  |  |  |
| Construction Stormwater       |                    | 18          |  |  |  |
| Mining                        |                    | 3           |  |  |  |
| Industrial General            |                    | 2           |  |  |  |
| Industrial Individual         |                    | 4           |  |  |  |
| Municipal Individual          |                    | 4           |  |  |  |
| Underground Injection Control |                    | 6           |  |  |  |

a. Southern Inner Piedmont

b.2000 US Census

c.#NPDES outfalls downloaded from ADEM's NPDES Management System database, September 1, 2012.

Table 2. Physical characteristics of Hatchet Creek at HATC-3, October 30, 2012.

| Physical Characteristics |                |      |  |  |
|--------------------------|----------------|------|--|--|
| Width (ft)               |                | 100  |  |  |
| Canopy cover             |                | Open |  |  |
| Depth (ft)               |                |      |  |  |
|                          | Riffle         | 0.8  |  |  |
|                          | Run            | 1    |  |  |
|                          | Pool           | 3    |  |  |
| % of Reach               |                |      |  |  |
|                          | Riffle         | 35   |  |  |
|                          | Run            | 50   |  |  |
|                          | Pool           | 15   |  |  |
| % Substrate              |                |      |  |  |
|                          | Bedrock        | 10   |  |  |
|                          | Boulder        | 10   |  |  |
|                          | Cobble         | 35   |  |  |
|                          | Gravel         | 25   |  |  |
|                          | Sand           | 15   |  |  |
|                          | Silt           | 1    |  |  |
| (                        | Organic Matter | 4    |  |  |

**Table 3.** Results of habitat assessment conducted on Hatchet Creek at HATC-3 on October 30, 2012.

| Habitat Assessment            | % Maximum Score | Rating                        |
|-------------------------------|-----------------|-------------------------------|
| Instream Habitat Quality      | 85              | Optimal (>70)                 |
| Sediment Deposition           | 85              | Optimal (> 70)                |
| Sinuosity                     | 45              | Marginal (45-64)              |
| Bank and Vegetative Stability | 83              | Optimal (>74)                 |
| Riparian Buffer               | 88              | Sub-optimal (70-89)           |
| Habitat Assessment Score      | 191             |                               |
| % Maximum score               | 80              | <b>Optimal</b> (> <b>70</b> ) |

**Table 4.** Results of the macroinvertebrate bioassessment conducted in Hatchet Creek at HATC-3, June 8, 2012.

| Macroinvertebrate Assessment            |         |              |  |  |  |
|-----------------------------------------|---------|--------------|--|--|--|
|                                         | Results | Scores       |  |  |  |
| Taxa richness and diversity measures    |         | (0-100)      |  |  |  |
| # EPT taxa                              | 33      | 100          |  |  |  |
| Shannon Diversity                       | 4.63    | 90           |  |  |  |
| Taxonomic composition measures          |         |              |  |  |  |
| % EPT minus Baetidae and Hydropsychidae | 22      | 46           |  |  |  |
| % Non-insect taxa                       | 8       | 73           |  |  |  |
| Tolerance measures                      |         |              |  |  |  |
| % Tolerant taxa                         | 22      | 79           |  |  |  |
| WMB-I Assessment Score                  |         | 77.5         |  |  |  |
| WMB-I Assessment Rating                 |         | Good (70-85) |  |  |  |

#### WATER CHEMISTRY

Results of water chemistry are presented in Table 5. *In situ* measurements and water samples were collected monthly or semimonthly (metals) during April through November of 2012 to help identify any stressors to the biological communities. Specific conductance and hardness values were greater than median concentrations of reference data. Median values of dissolved antimony and thallium were greater than 90% of all verified ecoregional reference reach data collected in the Southern Inner Piedmont ecoregion. Temperature exceeded the criterion applicable to Hatchet Creek's *OAW*, *S*, and *F&W* use classifications in the August station visit.

#### **SUMMARY**

Landuse, road density, and population density categorize Hatchet Creek among the least-disturbed watersheds in the ACT basin group. Habitat assessment results indicate the habitat within the reach to be in *optimal* condition. Bioassessment results indicate the macroinvertebrate community to be in *good* condition. Specific conductance, hardness, antimony, and thallium levels should be monitored to ensure the elevated levels do not impair the stream.

FOR MORE INFORMATION, CONTACT: Rebekah Moore, ADEM Aquatic Assessment Unit 1350 Coliseum Boulevard Montgomery, AL 36110 (334) 260-2759 rcmoore@adem.state.al.us

**Table 5.** Summary of water quality data collected April-November, 2012. Minimum (Min) and maximum (Max) values calculated using minimum detection limits (MDL) when results were less than this value. Median, average (Avg), and standard deviations (SD) values were calculated by multiplying the MDL by 0.5 when results were less than this value.

| Parameter                              | N |   | Min   |   | Max               | Med               | Avg   | SD    |   |
|----------------------------------------|---|---|-------|---|-------------------|-------------------|-------|-------|---|
| Physical                               |   |   |       |   |                   |                   | 9     |       |   |
| Temperature (°C)                       | 8 |   | 13.6  |   | 30.2 <sup>C</sup> | 23.1              | 22.4  | 5.6   | 1 |
| Turbidity (NTU)                        | 9 |   | 2.1   |   | 146.0             | 4.4               | 19.7  | 47.4  |   |
| J Total Dissolved Solids (mg/L)        | 8 |   | 10.0  |   | 68.0              | 38.0              | 35.8  | 17.5  |   |
| Total Suspended Solids (mg/L)          | 8 | < | 1.0   |   | 77.0              | 0.5               | 10.1  | 27.0  |   |
| Specific Conductance (µmhos)           | 8 |   | 31.0  |   | 50.0              | 42.3 <sup>G</sup> | 42.0  | 5.8   |   |
| Hardness (mg/L)                        | 4 |   | 9.9   |   | 13.2              | 11.6 <sup>G</sup> | 11.5  | 1.4   |   |
| Alkalinity (mg/L)                      | 8 |   | 10.0  |   | 21.6              | 15.0              | 15.6  | 4.0   |   |
| Stream Flow (cfs)                      | 7 |   | 43.6  |   | 192.6             | 44.2              | 67.9  | 55.2  |   |
| Chemical                               |   |   |       |   |                   |                   |       |       |   |
| Dissolved Oxygen (mg/L)                | 8 |   | 7.0   |   | 9.5               | 8.1               | 8.3   | 0.9   |   |
| pH (su)                                | 8 |   | 6.5   |   | 7.4               | 6.9               | 6.9   | 0.3   |   |
| Ammonia Nitrogen (mg/L)                | 8 | < | 0.007 | < | 0.008             | 0.004             | 0.004 | 0.000 |   |
| J Nitrate+Nitrite Nitrogen (mg/L)      | 8 | < | 0.005 |   | 0.059             | 0.004             | 0.013 | 0.019 |   |
| J Total Kjeldahl Nitrogen (mg/L)       | 8 | < | 0.041 |   | 0.457             | 0.091             | 0.171 | 0.183 |   |
| J Total Nitrogen (mg/L)                | 8 | < | 0.023 |   | 0.510             | 0.099             | 0.183 | 0.194 |   |
| J Dissolved Reactive Phosphorus (mg/L) | 8 | < | 0.004 |   | 0.006             | 0.002             | 0.004 | 0.002 |   |
| J Total Phosphorus (mg/L)              | 8 |   | 0.009 |   | 0.145             | 0.012             | 0.028 | 0.047 |   |
| J CBOD-5 (mg/L)                        | 8 | < | 2.0   | < | 2.0               | 1.0               | 1.0   | 0.0   |   |
| COD (mg/L)                             | 8 |   | 7.3   |   | 30.6              | 13.8              | 15.6  | 7.4   |   |
| TOC (mg/L)                             | 6 |   | 1.6   |   | 4.8               | 2.3               | 2.6   | 1.2   |   |
| Chlorides (mg/L)                       | 8 |   | 1.3   |   | 2.0               | 1.7               | 1.7   | 0.2   |   |
| Total Metals                           |   |   |       |   |                   |                   |       |       |   |
| J Aluminum (mg/L)                      | 4 |   | 0.059 |   | 3.330             | 0.103             | 0.899 | 1.621 |   |
| Iron (mg/L)                            | 4 |   | 0.411 |   | 5.260             | 0.524             | 1.680 | 2.387 |   |
| J Manganese (mg/L)                     | 4 |   | 0.012 |   | 0.198             | 0.055             | 0.080 | 0.082 |   |
| Dissolved Metals                       |   |   |       |   |                   |                   |       |       |   |
| J Aluminum (mg/L)                      | 4 | < | 0.043 |   | 0.053             | 0.022             | 0.029 | 0.016 |   |
| Antimony (µg/L)                        | 4 | < | 3.6   | < | 3.6               | 1.8 <sup>M</sup>  | 1.8   | 0.0   |   |
| Arsenic (µg/L)                         | 4 | < | 1.8   | < | 1.8               | 0.9               | 0.9   | 0.0   |   |
| Cadmium (mg/L)                         | 4 | < | 0.022 | < | 0.046             | 0.017             | 0.017 | 0.007 |   |
| Chromium (mg/L)                        | 4 | < | 0.009 | < | 0.009             | 0.004             | 0.004 | 0.000 |   |
| Copper (mg/L)                          | 4 | < | 0.020 | < | 0.020             | 0.010             | 0.010 | 0.000 |   |
| J Iron (mg/L)                          | 4 |   | 0.128 |   | 0.330             | 0.233             | 0.231 | 0.084 |   |
| Lead (µg/L)                            | 4 | < | 0.9   | < | 0.9               | 0.4               | 0.4   | 0.0   |   |
| J Manganese (mg/L)                     | 4 | < | 0.007 |   | 0.053             | 0.024             | 0.026 | 0.024 |   |
| Mercury (µg/L)                         | 4 | < | 0.035 | < | 0.035             | 0.018             | 0.018 | 0.000 |   |
| Nickel (mg/L)                          | 4 | < | 0.042 | < | 0.042             | 0.021             | 0.021 | 0.000 |   |
| Selenium (µg/L)                        | 4 | < | 2.5   | < | 2.5               | 1.2               | 1.2   | 0.0   |   |
| Silver (mg/L)                          | 4 | < | 0.015 | < | 0.215             | 0.058             | 0.058 | 0.058 |   |
| Thallium (µg/L)                        | 4 | < | 1.4   | < | 1.4               | 0.7 <sup>M</sup>  | 0.7   | 0.0   |   |
| Zinc (mg/L)                            | 4 | < | 0.012 | < | 0.012             | 0.006             | 0.006 | 0.000 |   |
| Biological                             |   |   |       |   |                   |                   |       |       |   |
| Chlorophyll a (ug/L)                   | 8 | < | 0.10  |   | 2.67              | 0.29              | 0.90  | 1.13  |   |
| J E. coli (col/100mL)                  | 8 |   | 24    | > | 2420              | 41                | 346   | 839   |   |

J=estimate; N=number of samples, E=number of samples that exceed criterion; C= OAW, S, and F&W criterion violated; G=value greater than median concentration of all verified reference data collected in ecoregion 45a; M=value greater than 90% of all verified ecoregional reference reach data collected in the sub-ecoregion 45a