

Total Maximum Daily Load Site

2011 Monitoring Summary

Boggy Branch at Mobile County Road 5 (30.77626/-87.87133)

BACKGROUND

Boggy Branch in Mobile County has been on Alabama's Clean Water Act §303(d) list of impaired waters for impairment caused by high metals concentrations since 1998. The 2010 CWA §303(d) list identified lead and iron from natural and wet weather discharges as the cause and source of the impairment. In 2011, the Alabama Department of Environmental Management (ADEM) monitored Boggy Branch at BGYM-1 2011 to provide data for the development of Total Maximum Daily Loads to address these impairments.

Figure 1. Boggy Branch at BGYM-1, September 27, 2011.

WATERSHED CHARACTERISTICS

Watershed characteristics are summarized in Table 1. Boggy Branch at BGYM-1 is a *Fish & Wildlife (F&W)* stream located South of the town of Wilmer in Mobile County. Based on the 2006 National Land Cover Dataset, land use within the three square mile watershed is primarily forest (38%), shrub/scrub, and wetlands (15%). As of September 1, 2012, there were no outfalls active within the watershed.

REACH CHARACTERISTICS

General observations (Table 2) and a habitat assessment (Table 3) were completed during the macroinvertebrate assessment. In comparison with reference reaches in the same ecoregion, they give an indication of the physical condition of the site and the quality and availability of habitat. Boggy Branch at BGYM-1 is a low gradient stream, with substrates comprised of organic matter, sand, and mud/muck (Figure 1). Habitat quality was rated as *optimal*.

BIOASSESSMENT RESULTS

Benthic macroinvertebrate communities were sampled using ADEM's Intensive Multi-habitat Bioassessment methodology (WMB-I). The WMB-I uses measures of taxonomic richness, community composition, and community tolerance to assess the overall health of the macroinvertebrate community. Each metric is scored on a 100 point scale. The final score is the average of all individual metric scores. Metric results indicated the macroinvertebrate community of Boggy Branch at BYGM-1 to be in *good* condition (Table 4).

TM Graphics provided by Florida Dept. of Environmental Protection; used with permission.

Table 1. Summary of watershed characteristics.

Watershed Characteristics							
Basin Drainage Area (mi ²)		Escatawpa River 3					
Ecoregion ^a		65f					
% Landuse							
Open water		1					
Wetland	Woody	14					
Er	<1						
Forest	Evergreen	27					
	Mixed	11					
Shrub/scrub		26					
Grassland/herbaceou	6						
Pasture/hay		11					
Cultivated crops		1					
Development	Open space	3					
	Low intensity	<1					
Population/km ^{2b}		20					

a.Southern Pine Plains & Hills

b.2000 US Census

Table 2. Physical characteristics of Boggy Branch at BGYM-1, May 4, 2011.

Physical Characteristics						
Width (ft)	7.0					
Canegy Cover	Shaded					
Depth (ff)						
Riffle	0.0					
Run	1.0					
Pool	2.0					
% of Reach						
Run	70					
Pool	30					
% Substrate						
Mud/Muck	15					
Sand	20					
Sih	10					
Organic Matter	55					

Table 3. Results of the habitat assessment conducted on Boggy Branch atBGYM-1, May 4, 2011.

Habitat Assessment	% Maximum Score	Rating			
Instream Habitat Quality	63	Sub-Optimal (53-65)			
Sediment Deposition	u 84	Optimal (>65)			
Sinuosity	38	Poor (<45)			
Bank Vegetative Stability	85	Optimal (>=75)			
Riparian Buffer	91	Optimal (>90)			
Habitat Assessment Score	155				
% Maximum Score	70	Optimal (>65)			

 Table 4. Results of the Macroinvertebrate bioassessment conducted on

 Boggy Branch at BGYM-1, May 4, 2011.

Macroinvertebrate Assessment						
	Results					
Taxa richness and diversity measures						
# EPT taxa	21					
Taxonomic composition measures						
% Non-insect taxa	9					
% Plecoptera	1					
% Dominant taxon	32					
Functional feeding group						
% Predators	11					
Community tolerance						
Becks community tolerance index	14					
% Nutrient tolerant individuals	5					
WMB-I Assessment Score	59					
WMB-I Assessment Rating	Good (56-78)					

WATER CHEMISTRY

Results of water chemistry analyses are presented in Table 5. When possible, in situ measurements and water samples are collected monthly, semi-monthly (metals), or quarterly (pesticides, herbicides (atrazine), and semi-volatile organics) during March through October to help identify any stressors to the biological communities. With the exception of Atrazine, organics collected at BGYM-1 March 15th, May 3rd (Atrazine), and September 27th were below detection limits. Dissolved oxygen measurements were <5.0 mg/L during the low flows in June (0.1 cfs) and August (0.6 cfs). Stream pH were typical of reference reaches in ecoregion 65f, ranging from 5.1 s.u. in the late summer and fall to 6.4 s.u. in the spring. Median specific conductance, total Kjeldahl nitrogen, total nitrogen, and total and dissolved manganese values were higher than expected, based on reference reach data collected within the ecoregion. Estimated concentrations of lead also appeared to be elevated during the month of October. Mercury exceeded F&W aquatic life use and human health criteria during the September sampling event.

SUMMARY

Results from the 2011 bioassessment indicated the macroinvertebrate community in Boggy Branch at BGYM-1 to be in *good* condition. Habitat quality and availability were rated as *optimal* for supporting diverse aquatic macroinvertebrate communities. Monitoring should continue to ensure that water quality and biological conditions remain stable.

> FOR MORE INFORMATION, CONTACT: Ruthie Perez ADEM Aquatic Assessment Unit 1350 Coliseum Boulevard Montgomery, AL 36110 (334) 260-2762 ryperez@adem.state.al.us

Table 5. Summary of water quality data collected March-October, 2011. Minimum (Min) and maximum (Max) values calculated using minimum detection limits (MDL). Median, average (Avg), and standard deviations (SD) values were calculated by multiplying the MDL by 0.5 when results were less than this value.

Parameter	N		Min		Max	Med	Avg	SD	Ε	Q
Physical										
Temperature (°C)	ô		13.4		25.7	22 6	20.7	4.4		
Turbidily (NTU)	9		20		74	35	41	17		
Total Dissolved Solids (mg/L)	8		290		47 0	38 5	38 1	59		
Total Suspended Solids (rrg/L)	8	<	5.0		170	25	5.1	50		
Specific Conductance (unthos)	9		27.0		41.0	40.0 ⁻	37.0	4.8		
J Hardness (mg/L)	8		4.5		14.1	8.6	8.6	3.1		
^J Alkalinily (mg/L)	8	<	4.0		6.0	40	3.6	1.5		
Stream Flow (cls)	ô		00		24	10	1,1	07		
Chemical										
Dissolved Oxygen (ng/L)	9		4.8	C	86	62	6.3	15	2	
pH (su)	8		5.1	C	6.4	5.8	5.7	0.5	8	
Ammonia Nilrogen (mg/L)	8	<	0.014		0.060	800.0	0.023	0.023		
^J Nıhale+Nihile Nihogen (mg/L)	8	<	0.006		0 629	0.089	0.142	0 202		
^J Total Kjeldahi Nitrogen (mg/L)	8	<	0 0/0		0 810	0 450 M	0 436	0 283		
^J Total Nitrogen (mg/L)	8		0 200		0 903	0 645 M	0 578	0 241		
J Dissolved Reactive Phosphorus (mg/L)	8	<	0 004		0 012	0 005	0 006	0 003		
^J Total Phosphorus (mg/L)	8		0 008		0 032	0.019	0.019	0 008		
^J C8OD-5 (mg/L)	8	<	1.0	<	1.0	0.5	0.5	0.0		
Chlondes (mg/L)	8	<	0.2		6.5	3.0	3.1	3.3		
Arazne (µg:L)	2	<	0.02		0.06	0.04	0.04	0.03		
Total Metals										
J Aluminum (mg/L)	8	<	0 044		0 365	0 2 1 6	0 225	0 1 1 1		
Iron (mg/L)	8	<	0 036		3 080	1.220	1 499	1 052		
^J Manganese (mg/L)	8		0.031		0.182	0.071 M	0.082	0.053		
Dissolved Metals										
JAluminum (mg/L)	8	<	0 044		0 205	0.122	0 112	0 065		
J Antimony (µg/L)	8	<	19	<	23	12	11	01		
^J Arsenic (µg/L)	8	<	14	<	28	10	10	03		
J Cadmum(µg/L)	8	<	0 022	<	0 130	0.046	0 041	0 026		
^J Chromium(µg:1)	8	<	6.0 0 0	<	6.000	3.000	3.000	0.000		
J Copper (mg-L)	8	<	0.005	<	0.005	0.002	0.002	0.000		
J Iron (mg/L)	8	<	0 036		0 475	0.304	0.271	0 145		
^J Lead (µg/L)	8	<	80		298	04	07	09		1
^J Manganese (mg/l)	8		0 028		0 143	0 056 M	0 065	0 044		
^J Mercury (µg/L)	7	<	0 072		0 121 *	0.052	0 080	0 028	1	
^J Nickel (mg/L)	8	<	0 007	<	0 007	0.004	0.004	0 000		
Selenium (µg/L)	7	<	0.8	<	1.3	0.4	0.5	0.1		
Silver (µg/L)	8	<	0015	<	0 200	0.054	0.054	0 049		
^j lhallium(µg/L)	8	<	09	<	12	05	0.5	01		
J 7mc(mg/l)	8	<	0 032	<	0 032	0 0 16	0 0 1 6	0 000		
Biological										
Chlorophyll a (ug/L)	7	<	1.00	<	1.00	0.50	0.50	0.00		
^J E. coli (col/100mL)	8		1		260	50	80	85		

A=F&W aquatic life use criteria exceeded; C=F&W use class criterion violated; E=# samples that exceeded criteria; G=value higher than median concentration of all verified ecoregional reference reach data collected in the ecoregion 65f; H=F&W human health criteria exceeded; J=estimate; M=value >90% of all verified ecoregional reference reach data collected in the ecoregion 65f; N=# samples; Q= # of uncertain exceedances; S= F&W hardness adjusted aquatic life use criteria exceeded.