

2012 Monitoring Summary

Cypress Creek at Kauloosa Avenue (Tuscaloosa County) (33.16516/-

BACKGROUND

Cypress Creek is located in Tuscaloosa, and has experienced significant development over the last decade. The Alabama Department of Environmental Management (ADEM) selected Cypress Creek watershed for biological and water quality monitoring in response to complaints from stakeholders concerned about the impact of the development on conditions within the stream.

Figure 1. Cypress Creek at CYPT-1, May 1, 2012.

WATERSHED CHARACTERISTICS

Watershed characteristics are summarized in Table 1. Cypress Creek at CYPT-1 is a *Fish & Wildlife (F&W)* stream located in Tuscaloosa, Alabama in the Fall Line Hills ecoregion (65i). Based on the 2006 National Land Cover Dataset, land cover within the watershed is mostly forest (38%) and development (46%). As of September 1, 2012, 23 NPDES permit outfalls were located within the watershed

REACH CHARACTERISTICS

General observations (Table 2) and a habitat assessment (Table 3) were completed during the macroinvertebrate assessment. In comparison with reference reaches in the same ecoregion, they give an indication of the physical condition of the site and the quality and availability of habitat. Cypress Creek at CYPT–1 is a primarily sand bottomed stream (Figure 1). Overall habitat quality was categorized as *sub-optimal* for supporting aquatic macroinvertebrate communities.

BIOASSESSMENT RESULTS

Benthic macroinvertebrate communities were sampled using ADEM's Intensive Multi-habitat Bioassessment methodology (WBM-I). The WMB -I uses measures of taxonomic richness, community composition, and community tolerance to assess the overall health of the macroinvertebrate community. Each metric is scored on a 100 point scale. The final score is the average of all individual metric scores. Metric results indicated the macroinvertebrate community in Cypress Creek at CYPT-1 to be in *poor* community condition (Table 4).

Table 1. Summary of watershed characteristics.					
Watershed Characteristics					
Basin		Black Warrior River			
Drainage Area (mi ²)		11			
Ecoregion ^a		65i			
% Landuse					
Open water		1			
Wetland	Woody	1			
Forest	Deciduous	27			
	Evergreen	2			
	Mixed	9			
Shrub/scrub		9			
Grassland/herbaceous		1			
Pasture/hay		4			
Cultivated crops		2			
Development	Open space	18			
	Low intensity	15			
	Moderate intensity	9			
	High intensity	4			
Population/km ^{2b}		346			
# NPDES Permits ^c	TOTAL	23			
Construction Stormwa	ter	16			
Mining		1			
Industrial General		5			
Industrial Individual		1			

a.Fall Line Hills

b.2000 US Census

c.#NPDES permits downloaded from ADEM's NPDES Management System database. September 1, 2012.

Table 2.	Physical	charact	teristi	cs of (Cy-
press Cre	eek at CY	PT-1, N	May 1	1, 2012	2.

Physical Characteristics			
Width (ft)	30		
Canopy Cover	Mostly Shaded		
Depth (ft)			
Riffle	0.4		
Run	1.0		
Pool	2.0		
% of Reach			
Riffle	5		
Run	80		
Pool	15		
% Substrate			
Boulder	1		
Cobble	10		
Gravel	25		
Sand	45		
Silt	11		
Organic Matter	8		

Table 3. Results of the habitat assessment conducted on Cypress Creek at CYPT-1, May 1, 2012.

Habitat Assessment	%Maximum Score	Rating
Instream Habitat Quality	53	Sub-optimal (53-65)
Sediment Deposition	53	Sub-optimal (53-65)
Sinuosity	65	Sub-optimal (65-84)
Bank and Vegetative Stability	56	Marginal (35-59)
Riparian Buffer	53	Marginal (50-69)
Habitat Assessment Score	134	
% Maximum Score	56	Sub-optimal (53-65)

 Table 4. Results of the macroinvertebrate bioassessment conducted in Cypress

 Creek at CYPT-1 on May 1, 2012...

Macroinvertebrate Assessment			
	Results		
Taxa richness and diversity measures			
# Ephemeroptera (mayfly) taxa	1		
# Plecoptera (stonefly) taxa	0		
# Trichoptera (caddisfly) taxa	2		
Taxonomic composition measures			
% Non-insect taxa	13		
% Plecoptera	0		
% Non-insect organisms	3		
Community tolerance			
Becks community tolerance index	1		
WMB-I Assessment Score	24		
WMB-I Assessment Rating	Poor (24-47)		

WATER CHEMISTRY

Water chemistry analyses are presented in Table 5. In situ measurements and water samples were supposed to be collected bi-monthly during March through September of 2012 to help identify any stressors to the biological communities. In situ parameters were also measured in May during the macroinvertebrate assessment. Median specific conductance, hardness, total dissolved solids, alkalinity and nitrate—nitrite values were higher than background levels for ecoregion 65i.

SUMMARY

Bioassessment results indicated the macroinvertebrate community in Cypress Creek at CYPT-1 to be in *poor* condition and the habitat to be in *sub-optimal* condition. The median concentrations of several physical parameters were higher than expected for the Fall Line Hills ecoregion. Median specific conductance, hardness, total dissolved solids, alkalinity, and nitrogen values were higher than background levels for ecoregion 65i.

FOR MORE INFORMATION, CONTACT: Aaron Goar, ADEM Aquatic Assessment Unit 1350 Coliseum Boulevard Montgomery, AL 36110 (334) 260-2755 agoar@adem.state.al.us **Table 5.** Summary of water quality data collected March – October, 2012. Minimum (Min) and maximum (Max) values calculated using minimum detection limits (MDL). Median, average (Avg), and standard deviations (SD) values were calculated by multiplying the MDL by 0.5 when results were less than this value.

Parameter	Ν		Min	Max	Med	Avg	SD
Physical							
Temperature (°C)	5		12.0	23.8	22.3	20.2	4.8
Turbidity (NTU)	5		4.5	31.5	11.6	15.6	122
Total Dissolved Solids (mg/L)	4		72.0	104.0	9 1.0 [™]	89.5	13.4
Total Suspended Solids (mg/L)	4	<	1.0	13.0	7.0	6.9	65
Specific Conductance (µmhos)	5		105.7	141.1	110.5 ^G	116.3	14.2
Hardhess (mg/L)	4		41.7	49.4	42.7 ^G	44.1	3.6
Alkalinity (mg/L)	4		42.8	51.3	44.3™	45.7	38
Stream Flow (cfs)	5		4.6	64.6	5.2	18.3	26.1
Chemical							
Dissolved Oxygen (mg/L)	5		6.7	9.3	8.3	8.1	1.0
pH(su)	5		6.4	7.0	6.7	6.7	0.2
Ammonia Nitrogen (mg/L)	4	<	0.007	0.243	0.013	0.068	0.117
Nitrate+Nitrite Nitrogen (mg/L)	4		0.264	0.373	0.312™	0316	0.045
Total Kjeldahl Nitrogen (mg/L)	4	<	0.041	0.413	0.342	0.279	0.176
Total Ntrogen (mg/L)	4	<	0.394	0.725	0.630	0.595	0.143
J Dissolved Reactive Phosphorus (mg/L)	4	<	0.004	0.007	0.005	0.005	0.002
^J Total Phosphorus (mg/L)	4		0.009	0.040	0.026	0.025	0.014
CBOD-5 (mg/L)	4	<	2.0 <	2.0	1.0	1.0	0.0
Chlorides (mg/L)	4		3.0	4.2	3.7	3.6	0.6
Total Metals							
Aluminum (mg/L)	4	<	0.043	0.480	0.375	0313	0.217
Iron (mg/L)	4		0.663	1.520	1.240	1.166	0.383
Manganese (mg/L)	4		0.113	0.176	0.156	0.150	0.031
Dissolved Metals							
Aluminum (mg/L)	4	<	0.043 <	0.043	0.022	0.022	0.000
Antimony (µg/L)	4	<	3.6 <	3.6	1.8	1.8	0.0
Arseric (µg/L)	4	<	1.8 <	1.8	0.9	0.9	0.0
Cadmium (µg/L)	4	<	0.022	0.046	0.023	0.020	0.006
Chramium(mg/L)	4	<	0.009	0.009	0.004	0.004	0.000
Copper (mg/L)	4	<	0.020	0.020	0.010	0.010	0.000
Iron (mg/L)	4		0.190	0.315	0.261	0.257	0.061
Lead (µg/L)	4	<	0.9 <	0.9	0.4	0.4	0.0
Manganese (mg/L)	4		0.096	0171	0.148	0.141	0.035
Mercury (µg/L)	4	<	0.035 <	0.035	0.018	0018	0.000
Nickel (mg/L)	4	<	0.042 <	0.042	0.021	0.021	0.000
Selenium (µg/L)	4	<	2.5 <	2.5	1.2	1.2	0.0
Silver (µg/L)	4	<	0.015	0.215	0.108	0.082	0.050
Thallium (µg/L)	4	<	1.4 <	1.4	0.7	0.7	0.0
Zinc (mg/L)	4	<	0.012 <	0.012	0.006	0.006	0.000
Biological		_					
Chlorophyll a (ug/L)	4	<	0.10	2.14	0.05	0.57	1.04
J E.∞li (∞l/100mL)	4		225	2420	1,373	1347	1239

G=value higher than median concentration of all verified ecoregional reference reach data collected in the ecoregion 65i; M=value >90% of all verified ecoregional reference reach data collected in the ecoregion 65i; J=estimate; N=#of samples;