

2010 Monitoring Summary

Whitewater Creek at Unnamed Autauga County Road (32.47868 \ -86.63593)

BACKGROUND

The Alabama Department of Environmental Management (ADEM) selected the Whitewater Creek watershed for biological and water quality monitoring as part of the 2010 Assessment of the Alabama, Coosa and Tallapoosa (ACT) River Basins. The objectives of the ACT Basin Assessments were to assess the biological integrity of each monitoring site and to estimate overall water quality within the ACT River basins.

Figure 1. Whitewater Creek facing upstream at WWMA-2, May 26, 2010.

WATERSHED CHARACTERISTICS

Watershed characteristics are summarized in Table 1. Whitewater Creek at WWMA-2 is a *Fish and Wildlife* (F&W) stream located in the Fall Line Hills ecoregion (65i). Based on the 2011 National Land Cover Dataset, land cover within the watershed is primarily forest (70%), with some shrub/scrub. No NPDES outfalls were active within the watershed.

REACH CHARACTERISTICS

General observations (Table 2) and a habitat assessment (Table 3) were completed during the macroinvertebrate assessment. In comparison with reference reaches in the same ecoregion, they give an indication of the physical condition of the site and the quality and availability of habitat. Whitewater at WWMA-2 is a rffle-run stream characterized by sand and gravel substrates (Figure 1). Overall habitat quality was categorized as *optimal*.

BIOASSESSMENT RESULTS

The benthic macroinvertebrate community was sampled using ADEM's Intensive Multi-habitat Bioassessment methodology (WMB-I). Measures of taxonomic richness, community composition, and community tolerance are used to assess the overall health of the macroinvertebrate community in comparison to conditions expected in south Alabama streams and rivers. Each site is placed in one of six levels, ranging from 1, or *natural* to 6, or *highly altered*. The macroinvertebrate survey conducted at WWMA-2 rated the site as a 3-, or *Good/Fair*. While many pollution-sensitive taxa are still present in the reach, over half on the individuals identified were nutrient tolerant (Table 4).

Table 1. Summary of watershed characteristics.							
Watershed Characteristics							
Basin	Alabama River						
Drainage Area (mi ²)		10					
Ecoregion ^a		65i					
% Landuse							
Open water		<1					
Wetland	Woody	1					
Forest	Deciduous	20					
	Evergreen	29					
	Mixed	21					
Shrub/scrub		18					
Pasture/hay		3					
Cultivated crops		<1					
Development	Open space	4					
	Low intensity	<1					
	Moderate intensity	<1					
Barren		<1					
Population/km ^{2b}	TOTAL	17					

a.Fall Line Hills

b.2000 US Census

Table 2. Physical characteristics of Whitewater Creek at WWMA-2, May 11, 2010.

Physical Characteristics					
Canopy Cover	Mostly Shaded				
Width (ft)	15				
Depth (11)					
Riffle	0.7				
Run	1.2				
Pool	4.0				
% of Reach					
Riffle	45				
Run	30				
Pool	25				
% Salatraic					
Cobble	3				
Gravel	57				
Sand	25				
Silt	2				
Organic Matter	13				

Table 3. Results of the habitat assessment conducted in WhitewaterCreek at WWMA-2, May 11, 2010.

Habitat Assessment	% Maximum Score	Rating			
Instream Habitat Quality	83	Optimal (>70)			
Sediment Deposition	76	Optimal (>70)			
Sinuosity	57.5	Marginal (45-<65) Sub-Optimal (60-			
Bank Vegetative Stability	70	<75)			
Riparian Buffer	90	Sub-Optimal (70-90)			
Habitat Assessment Score	156				
% Maximum Score	72	Optimal (>70)			

Table 4. Results of the macroinvertebrate bioassessment conducted in

 Whitewater Creek at WWMA-2, May 11, 2010.

Macroinvertebrate Assessment	D 14
	Results
Taxa richness and diversity measures	
Total # Taxa	50
# EPT taxa	14
# Highly-sensitive and Specialized Taxa	5
Taxonomic composition measures	
% EPC taxa	29
% EPT minus Baetidae and Hydropsychidae	8
% Chironomidae Individuals	53
% Dominant Taxon	42
% Individuals in Dominant 5 Taxa	74
Functional feeding group	
# Collector Taxa	18
% Tolerant Filterer Taxa	11
Community tolerance	
# Sensitive EPT	6
% Sensitive taxa	34
% Nutrient Tolerant individuals	55
WMB-I Assessment Score	3-
WMB-I Assessment Rating	Good/Fair

WATER CHEMISTRY

Results of water chemistry analyses are presented in Table 5. In situ measurements and water samples were collected bimonthly during April through November of 2010 to help identify any stressors to the biological communities.

Five of seven stream pH measurements did not meet the F&W criterion. Thallium concentrations appear to be above the human health criterion applicable to Whitewater Creek's F&W use classification for one out of three sampling events.

SUMMARY

Bioassessment results indicated the macroinvertebrate community in Whitewater Creek at WWMA-2 to be in *poor* condition although overall habitat quality was categorized as *optimal*. Low pH and high thallium levels may be causes of the *poor* macroinvertebrate community score. **Table 5.** Summary of water quality data collected April-November, 2010. Minimum (Min) and maximum (Max) values calculated using minimum detection limits (MDL). Median, average (Avg), and standard deviations (SD) values were calculated by multiplying the MDL by 0.5 when results were less than this value.

Parameter	N		Min		Max	Med	Avg	SD	Ε	Q
Physical										-
Temperature (°C)	7		14.1		25.7	18.0	20.0	4.5		
Turbidity (NTU)	7		8.8		22.4	12.3	13.9	5.2		
Total Dissolved Solids (mg/L)	4	<	1.0		38.0	18.0	17.6	16.2		
J Total Suspended Solids (mg/L)	4		3.0		13.0	3.0	5.5	5.0		
Specific Conductance (µmhos)	7		18.8		22.7	20.8	20.7	1.3		
Hardness (mg/L)	3		4.4		7.9	4.8	5.8	1.9		
Alkalinity (mg/L)	4		4.7		8.4	5.0	5.2	0.8		
Monthly Stream Flow (cfs)	8		8.8		19.0	6.0	10.7	4.5		
Chemical										
Dissolved Oxygen (mg/L)	7		8.5		8.7	79	77	80		
pH (su)	7		51	0	85	52	58	05	5	
Ammonia Nitrogen (mg/L)	4	<	0 021		0.021	0 0 1 0	0 010	0 000		
Nutrate+Nitrite Nitrogen (mg/L)	4		0 023		0 059	0 0 3 6	0 039	0015		
Total Kjeldahl Nitrogen (mg/l)	4	<	0 080		0 385	0 1 24	0 168	0 185		
Total Nitrogen (mg/L)	4	<	0 063		0 444	0 160	0 207	0 178		
J Dissolved Reactive Phosphorus (mg/L)	4		0.005		0.011	0 008	0 008	0 003		
Total Phosphorus (mg/L)	4		0.014		0.033	0 0 2 0	0.022	0 009		
^ر CBOD-5 (mg/L)	4	<	2.0	<	2.0	10	10	0.0		
Chlondes (mg/L)	4		1.5		1.9	17	17	02		
Alrazne (µg:L)	2	<	0 02	<	0 02	0 01	001	0.00		
Total Metals										
¹ Aluminum (mg-L)	3	<	0.033		0.073	0.022	0.037	0.031		
lron (mg/L)	3		2.700		3.900	2.720	3.107	0.687		
Manganese (mg/L)	3		0.178		0.496	0.252	0.309	0.186		
Dissolved Metals										
J Aluminum (mgiL)	3	<	0.033		0.043	0.022	0.028	0.012		
Antimony (µg/L)	3	<		<	1.9	0.9	0.9	0.0		
Arsenic (µg/L)	3	<	2.1	<	2.1	1.0	1.0	0.0		
Cadmium (µg/L)	3	<	0.014	<	0.014	0.007	0.007	0.000		
Chromium (µg:L)	3	<	9.000	<	13.000	6 .500	5.833	1.155		
Copper (mgA)	3	<	0.013	<	0.020	0.006		0.002		
J Iron (mg/L)	3	<	0.026		0.271	0.197	0.160			
Lead (µg/L)	3	<	1.7	<	1.7	8.0	0.8	0.0		
Manganese (mg/L)	3		0.152		0.324	0.233	0.238			
Mercury (µg:L)	3	<	0.080		0.080	0.040	0.040			
Nickel (mg/L)	3	<	0.019	<	0.042	0.010	0.013			
Selenium (µg/L)	3	<	1.7		3.1	80	18	13		
Silver (µg/L)	3	<	0.015	<	0.015	0 008	0 008	0 000		
۲ Thallium (µg:L)	3	<	06		08 -		04	02		1
Zmc (mg/L)	3	<	0 012	<	0 030	0015	0 012	0 005		
Biological						-				
Chlorophyll a (ugA)	4	<	0 10		1 34	0 56	063	0 68		
^y E coli (coli ² 100mL)	4		76		548	262	287	195		

C = sample exceeded F&W use class criteria; E = # of samples that exceeded criteria; H = F&W Human Health Criterion exceeded; J = estimate; N = # of samples; Q= # of uncertain exceedances.

FOR MORE INFORMATION, CONTACT: Aaron Goar, ADEM Aquatic Assessment Unit 1350 Coliseum Boulevard Montgomery, AL 36110 (334) 260-2755 agoar@adem.state.al.us