

Little Bear Creek at First Avenue (Pickens County) (33.32163/-87.89309)

BACKGROUND

Alabama Department of Environmental Management

Basin Assessment Site

The Alabama Department of Environmental Management (ADEM) selected the Little Bear Creek watershed for biological and water quality monitoring as part of the 2011 Assessment of the Escatawpa, Mobile and Tombigbee (EMT) River Basins. The objectives of the EMT Basin Assessments were to assess the biological integrity of each monitoring site and to estimate overall water quality within the EMT River basins.

Figure 1. Little Bear Creek at LBCP-1, March 22, 2011.

WATERSHED CHARACTERISTICS

Watershed characteristics are summarized in Table 1. Little Bear Creek at LBCP-1 is a *Fish & Wildlife (F&W)* stream located in Reform, Alabama in the Fall Line Hills ecoregion (65i). Based on the 2006 National Land Cover Dataset, land cover within the watershed is mostly forest (57%), with some pasture/hay. There are no NPDES permits issued in this watershed

REACH CHARACTERISTICS

General observations (Table 2) and a habitat assessment (Table 3) were completed during the macroinvertebrate assessment. In comparison with reference reaches in the same ecoregion, they give an indication of the physical condition of the site and the quality and availability of habitat. Little Bear Creek at LBCP–1 is predominantly sandbottomed stream, with some gravel, silt, and clay substrates (Figure 1). Overall habitat quality was categorized as *marginal* for supporting aquatic macroinvertebrate communities.

Table 1. Summary of watershed characteristics.							
Watershed Characteristics							
Basin		Upper Tombigbee					
Drainage Area (mi ²)		6					
Ecoregion ^a		65i					
% Landuse							
Open water		1					
Wetland	Woody	3					
Forest	Deciduous	32					
	Evergreen	6					
	Mixed	19					
Shrub/scrub		10					
Grassland/herbaceous		1					
Pasture/hay		17					
Cultivated crops		4					
Development	Open space	6					
	Low intensity	1					
	Moderate intensity	<1					
Population/km ^{2b}		29					

a.Fall Line Hills

b.2000 US Census

Table 2. Physical characteristics of Little Bear

 Creek at LBCP-1, June 01, 2011.

Physical Characteristics							
Width		15					
Canopy Cover	r	Estimate 50/50					
Depth (ft)							
	Pool	2.0					
	Run	1.0					
% of Reach							
	Pool	30					
	Run	70					
% Substrate							
	Mud/Muck	5					
	Boulder	2					
	Cobble	3					
	Clay	10					
	Gravel	10					
	Sand	54					
	Silt	10					
	Organic Matter	6					

BIOASSESSMENT RESULTS

Benthic macroinvertebrate communities were sampled using ADEM's Intensive Multi-habitat Bioassessment methodology (WBM-I). The WMB-I uses measures of taxonomic richness, community composition, and community tolerance to assess the overall health of the macroinvertebrate community. Each metric is scored on a 100 point scale. The final score is the average of all individual metric scores. Metric results indicated the macroinvertebrate community in Little Bear Creek at LBCP-1 to be characterized by non-insect taxa groups, indicating *fair* community condition (Table 4).

TM Graphics provided by Florida Dept. of Environmental Protection (FDEP); used with permission

 Table 3. Results of the habitat assessment conducted in Little Bear

 Creek at LBCP-1, June 1, 2011.

Habitat Assessment	%Maximum \$	Score Rating
Instream Habitat Quality	43	Marginal (40-52)
Sediment Deposition	56	Sub-optimal (53-65)
Sinuosity	35	Poor <45
Bank and Vegetative Stability	36	Marginal (35-59)
Riparian Buffer	33	Poor <50
Habitat Assessment Score	96	
% Maximum Score	44	Marginal (40-52)

Table 4. Results of the macroinvertebrate bioassessment of Little Bear

 Creek at LBCP-1 on June 1, 2011..

Macroinvertebrate Assessment						
	Results	Scores				
Taxa richness and diversity measures		(0-100)				
% EPC taxa	19	19				
% Dominant Taxon	22	70				
Taxonomic composition measures						
% EPT minus Baetidae and Hydropsychidae	2	2				
Functional feeding group						
# Collector Taxa	23	80				
Community tolerance						
% Nutrient Tolerant individuals	18	81				
WMB-I Assessment Score		50				
WMB-I Assessment Rating		Fair (32-47)				

WATER CHEMISTRY

Water chemistry analyses are presented in Table 5. In situ measurements and water samples collected in March, May, July, and September of 2011 to help identify any stressors to the biological communities. In situ parameters were also measured in May during the macroinvertebrate assessment. Instream pH was typical of coastal plain streams. Although samples of total dissolved arsenic did exceed Human Health criteria in Little Bear Creek, ADEM criteria for arsenic are expressed as dissolved trivalent arsenic (arsenite – As III). Presently studies are being conducted in order to provide a better understanding of the prevalence and areal distribution of dissolved trivalent arsenic to total arsenic in the State of Alabama. Upon conclusion of the studies Little Bear Creek will be reassessed for arsenic violations.

SUMMARY

Bioassessment results indicated the macroinvertebrate community in Little Bear Creek at LBCP-1 to be in *fair* condition and the habitat to be in *marginal* condition. Monitoring should continue to ensure that conditions remain stable.

> FOR MORE INFORMATION, CONTACT: Aaron Goar, ADEM Aquatic Assessment Unit 1350 Coliseum Boulevard Montgomery, AL 36110 (334) 260-2755 agoar@adem.state.al.us

Table 5. Summary of water quality data collected March – October , 2011. Minimum (Min)and maximum (Max) values calculated using minimum detection limits (MDL). Median, average (Avg), and standard deviations (SD) values were calculated by multiplying the MDL by 0.5when results were less than this value.

	Parameter	Ν		Min		Max	Med	Avg	SD	Ε
	Physical									
	Temperature (°C)	5		17.2		25.3	22.	2 21.8	2.9	
	Turbidity (NTU)	5		14.2		21.6	18.	0 17.9	3.0	
	Total Dissolved Solids (mg/L)	4		56.0		80.0	76.	0 72.0	10.8	
	Total Suspended Solids (mg/L)	4	<	1.0		9.0	1.	0 2.9	4.1	
	Specific Conductance (µmhos)	5		51.8		82.6	57.	2 62.8	12.8	
	Hardness (mg/L)	4		11.0		22.1	13.	7 15.1	5.0	
	Alkalinity (mg/L)	4		8.7		13.7	10.	0 10.6	2.2	
	Stream Flow (cfs)	5		1.0		8.1	3.	4 3.7	2.7	
	Chemical									
	Dissolved Oxygen (mg/L)	5		6.6		8.1	6.	9 7.0	0.6	
	pH (su)	5		5.6	С	6.5	5.	9 6.0	0.4	3
J	Ammonia Nitrogen (mg/L)	4	<	0.005		0.172	0.06	5 0.076	0.087	
J	Nitrate+Nitrite Nitrogen (mg/L)	4		0.492		2.493	0.78	4 1.138	0.916	
	Total Kjeldahl Nitrogen (mg/L)	4		0.638		0.906	0.79	0 0.781	0.116	
J	Total Nitrogen (mg/L)	4		1.237		3.328	1.55	6 1.919	0.952	
J	Dissolved Reactive Phosphorus (mg/L)	4		0.006		0.008	0.00	6 0.007	0.001	
	Total Phosphorus (mg/L)	4		0.051		0.087	0.06	7 0.068	0.015	
	CBOD-5 (mg/L)	4	<	2.0	<	2.0	1.	0 1.0	0.0	
J	Chlorides (mg/L)	4		3.5		6.0	3.	9 4.3	1.2	
	Atrazine (µg/L)	2	<	0.02	<	0.02	0.0	1 0.01	0.00	
	Total Metals									
	Aluminum (mg/L)	4	<	0.043		0.236	0.10	6 0.118	0.090	
	lron (mg/L)	4		3.870		5.460	4.58	0 4.622	0.671	
	Manganese (mg/L)	4		0.370		0.658	0.51	2 0.513	0.125	
	Dissolved Metals									
	Aluminum (mg/L)	4	<	0.043	<	0.043	0.02	2 0.022	0.000	
	Antimony (µg/L)	4	<	1.9	<	1.9	0.	9 0.9	0.0	
	Arsenic (µg/L)	4	<	1.4		1.7	н 0.	7 1.0	0.5	
	Cadmium (µg/L)	4	<	0.022	<	0.022	0.01	1 0.011	0.000	
	Chromium (µg/L)	4	<	9.000	<	9.000	4.50	0 4.500	0.000	
	Copper (mg/L)	4	<	0.020	<	0.020	0.01	0 0.010	0.000	
	Iron (mg/L)	4		0.499		1.380	1.01	4 0.976	0.372	
	Lead (µg/L)	4	<	0.9	<	0.9	0.	5 0.5	0.0	
	Manganese (mg/L)	4		0.321		0.592	0.47	6 0.466	0.116	
	Mercury (µg/L)	4	<	0.035	<	0.035	0.01	8 0.018	0.000	
	Nickel (mg/L)	4	<	0.042	<	0.042	0.02	1 0.021	0.000	
J	Selenium (µg/L)	4	<	1.3		2.5	0.	7 1.1	0.9	
	Silver (µg/L)	4	<	0.015	<	0.015	0.00	8 0.008	0.000	
	Thallium (µg/L)	4	<	1.1	<	1.1	0.	5 0.5	0.0	
	Zinc (mg/L)	4	<	0.012	<	0.012	0.00	6 0.006	0.000	
	Biological									
	Chlorophyll a (ug/L)	4	<	0.10		2.14	1.0	7 1.08	0.85	
J	E. coli (col/100mL)	4		81		436	20	9 234	152	

C=Use class criteria violated; H=Human Health Criteria violated; E=Exceedence; J=estimate; N=#of samples;