

Rivers and Streams Monitoring Program

2012 Monitoring Summary

Cottonwood Creek at Hale County Road 12 (32.50946/-87.64409)

BACKGROUND

Cottonwood Creek from Big Prairie Creek to its source (11.4 miles) is on Alabama's Clean Water Act (CWA) 2006 §303(d) list of impaired waters for not meeting its *Fish & Wildlife (F&W)* water use classification. It is listed for siltation (habitat alteration), organic enrichment, and nutrients from municipal use and pasture grazing.

The Alabama Department of Environmental Management (ADEM) selected the Cottonwood Creek watershed for biological and water quality monitoring as part of the Assessment of the Black Warrior and Cahaba (BWC) River basins. The objectives of the BWC River Basin Assessments were to assess the biological integrity of each monitoring site and to estimate overall water quality within the BWC River basin.

Figure 1. Cottonwood Creek at COTH-57C, June 5, 2012.

WATERSHED CHARACTERISTICS

Watershed characteristics are summarized in Table 1. Cottonwood Creek at COTH-57C is a *Fish & Wildlife (F&W)* stream located within the Blackland Prairie (65a) ecoregion. According to the 2006 National Land Cover Dataset, landuse within the watershed is primarily pasture/hay. Population density is low. As of September 1, 2012, one NPDES outfall is located within the watershed.

REACH CHARACTERISTICS

General observations (Table 2) and a habitat assessment (Table 3) were completed during the macroinvertebrate assessment. In comparison with reference reaches in the same ecoregion, they give an indication of the physical condition of the site and the quality and availability of habitat. Cottonwood Creek at COTH-57C is a small, mostly-shaded stream reach characterized by sand and gravel substrates (Figure 1). Overall habitat quality was rated as *marginal* for supporting macroinvertebrate communities due to limited sinuosity and very little riparian buffer.

Table 1. Summary of w	atershed characteristic	s.	
Wat	tershed Characteristic	28	
Basin	Black Warrior River 42		
Drainage Area (mi ²)			
Ecoregion ^a		65a	
% Landuse			
Open water		6	
Wetland	Woody	7	
	Emergent herbaceous	1	
Forest	Deciduous	6	
	Evergreen	4	
	Mixed	3	
Shrub/scrub		5	
Grassland/herbaceous		1	
Pasture/hay		57	
Cultivated crops		4	
Development	Open space	6	
	Low intensity	2	
	Moderate intensity	<1	
	High intensity	<1	
Population/km ^{2b}		19	
# NPDES Permits ^c	TOTAL	1	
Industrial General		1	
a.Blackland Prairie			

b.2000 US Census

c.#NPDES permits downloaded from ADEM's NPDES Management System database, September 1, 2012.

Table 2. Summary of physical characteristics ofCottonwood Creek at COTH-57C, April 24, 2012.

Physical Characteristics				
Width (ft)		25		
Canopy cover		Mostly shaded		
Depth (ft)				
	Run	1.5		
	Pool	4		
% of Reach				
	Run	50		
	Pool	50		
% Substrate				
	Sand	50		
	Gravel	26		
	Hardpan clay	10		
	Silt	5		
	Cobble	3		
	Boulder	2		
	CPOM	2		
	Woody debris	2		

Table 3. Results of a habitat assessment conducted in Cottonwood Creek atCOTH-57C, April 24, 2012.

Habitat Assessment	% Max	imum Score	Rating
Instream habitat quality		53	Marginal (40-52)
Sediment deposition		49	Marginal (40-52)
Sinuosity		28	Poor <45
Bank and vegetative stability		46	Marginal (35-59)
Riparian buffer		46	Poor <50
Habitat assessment score		106	
% Maximum score		48	Marginal (40-52)

BIOASSESSMENT RESULTS

Benthic macroinvertebrate communities were sampled using ADEM's Intensive Multi-habitat Bioassessment methodology (WMB-I). The WMB-I uses measures of taxonomic richness, community composition, and community tolerance to assess the overall health of the macroinvertebrate community. Each metric is scored on a 100 point scale. The final score is the average of each individual metric. Metric results indicated the macroinvertebrate community to be in *very poor* condition, dominated by three nutrient tolerant taxa (Table 4).

Table 4. Results of the macroinvertebrate bioassessment conducted in Cotton-wood Creek at COTH-57C, April 24, 2012.

Macroinvertebrate Assessment			
	Results		
Taxa richness measures			
# EPT genera	1		
Taxonomic composition measures			
% Non-insect taxa	14		
% Plecoptera	0		
% Dominant taxa	55		
Functional composition measures			
% Predators	4.5		
Tolerance measures			
Beck's community tolerance index	3		
% Nutrient tolerant organisms	82		
WMB-I Assessment Score	13		
WMB-I Assessment Rating	Very Poor		

WATER CHEMISTRY

Water chemistry results are summarized in Table 5. In situ measurements and water samples were collected monthly and semi-monthly (metals) during April through November of 2012 to help identify any stressors to the biological communities. Cottonwood Creek at COTH-57C did not meet the dissolved oxygen criterion applicable to its *Fish and Wildlife* use classification during six of seven sampling events. It also exceeded Human Health criterion for total dissolved arsenic in three out of three sampling events. However, the ADEM criterion for arsenic is expressed as dissolved trivalent arsenic (arsenite – As III). Studies are being conducted to provide a better understanding of the prevalence and areal distribution of dissolved trivalent arsenic to total arsenic in Alabama. Upon conclusion of the studies, Arsenic will be reassessed for arsenic violations.

Median specific conductance and hardness were higher than the median concentration of all verified ecoregional reference data collected in ecoregion 65a. Total dissolved solids, alkalinity, nutrients and dissolved metal concentrations were higher than 90% of all verified ecoregional reference reach data collected in the same ecoregion.

SUMMARY

Cottonwood Creek at COTH-57C did not meet the F&W use classification criterion for dissolved oxygen. Median nutrient, hardness, total dissolved solids, alkalinity, and specific conductance were also higher than expected, based on comparison with reference reaches in the same ecoregion. Flow was also affected by large woody debris for most of the sampling season.

Table 5. Summary of water quality data collected April-November, 2012. Minimum (Min) and maximum (Max) values calculated using minimum detection limits (MDL) when results were less than this value. Median, average (Avg), and standard deviations (SD) values were calculated by multiplying the MDL by 0.5 when results were less than this value.

Parameter	Ν	Min	Мах	Med	Avg	SD	Ε
Physical							
Temperature (°C)	7	13.1	26.6	22.9	21.2	5.0	
Turbidity (NTU)	8	4.5	166.0⊺	12.2	35.3	55.0	
Total Dissolved Solids (mg/L)	7	214.0	470.0	348.0 ^M	337.4	90.7	
Total Suspended Solids (mg/L)	7	7.0	134.0	21.0	35.3	44.2	
Specific Conductance (µmhos)	7	305.6	726.6	524.8 ^G	520.2	158.5	
Hardness (mg/L)	3	122.0	270.0	186.0 ^G	192.7	74.2	
Alkalinity (mg/L)	7	115.0	331.0	232.0 ^M	225.4	80.8	
Stream Flow (cfs)	6	0.4	5.1	1.0	1.6	1.8	
Chemical							
Dissolved Oxygen (mg/L)	7	0.0 ^C	6.2	2.8	3.0	2.2	6
pH (su)	7	7.1	7.9	7.5	7.5	0.3	
Ammonia Nitrogen (mg/L)	7	< 0.008	0.852	0.077™	0.265	0.341	
J Nitrate+Nitrite Nitrogen (mg/L)	7	< 0.005	0.500	0.147	0.177	0.198	
Total Kjeldahl Nitrogen (mg/L)	7	0.803	7.740	1.200 ^M	2.095	2.497	
^J Total Nitrogen (mg/L)	7	< 0.984	7.755	1.537™	2.272	2.428	
Dissolved Reactive Phosphorus (mg/L)	7	0.133	0.695	0.207™	0.274	0.201	
Total Phosphorus (mg/L)	7	0.219	1.915	0.393™	0.585	0.598	
J CBOD-5 (mg/L)	7	< 2.0	8.1	1.0	2.4	2.7	
Chlorides (mg/L)	7	15.0	44.3	18.7™	26.6	12.2	
Total Metals							
^J Aluminum (mg/L)	3	0.092	7.440	0.169	2.567	4.220	
lron (mg/L)	3	0.413	6.580	0.967	2.653	3.412	
Manganese (mg/L)	3	0.126	0.747	0.206	0.360	0.338	
Dissolved Metals							
Aluminum (mg/L)	3	< 0.043	< 0.043	0.022	0.022	0.000	
Antimony (µg/L)	3	< 3.6	< 3.6	1.8 ^M	1.8	0.0	
J Arsenic (µg/L)	3	4.3	6.7 ^H	6.3	5.8	1.3	3
Cadmium (mg/L)	3	< 0.000	< 0.000	0.000	0.000	0.000	
Chromium (mg/L)	3	< 0.009	< 0.009	0.004	0.004	0.000	
Copper (mg/L)	3	< 0.020	< 0.020	0.010	0.010	0.000	
^J Iron (mg/L)	3	< 0.019	0.075	0.055	0.046	0.034	
JLead (µg/L)	3	< 0.9	1.0	0.4	0.6	0.3	
Manganese (mg/L)	3	< 0.007	0.703	0.180 ^M	0.296	0.364	
Mercury (µg/L)	3	< 0.035	< 0.035	0.018	0.018	0.000	
Nickel (mg/L)	3	< 0.042	< 0.042	0.021	0.021	0.000	
Selenium (µg/L)	3	< 2.5	< 2.5	1.2	1.2	0.0	
Silver (µg/L)	3	< 0.015	0.215	0.108	0.074	0.058	
Thallium (µg/L)	3	< 1.4	< 1.4	0.7 ^M	0.7	0.0	
Zinc (mg/L)	3	< 0.012	< 0.012	0.006	0.006	0.000	
Biological							
Chlorophyll a (µg/L)	7	5.34	24.03	10.68 ^M	12.34	7.02	
JE coli (col/100ml.)	3	68	2420	249	912	1309	

C=F&W use classification criteria violated; G=value higher than median concentration of all verified ecoregional reference reach data collected in ecoregion 65a; M=value >90% of all verified ecoregional reference reach data collected in the 65a ecoregion; N=# samples; J=estimate; T=value exceeds 50 NTU above the 90th percentile of all verified ecoregional reference reach data collected in ecoregion 65a.

FOR MORE INFORMATION, CONTACT: James Worley, ADEM Aquatic Assessment Unit 1350 Coliseum Boulevard Montgomery, AL 36110 (334) 394-4343 jworley@adem.state.al.us