

# 2012 Monitoring Summary



# Cane Creek at AL Highway 69 near Oakman (Walker County) (33.70939/-87.39071)

#### BACKGROUND

A 7.38 mile segment of Cane Creek from its source to AL Highway 69 has been on Alabama's Clean Water Act (CWA) §303(d) list of impaired waters since 1998. In 1998, it was listed for metals (aluminum and iron), nutrients, pH, organic enrichment, and siltation caused by mining operations that are now abandoned. The 2012 data will be used to develop Total Maximum Daily Loads (TMDLs) for Cane Creek.

The Alabama Department of Environmental Management (ADEM) also selected the Cane Creek watershed for biological and water quality monitoring as part of the 2012 Assessment of the Black Warrior and Cahaba (BWC) River Basins. The objectives of the BWC River Basin Assessments were to assess the biological integrity of each monitoring site and to estimate overall water quality within the BWC River basin group. A habitat and a macroinvertebrate assessment were conducted on Cane Creek at CANW-33 on May, 16, 2012.



Figure 1. Cane Creek at CANW-33 October 3, 2012.

### WATERSHED CHARACTERISTICS

Watershed characteristics are summarized in Table 1. Cane Creek at CANW -33 is a *Fish & Wildlife (F&W)* stream located in Walker County. Based on the 2000 National Land Cover Dataset, landuse within the watershed is primarily forest (85%). As of June 6, 2013, no NPDES permits have been issued in the watershed.

### REACH CHARACTERISTICS

General observations (Table 2) and a habitat assessment (Table 3) were completed during the macroinvertebrate assessment. In comparison with reference reaches in the same ecoregion, they give an indication of the physical condition of the site and the quality and availability of habitat. Cane Creek at CANW-33 is a glide-pool stream located in the Shale Hills ecoregion (68f) (Figure 1). Benthic substrate consists primarily of sand with some gravel and clay. Overall habitat quality was rated as *sub-optimal* for supporting a diverse biological community.

Table 1. Summary of watershed characteristics.

| Watershed Characteristics        |                     |                     |  |  |  |  |
|----------------------------------|---------------------|---------------------|--|--|--|--|
| Basin                            |                     | Black Warrior River |  |  |  |  |
| Drainage Area (mi <sup>2</sup> ) | 14                  |                     |  |  |  |  |
| Ecoregion <sup>a</sup>           |                     | 68f                 |  |  |  |  |
| % Landuse                        |                     |                     |  |  |  |  |
| Open water                       |                     | 1                   |  |  |  |  |
| Wetland                          | Woody               | 3                   |  |  |  |  |
|                                  | Emergent herbaceous | <1                  |  |  |  |  |
| Forest                           | Deciduous           | 36                  |  |  |  |  |
|                                  | Evergreen           | 38                  |  |  |  |  |
|                                  | Mixed               | 11                  |  |  |  |  |
| Shrub/scrub                      |                     | 5                   |  |  |  |  |
| Grassland/herbaceou              | 3                   |                     |  |  |  |  |
| Pasture/hay                      |                     | 1                   |  |  |  |  |
| Cultivated crops                 |                     | <1                  |  |  |  |  |
| Development                      | Open space          | 2                   |  |  |  |  |
|                                  | Low intensity       | <1                  |  |  |  |  |
|                                  | Moderate intensity  | <1                  |  |  |  |  |
| Population/km <sup>2b</sup>      |                     | 12                  |  |  |  |  |

a.Shale Hills b.2000 US Census

**Table 2.** Physical characteristics of Cane Creek at CANW-33, May 16, 2012.

| Physical Ch  | Physical Characteristics |               |  |  |  |
|--------------|--------------------------|---------------|--|--|--|
| Canopy Cover | N                        | Iostly Shaded |  |  |  |
| Width (ft)   |                          | 20.0          |  |  |  |
| Depth (Ft)   |                          |               |  |  |  |
| R            | ın                       | 1.0           |  |  |  |
| Po           | ol                       | 3.0           |  |  |  |
| % of Reach   |                          |               |  |  |  |
| R            | ın                       | 80            |  |  |  |
| Po           | ol                       | 20            |  |  |  |
| % Substrate  |                          |               |  |  |  |
| Cl           | ay                       | 15            |  |  |  |
| Cobb         | le                       | 3             |  |  |  |
| Grav         | el                       | 20            |  |  |  |
| Sa           | nd                       | 45            |  |  |  |
| S            | ilt                      | 7             |  |  |  |
| Organic Mat  | er                       | 10            |  |  |  |

## BIOASSESSMENT RESULTS

Benthic macroinvertebrate communities were sampled using ADEM's Intensive Multi-habitat Bioassessment methodology (WMB-I). The WMB-I measures taxonomic richness, community composition, and community tolerance to assess the overall health of the macroinvertebrate community. Each score is based on a 100 point scale in comparison to least-impaired reference reaches in the same ecoregion. The final score is the average of all individual metric scores. The metric results indicated the macroinvertebrate community to be in *good* condition (Table 4).

**Table 3.** Results of the habitat assessment conducted on Cane Creek at CANW-33, May 16, 2012.

| Habitat Assessment      | %Maxin    | umScore | Rating              |  |  |  |
|-------------------------|-----------|---------|---------------------|--|--|--|
| Inst ream Habitat       | t Quality | 53      | Marginal (41-58)    |  |  |  |
| Sediment Deposition     |           | 68      | Sub-optimal (59-70) |  |  |  |
| Sinuosity               |           | 45      | Marginal (45-64)    |  |  |  |
| Bank and Vegetative     | Stability | 56      | Marginal (35-59)    |  |  |  |
| Riparia                 | n Buffer  | 69      | Marginal (50-69)    |  |  |  |
| Habitat Assessment Scot | re        | 133     |                     |  |  |  |
| % Maximum Score         |           | 60      | Sub-optimal (59-70) |  |  |  |

**Table 4.** Results of the macroinvertebrate bioassessment conducted in Cane Creek at CANW-33, May 16, 2012.

| Macroinvertebrate Assessment      |         |              |  |  |  |  |
|-----------------------------------|---------|--------------|--|--|--|--|
|                                   | Results | Scores       |  |  |  |  |
| Taxa richness measures            |         | (0-100)      |  |  |  |  |
| # EPT taxa                        | 9       | 22           |  |  |  |  |
| Taxonomic composition measures    |         |              |  |  |  |  |
| % Non-insect taxa                 | 11      | 57           |  |  |  |  |
| % Dominant taxon                  | 13      | 99           |  |  |  |  |
| % EPC taxa                        | 19      | 35           |  |  |  |  |
| Functional feeding group measures |         |              |  |  |  |  |
| % Predators                       | 25      | 100          |  |  |  |  |
| Tolerance measures                |         |              |  |  |  |  |
| % Taxa as Tolerant                | 32      | 48           |  |  |  |  |
| WMB-I Assessment Score            |         | 60           |  |  |  |  |
| WMB-I Assessment Rating           |         | Good (59-79) |  |  |  |  |

#### WATER CHEMISTRY

Results of water chemistry analyses are presented in Table 5. When possible, in situ measurements and water samples were collected monthly during April through November to help identify any stressors to the biological communities. Specific conductance, hardness, and alkalinity values were higher than median values for all verified ecoregional reference reach data for streams in ecoregion 68. Total dissolved solids, dissolved manganese, and dissolved silver concentrations were above 90 percent of data for streams in this ecoregion.

#### **SUMMARY**

Overall habitat quality was categorized as *sub-optimal* for supporting a diverse macroinvertebrate community. Bioassessment results indicated the macroinvertebrate community in Cane Creek at CANW-33 to be in *good* condition. Water chemistry analyses showed high conductivity, hardness and alkalinity. Also, total dissolved solids, dissolved manganese, and dissolved silver levels were higher than expected. These levels could be potential causes of stressors to the biological community in the Cane Creek watershed.

# FOR MORE INFORMATION, CONTACT:

Ruthie Perez, ADEM Aquatic Assessment Unit 1350 Coliseum Boulevard Montgomery, AL 36110 (334) 260-2762 ryperez@adem.state.al.us

**Table 5.** Summary of water quality data collected April-November, 2012. Minimum (Min) and maximum (Max) values calculated using minimum detection limits (MDL) when results were less than this value. Median, average (Avg), and standard deviations (SD) values were calculated by multiplying the MDL by 0.5 when results were less than this value.

| this value.                          |    |          |       |          | 1     |                     |        |       |
|--------------------------------------|----|----------|-------|----------|-------|---------------------|--------|-------|
| Parameter                            | N  |          | Min   | IV       | ax    | Median              | Avg    | SD    |
| Physical                             |    |          |       |          |       |                     |        |       |
| Temperature (°C)                     | 10 |          | 11.8  |          | 25.9  | 20.6                | 20.4   | 4.1   |
| Turbidity (NTU)                      | 11 |          | 1.2   |          | 9.1   | 2.7                 | 3.5    | 2.7   |
| Total Dissolved Solids (mg/L)        | 8  |          | 596.0 | 1        | 174.0 | 1092.0 <sup>M</sup> | 976.5  | 234.1 |
| Total Suspended Solids (mg/L)        | 8  | <        | 1.0   | <        | 1.0   | 0.5                 | 0.6    | 0.2   |
| Specific Conductance (µmhos)         | 10 |          | 808.6 | 1        | 521.0 | 1228.5 <sup>G</sup> | 1211.2 | 260.2 |
| Hardness (mg/L)                      | 8  |          | 373.0 |          | 702.0 | 634.0 <sup>G</sup>  | 589.8  | 116.2 |
| Alkalinity (mg/L)                    | 8  |          | 115.0 |          | 216.0 | 180.5 <sup>G</sup>  | 177.6  | 31.8  |
| Stream Flow (cfs)                    | 8  |          | 1.4   |          | 9.7   | 3.7                 | 4.6    | 2.8   |
| Chemical                             |    |          |       |          |       |                     |        |       |
| Dissolved Oxygen (mg/L)              | 10 |          | 6.1   |          | 9.1   | 7.8                 | 7.7    | 0.9   |
| pH (su)                              | 10 |          | 7.5   |          | 8.0   | 7.8                 | 7.7    | 0.2   |
| Ammonia Nitrogen (mg/L)              | 8  | <        | 0.007 |          | 800.0 | 0.004               | 0.004  | 0.000 |
| Nitrate+Nitrite Nitrogen (mg/L)      | 8  | <        | 0.005 |          | 0.066 | 0.024               | 0.026  | 0.020 |
| Total Kjeldahl Nitrogen (mg/L)       | 8  | <        | 0.041 |          | 0.534 | 0.130               | 0.170  | 0.158 |
| Total Nitrogen (mg/L)                | 8  | <        | 0.036 |          | 0.568 | 0.150               | 0.196  | 0.161 |
| Dissolved Reactive Phosphorus (mg/L) | 8  | <        | 0.005 |          | 0.006 | 0.005               | 0.004  | 0.002 |
| Total Phosphorus (mg/L)              | 8  |          | 0.007 |          | 0.018 | 0.008               | 0.010  | 0.004 |
| CBOD-5 (mg/L)                        | 8  | <        | 2.0   | <        | 2.0   | 1.0                 | 1.0    | 0.0   |
| Chlorides (mg/L)                     | 8  |          | 1.1   |          | 2.0   | 1.7                 | 1.6    | 0.3   |
| Total Metals                         |    |          |       |          |       |                     |        |       |
| Aluminum (mg/L)                      | 8  | <        | 0.043 |          | 0.286 | 0.098               | 0.113  | 0.078 |
| Iron (mg/L)                          | 8  | <        | 0.019 |          | 0.264 | 0.096               | 0.110  | 0.076 |
| Manganese (mg/L)                     | 8  |          | 0.052 |          | 0.090 | 0.061               | 0.065  | 0.012 |
| Dissolved Metals                     |    |          |       |          |       |                     |        |       |
| J Aluminum (mg/L)                    | 8  | <        | 0.043 |          | 0.078 | 0.052               | 0.049  | 0.019 |
| Antimony (µg/L)                      | 8  | <        | 3.6   | <        | 3.6   | 1.8                 | 1.8    | 0.0   |
| J Arsenic (µg/L)                     | 8  | <        | 1.8   | <        | 1.8   | 0.9                 | 0.9    | 0.0   |
| J Cadmium (mg/L)                     | 8  | <        | 0.022 |          | 0.065 | 0.023               | 0.028  | 0.018 |
| J Chromium (mg/L)                    | 8  | <        | 0.009 |          | 0.014 | 0.004               | 0.007  | 0.004 |
| Copper (mg/L)                        | 8  | <        | 0.020 | <        | 0.020 | 0.010               | 0.010  | 0.000 |
| J Iron (mg/L)                        | 8  | <        | 0.019 |          | 0.040 | 0.010               | 0.015  | 0.011 |
| Lead (µg/L)                          | 8  | <        | 0.9   | <        | 0.9   | 0.4                 | 0.4    | 0.0   |
| J Manganese (mg/L)                   | 8  |          | 0.044 |          | 0.087 | 0.056 M             | 0.059  | 0.014 |
| Mercury (µg/L)                       | 8  | <        | 0.035 | <        | 0.035 | 0.018               | 0.018  | 0.000 |
| Nickel (mg/L)                        | 8  | <        | 0.042 | <        | 0.042 | 0.021               | 0.021  | 0.000 |
| J Selenium (µg/L)                    | 8  | <b>'</b> | 2.5   |          | 2.7   | 1.2                 | 1.4    | 0.5   |
| Silver (mg/L)                        | 8  | <        | 0.015 |          | 0.215 | 0.108 M             | 0.070  | 0.052 |
| Thallium (µg/L)                      | 8  | <b>'</b> | 1.4   | <b>'</b> | 1.4   | 0.7                 | 0.7    | 0.0   |
| J Zinc (mg/L)                        | 8  | <        | 0.012 |          | 0.019 | 0.006               | 0.009  | 0.005 |
| Biological                           |    |          |       |          |       |                     |        |       |
| Chlorophyll a (µg/L)                 | 8  | <        | 0.10  |          | 1.07  | 0.40                | 0.42   | 0.38  |

G=value higher than median concentration of all verified ecoregional reference reach data collected in the ecoregion 68; J=estimate; M=value >90% of all verified ecoregional reference reach data collected in the ecoregion 68; N=# samples.