

2010 Monitoring Summary

Washington Creek at AL Hwy 183 in Perry County (32.56997/-87.39136)

BACKGROUND

Washington Creek is one of the streams the Alabama Department of Environmental Management (ADEM) monitors as a "best attainable condition" reference watershed for comparison with streams throughout the Blackland Prairie ecoregion (65a). It displays instream and habitat conditions that could be described as least-disturbed as compared to other streams in the region.

Additionally, Washington Creek was selected for biological and water quality monitoring as part of the 2010 Assessment of the Alabama, Coosa, and Tallapoosa (ACT) River Basins. The objectives of the ACT Basin Assessments were to assess the biological integrity of each site and to estimate overall water quality within the ACT basin group.

Figure 1. Washington Creek at WASP-1, April 14, 2010.

WATERSHED CHARACTERISTICS

Watershed characteristics are summarized in Table 1. Washington Creek at WASP-1 is a *Fish & Wildlife (F&W)* stream located in Perry County near Marion. Based on the 2006 National Land Cover Dataset, landuse in the watershed is primarily forest (38%) and pasture with some cropland. Population density in the area is low, and less than 4% of the watershed is developed. As of September 1, 2012, ADEM has issued no NPDES permits in this watershed.

REACH CHARACTERISTICS

General observations (Table 2) and a habitat assessment (Table 3) were completed during the macroinvertebrate assessment. In comparison with reference reaches in the same ecoregion, they give an indication of the physical condition of the site and the quality and availability of habitat. Washington Creek at WASP-1 is a glide-pool stream with a benthic substrate that consists primarily of gravel (Figure 1). Overall habitat quality was categorized as *sub-optimal* for supporting macroinvertebrate communities.

BIOASSESSMENT RESULTS

Benthic macroinvertebrate communities were sampled using ADEM's Intensive Multi-habitat Bioassessment methodology (WMB-I). The WMB-I uses measures of taxonomic richness, community composition, and community tolerance to assess the overall health of the macroinvertebrate community. Each metric is scored on a 100 point scale in comparison to least-impaired reference reaches in the same ecoregion. The final score is the average of all individual metric scores. Metric results indicated that the biological community at WASP-1 was in *fair* condition (Table 4).

Table 1. Summary of watershed characteristics.							
Watershed Characteristics							
Basin		Alabama River					
Drainage Area (mi ²)	16						
Ecoregion ^a		65a					
% Landuse							
Open water		<1					
Wetland	Woody	6					
	Emergent						
Forest	herbaceous	1					
	Deciduous	15					
	Evergreen	8					
	Mixed	15					
Shrub/scrub		5					
Grassland/herbaceous		<1					
Pasture/hay		32					
Cultivated crops		11					
Development	Open space	3					
	Low intensity	<1					
Population/km ^{2b}		10					

a.Blackland Prairie

b.2000 US Census

Table 2. Physical characteristics of Washington Creek at WASP-1, April 14, 2010.

Physical Characteristics						
Canopy Cover	Shaded					
Width (ft)	30.0					
Depth (Ft)						
Run	1.0					
Pool	2.0					
% of Reach						
Run	70					
Pool	30					
% Substrate						
Clay	5					
Cobble	3					
Gravel	15					
Hard Pan Clay	65					
Sand	5					
Silt	2					
Organic Matter	5					

Table 3. Results of the habitat assessment conducted on Washington Creek at WASP-1, April 14, 2010.

Habitat Assessment	%Maximum	Score Rating
Instream Habitat Quality	57	Sub-optimal (53-65)
Sediment Deposition	64	Sub-optimal (53-65)
Sinuosity	30	Poor <45
Bank and Vegetative Stabil	ity 39	Marginal (35-59)
Riparian Buffer	85	Sub-optimal (70-89)
Habitat Assessment Scor	re 132	
% Maximum Score	60	Sub-optimal (53-65)

Table 4. Results of macroinvertebrate assessment conducted inWashington Creek at WASP-1, April 14, 2010.

Macroinvertebrate Assessment						
	Results	Scores				
Taxa richness and diversity measures		(0-100)				
% EPC taxa	20	20				
% Trichoptera & Chironomidae Taxa	37	58				
Taxonomic composition measures						
% EP Individuals	25	48				
Functional feeding group						
% Collector-Filterer Individuals	26	57				
Community tolerance						
% Nutrient Tolerant individuals	39	45				
WMB-I Assessment Score		46				
WMB-I Assessment Rating		Fair (31-45)				

WATER CHEMISTRY

Results of water chemistry are presented in Table 5. In 2010, in situ measurements and water samples were generally collected bimonthly, April through November, to help identify any stressors to the biological communities. However, streams in this ecoregion typically go dry during the summer and fall months. Samples were therefore collected monthly, April through July. In situ measurements and flows were measured during the macroinvertebrate bioassessment and monthly, April through November when possible.

Maximum stream flows (62.2 cfs) occurred on April 8th. Turbidity and estimated concentrations of dissolved arsenic and thallium were above water quality criteria for the stream's F&W use classification during this sampling event. Organics were collected April 8th and May 12th, but were not detected. Median concentrations of total iron and total manganese were above values typical of streams in the Blackland Prairie ecoregion. Samples could not be collected in July because stream flow was reduced to a series of unconnected pools.

SUMMARY

Bioassessment results indicated the macroinvertebrate community in Washington Creek at WASP-1 to be in *fair* condition. Water quality data collected in 2010 suggest the site to be typical of other reference reaches in the Blackland Prairie ecoregion. However, median concentrations total iron and manganese were elevated for this stream type.

FOR MORE INFORMATION, CONTACT: Ashley Lockwood, ADEM Aquatic Assessment Unit 1350 Coliseum Boulevard Montgomery, AL 36110 (334) 260-2766 asims@adem.state.al.us **Table 5.** Summary of water quality data collected April-June, 2010. Minimum (Min) and maximum (Max) values calculated using minimum detection limits (MDL) when results were less than this value. Median, average (Avg), and standard deviations (SD) values were calculated by multiplying the MDL by 0.5 when results were less than this value.

	Parameter	Ν		Min		Max	Med	Avg	SD	E
	Physical							-		
Ī	Temperature (°C)	4		18.7		24.1	20.3	20.8	2.3	
	Turbidity (NTU)	4		19.7		146.0 ^T	22.4	52.6	62.3	
I	Total Dissolved Solids (mg/L)	3		72.0		94.0	88.0	84.7	11.4	
	Total Suspended Solids (mg/L)	3		6.0		254.0	7.0	89.0	142.9	
	Specific Conductance (µmhos)	4		88.0		112.0	103.0	101.5	11.6	
	Hardness (mg/L)	3		41.0		44.2	43.6	42.9	1.7	
	Alkalinity (mg/L)	3		33.9		46.0	44.7	41.5	6.6	
	Stream Flow (cfs)	4		2.9		62.2	5.7	19.1	28.8	
	Chemical									
	Dissolved Oxygen (mg/L)	4		7.6		8.5	7.8	7.9	0.4	
	pH (su)	4		6.7		7.4	7.3	7.2	0.3	
	Ammonia Nitrogen (mg/L)	3	<	0.021		0.113	0.010	0.045	0.059	
	Nitrate+Nitrite Nitrogen (mg/L)	3		0.122		0.294	0.224	0.213	0.086	
	Total Kjeldahl Nitrogen (mg/L)	3		0.495		2.761	0.665	1.307	1.262	
	Total Nitrogen (mg/L)	3		0.719		2.883	0.959	1.520	1.186	
	Dissolved Reactive Phosphorus (mg/L)	3		0.027		0.037	0.033	0.032	0.005	
	Total Phosphorus (mg/L)	3		0.123		0.507	0.124	0.251	0.221	
	CBOD-5 (mg/L)	3	<	2.0		6.9	1.0	3.0	3.4	
	COD (mg/L)	2		8.7		9.1	8.9	8.9	0.3	
	TOC (mg/L)	3		5.6		11.1	6.1	7.6	3.0	
	Chlorides (mg/L)	3		3.7		4.9	4.0	4.2	0.6	
	Atrazine (µg/L)	2	<	0.02	<	0.02	0.01	0.01	0.00	
	Total Metals									
l	Aluminum (mg/L)	3		0.203	<	4.810	0.330	1.781	2.624	
	Iron (mg/L)	3		2.720		11.900	3.180 [™]	5.933	5.172	
	Manganese (mg/L)	3		0.588		4.320	0.700 ^M	1.869	2.123	
	Dissolved Metals									
	Aluminum (mg/L)	3	<	0.033	<	0.033	0.016	0.016	0.000	
	Antimony (µg/L)	3	<	0.7	<	1.9	0.9	0.8	0.3	
	Arsenic (µg/L)	3	<	1.4	<	2.1 ^H	1.0	1.2	0.2	1
	Cadmium (mg/L)	3	<	0.003	<	0.014	0.002	0.003	0.003	
	Chromium (mg/L)	3	<	0.013	<	0.013	0.006	0.006	0.000	
	Copper (mg/L)	3	<	0.013	<	0.013	0.006	0.006	0.000	
	Iron (mg/L)	3		0.367		0.947	0.877 ^M	0.730	0.317	
	Lead (µg/L)	3	<	1.0	<	1.7	0.8	0.7	0.2	
	Manganese (mg/L)	3		0.514		0.752	0.550 ^M	0.605	0.128	
	Mercury (µg/L)	3	<	0.1	<	0.1	0.0	0.0	0.0	
	Nickel (mg/L)	3	<	0.019	<	0.019	0.010	0.010	0.000	
	Selenium (µg/L)	3	<	0.4	<	1.7	0.8	0.6	0.4	
	Silver (mg/L)	3	<	0.002	<	0.002	0.001	0.001	0.000	
	Thallium (µg/L)	3	<	0.6	<	0.6 ^H	0.3	0.4	0.1	1
	Zinc (mg/L)	3	<	0.030	<	0.030	0.015	0.015	0.000	
	Biological									
	Chlorophyll a (ug/L)	3	<	0.10		64.10	2.29	22.15	36.35	
I	E. coli (col/100mL)	3		68.00	>	2.419.60	313.00	933.67	1.292.66	

E=# samples that exceeded criteria; H=F&W human health criteria exceeded; J=estimate; M=value >90% of all verified ecoregional reference reach data collected in the ecoregion 65a; N=# samples; T=value exceeds 50 NTU above the 90th percentile of all verified ecoregional reference reach data collected in the ecoregion 65a.