

2010 Monitoring **Summary**

Yellow Creek at Dekalb County Road 295 (34.40308/-85.63685)

BACKGROUND

The Alabama Department of Environmental Management (ADEM) selected the Yellow Creek watershed for biological and water quality monitoring as part of the 2010 Assessment of the Alabama, Coosa, and Tallapoosa (ACT) River Basins. The objectives of the ACT Basin Assessments were to assess the biological integrity of each monitoring site and to estimate overall water quality within the basins. A habitat and macroinvertebrate assessment was conducted on Yellow Creek at YELD-1 on June 15, 2010.

Figure 1. Yellow Creek at YELD-1, November 18, 2010.

WATERSHED CHARACTERISTICS

Watershed characteristics are summarized in Table 1. Yellow Creek is a Fish and Wildlife (F&W) stream located near the city of Fort Payne, Alabama, in the Southern Table Plateau ecoregion (68d). At YELD-1, the stream drains approximately fourteen square miles of countryside. Based on the 2000 National Land Cover Dataset, land use within the watershed is primarily forest (56%) and pasture (30%). As of September 1, 2012, three NPDES permits have been issued in this watershed.

REACH CHARACTERISTICS

General observations (Table 2) and a habitat assessment (Table 3) were completed during the macroinvertebrate assessment. In comparison with reference reaches in the same ecoregion, they give an indication of the physical condition of the site and the quality and availability of habitat. Habitat available for macroinvertebrate colonization in Yellow Creek at YELD-1 was naturally limited by the high percentage of bedrock substrate (Figure 1). Overall habitat quality was categorized as sub-optimal. However, sinuosity and riparian buffer were noted as an issue within the reach.

Table 1. Summary of watershed characteristics.

Watershed Characteristics				
Basin		Coosa River		
Drainage Area (mi²)		68d		
Ecoregion ^a % Landuse		oou		
Open water		<1		
Wetland	Woody	<1		
	Emergent herbaceous	<1		
Forest	Deciduous	31		
	Evergreen	5		
	Mixed	20		
Shrub/scrub		3		
Grassland/herbaceous		2		
Pasture/hay		30		
Cultivated crops		2		
Development	Open space	4		
•	Low intensity	1		
	Moderate intensity	<1		
	High intensity	<1		
Barren		<1		
Population/km ^{2 b}		34		
# NPDES Permits ^c	TOTAL	3		
Construction Stormwater	r	3		
a Southern Table Plateaus				

- b.2000 US Census
- c.#NPDES permits downloaded from ADEM's NPDES Management System database, February 23, 2011.

Table 2. Physical characteristics of Yellow Creek at YELD-1, June 15, 2010.

Physical Characteristics						
Width (ft)		40				
Canopy Cover		Estimate 50/50				
Depth (ft)						
	Riffle	0.4				
	Run	1.5				
	Pool	2.0				
% of Reach						
	Riffle	10				
	Run	80				
	Pool	10				
% Substrate						
	Bedrock	73				
	Cobble	1				
	Gravel	2				
	Sand	1				
	Silt	15				
Organ	ic Matter	8				

BIOASSESSMENT RESULTS

Benthic macroinvertebrate communities were sampled using ADEM's Intensive Multi-habitat Bioassessment methodology (WMB-I). The WMB-I uses measures of taxonomic richness, community composition, and community tolerance to assess the overall health of the macroinvertebrate community. Each metric is scored on a 100 point scale. The final score is the average of the average of all metric scores. Metric results indicated the macroinvertebrate community to be in fair condition (Table 4).

Table 3. Results of the habitat assessment conducted on Yellow Creek at YELD-1, June 15, 2010.

Habitat Assessment	%Maximum Score	Rating		
Instream Habitat Quality	59	Sub-optimal (59-70)		
Sediment Deposition	80	Optimal >70		
Sinuosity	58	Marginal (45-64)		
Bank and Vegetative Stability	81	Optimal >74		
Riparian Buffer	51	Marginal (50-69)		
Habitat Assessment Score	164			
% Maximum Score	68	Sub-optimal (59-70)		

Table 4. Results of the macroinvertebrate bioassessment conducted in Yellow Creek at YELD-1, June 15, 2010.

Macroinvertebrate Assessment Results Taxa richness and diversity measures # Ephemeroptera (mayfly) taxa 8 # Plecoptera (stonefly) taxa 1 # Trichoptera (caddisfly) taxa 8 Taxonomic composition measures % Non-insect taxa 10 % Plecoptera 6 % Non-insect organisms 1 Community tolerance			
	Results		
Taxa richness and diversity measures			
# Ephemeroptera (mayfly) taxa	8		
# Plecoptera (stonefly) taxa	1		
# Trichoptera (caddisfly) taxa	8		
Taxonomic composition measures			
% Non-insect taxa	10		
% Plecoptera	6		
% Non-insect organisms	1		
Community tolerance			
Becks community tolerance index	7		
WMB-I Assessment Score	52		
WMB-I Assessment Rating	Fair (48-71)		

WATER CHEMISTRY

Results of water chemistry analyses are presented in Table 5. In situ measurements and water samples were collected semimonthly, May through November of 2010 to help identify any stressors to the biological communities. However, the creek was dry on September 28, 2010, and samples could not be collected. Dissolved oxygen was <5.0 mg/L on June 15, 2010, and flow was 3.5 cfs during this sampling event. Median dissolved metals (copper and iron), total metals (aluminum and iron), and hardness were higher than the data collected at reference reaches within the Southern Table Plateaus ecoregion (68d).

SUMMARY

Bioassessment results indicated the macroinvertebrate community to be in *fair* condition. Intensive water chemistry results indicated higher than expected metals and hardness concentrations, as compared to data from least-impaired reference reaches in the same ecoregion. Additionally, flow conditions during the sampling period were low. Low-level metals sampling may be necessary to determine if the criteria exceedances are due to natural conditions or anthropogenic sources.

Table 5. Summary of water quality data collected May-November, 2010. Minimum (Min) and maximum (Max) values calculated using minimum detection limits (MDL) when results were less than this value. Median, average (Avg), and standard deviations (SD) values were calculated by multiplying the MDL by 0.5 when results were less than this value.

Parameter	N		Min		Max	Med	Avg	SD E
Physical								
Temperature (°C)	5		9.8		24.4	19.5	18.8	5.9
Turbidity (NTU)	4		4.2		8.1	6.2	6.2	2.0
Total Dissolved Solids (mg/L)	3		15.0		40.0	38.0	31.0	13.9
Total Suspended Solids (mg/L)	3		1.0		5.0	1.0	2.3	2.3
Specific Conductance (µmhos)	5		45.2		74.0	49.0	55.2	11.7
Hardness (mg/L)	3		14.8		20.4	18.5 ^G	17.9	2.8
Alkalinity (mg/L)	3		8.0		12.4	8.1	9.5	2.5
Stream Flow (cfs)	4		2.7		8.9	3.4	4.6	2.9
Chemical								
Dissolved Oxygen (mg/L)	5		4.6	С	8.3	6.6	6.5	1.5
pH (su) Nitrate+Nitrite Nitrogen (mg/L)	5 3		6.2 0.093		7.0 0.485	6.7 0.145	6.6 0.241	0.4 0.213
J Dissolved Reactive Phosphorus (mg/L)	3	<	0.003		0.004	0.002	0.002	0.001
J CBOD-5 (mg/L)	3	<	1.0		1.0	0.5	0.5	0.0
Chlorides (mg/L)	3		1.9		3.6	2.1	2.5	0.9
Atrazine (µg/L)	2	<	0.02	<	0.02	0.01	0.01	0.00
Total Metals								
Aluminum (mg/L)	3		0.075		0.362	0.274 M	0.237	0.147
Iron (mg/L)	3		0.623		1.340	0.721 M	0.895	0.389
Manganese (mg/L)	3		0.103		0.236	0.184	0.174	0.067
Dissolved Metals								
Aluminum (mg/L)	3	<	0.020		0.028	0.021	0.020	0.009
Antimony (μg/L)	3	<	0.5		0.5	0.2	0.2	0.0
Arsenic (µg/L)	3	<	1.0	<	1.0	0.5	0.5	0.0
J Cadmium (mg/L)	3		0.0004		0.0004		0.0004	
Chromium (mg/L)	3	<	0.002	<	0.002	0.001		0.000
Copper (mg/L)	3	<	0.200	<	0.200	0.100 ™		0.000
Iron (mg/L)	3		0.123		0.325	0.319 ^M		0.115
J Lead (µg/L)	3	<	2.0 0.090	<	2.0	1.0	1.0	0.0
Manganese (mg/L)	2				0.186	0.112		0.050
^{JB} Mercury (μg/L) Nickel (mg/L)	3	<	0.200 0.005	<	0.200	0.100 0.002		0.000
Selenium (µg/L)	3	<	1.2	<	1.2	0.6	0.6	0.0
Silver (mg/L)	3	<	0.001	<	0.001	0.000		0.000
Thallium (µg/L)	3	<	0.001	<	0.001	0.000	0.000	0.0
Zinc (mg/L)	3	<	0.030	<	0.030	0.015		0.000
Biological	J	ì	0.000	Ì	0.000	3.010	0.010	3.000
Chlorophyll a (ug/L)	3	<	1.00		3.20	0.50	1.40	1.56
J E. coli (col/100mL)	3	•	102		435	117	218	188
L. COII (COI/ TOOTIL)	J		102		433	117	210	100

B=samples excluded due to laboratory QC concerns; C=F&W aquatic life use criteria exceeded; E=# samples that exceeded criteria; G=value higher than median concentration of all verified ecoregional reference reach data collected in the ecoregion 68d; J=estimate; M=value >90% of all verified ecoregional reference reach data collected in the ecoregion 68d; N=# samples.

FOR MORE INFORMATION, CONTACT: Ashley Shawn La Grone, ADEM Field Operations 2715 Sandlin Road SW Decatur, AL 35603 (256) 353-1713 slagrone@adem.state.al.us