# **2010 Lay Reservoir Report Rivers and Reservoirs Monitoring Program**





**Alabama Department of Environmental Management** 

Field Operations Division Environmental Indicators Section Aquatic Assessment Unit January 2013

# **Rivers and Reservoirs Monitoring Program**

2010

Lay Reservoir Coosa River Basin

Alabama Department of Environmental Management Field Operations Division Environmental Indicators Section Aquatic Assessment Unit

January 2013



# **Table of Contents**

| LIST OF ACRONYMS |   |
|------------------|---|
| LIST OF FIGURES  | 5 |
| LIST OF TABLES   | 6 |
| INTRODUCTION     | 7 |
| METHODS          |   |
| RESULTS          |   |
| REFERENCES       |   |
| APPENDIX         |   |



# LIST OF ACRONYMS

| A&I   | Agriculture and Industry water supply use classification |
|-------|----------------------------------------------------------|
| ADEM  | Alabama Department of Environmental Management           |
| AGPT  | Algal Growth Potential Test                              |
| APCO  | Alabama Power Company                                    |
| Chl a | Chlorophyll <i>a</i>                                     |
| DO    | Dissolved Oxygen                                         |
| F&W   | Fish and Wildlife                                        |
| MAX   | Maximum                                                  |
| MDL   | Method Detection Limit                                   |
| MIN   | Minimum                                                  |
| MSC   | Mean Standing Crop                                       |
| NTU   | Nephelometric Turbidity Units                            |
| OAW   | Outstanding Alabama Waters                               |
| ONRW  | Outstanding National Resource Water                      |
| PWS   | Public Water Supply                                      |
| QAPP  | Quality Assurance Project Plan                           |
| RRMP  | Rivers and Reservoirs Monitoring Program                 |
| S     | Swimming and Other Whole Body Water-Contact Sports       |
| SD    | Standard Deviation                                       |
| SOP   | Standard Operating Procedures                            |
| TEMP  | Temperature                                              |
| TN    | Total Nitrogen                                           |
| TMDL  | Total Maximum Daily Load                                 |
| ТР    | Total Phosphorus                                         |
| TSI   | Trophic State Index                                      |
| TSS   | Total Suspended Solids                                   |
| USEPA | United States Environmental Protection Agency            |
| USGS  | United States Geological Survey                          |



## LIST OF FIGURES

| Figure 1. Lay Reservoir with 2010 sampling locations9                                                                                                                      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Figure 2. Mean growing season TN and TP measured in Lay Reservoir, April-<br>October, 1997-2010                                                                            |
| Figure 3. Mean growing season chl <i>a</i> and TSS measured in Lay Reservoir, April-October, 1997-2010                                                                     |
| Figure 4. Monthly TN concentrations measured in Lay Reservoir, April-October 2010 vs. average monthly discharge                                                            |
| Figure 5. Monthly TP concentrations measured in Lay Reservoir, April-October 2010 vs. average monthly discharge                                                            |
| Figure 6. Monthly chl <i>a</i> concentrations measured in Lay Reservoir, April-October 2010 vs. average monthly discharge                                                  |
| Figure 7. Monthly TSS concentrations measured in Lay Reservoir, April-October 2010 vs. average monthly discharge                                                           |
| Figure 8. Monthly DO concentrations at 1.5 m (5 ft) for Lay Reservoir stations collected April-October 2010                                                                |
| Figure 9. Monthly depth profiles of dissolved oxygen (mg/L), temperature (C), and conductivity (umhos) in the lower Lay Reservoir station, April-October 2010              |
| Figure 10. Monthly depth profiles of dissolved oxygen (mg/L), temperature (C), and conductivity (umhos) in the mid Lay Reservoir station, April-October 2010               |
| Figure 11. Monthly depth profiles of dissolved oxygen (mg/L), temperature (C), and conductivity (umhos) in the upper Lay Reservoir station, April-October 2010             |
| Figure 12. Monthly TSI values calculated for mainstem and tributary Lay Reservoir stations using chl <i>a</i> concentrations and Carlson's Trophic State Index calculation |



## LIST OF TABLES

| Table 1. Descriptions of the 2010 monitoring stations in Lay Reservoir                                                                                                                               | 10 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Table 2. Algal growth potential test results, Lay Reservoir, 1997-2010 (expressed as mean Maximum Standing Crop (MSC) dry weights of Selenastrum capricornutum in mg/L) and limiting nutrient status | 20 |
| Appendix Table 1. Summary of Lay Reservoir water quality data collected April-<br>October, 2010                                                                                                      | 29 |



### **INTRODUCTION**

Lay Reservoir was created with the completion of Lay Dam on the Coosa River in 1914. The reservoir encompasses approximately 12,000 acres and is located about 12 miles north/east of Clanton, AL. Lay Reservoir is situated between Logan Martin Reservoir and Mitchell Reservoir. In addition to power generation, Lay Reservoir provides recreational opportunities including boating, fishing and swimming.

Lay Reservoir was placed on Alabama's 1996 Clean Water Act (CWA) §303(d) list of impaired waters for not meeting its public water supply (PWS)/swimming (S)/fish & wildlife (F&W) water use classifications. The reservoir was listed for impairments caused by priority organics (PCBs), nutrients and organic enrichment/dissolved oxygen (OE/DO). A TMDL developed to address the nutrient and OE/DO impairment in Lay, as well as the entire Coosa River reservoir chain, was approved by the USEPA in 2008 (ADEM 2008c).

The Alabama Department of Environmental Management (ADEM) monitored Lay Reservoir as part of the 2010 assessment of the Alabama, Coosa and Tallapoosa River (ACT) Basins under the Rivers and Reservoirs Monitoring Program (RRMP). ADEM began monitoring lake water quality statewide in 1985, followed by a second statewide survey in 1989. In 1990, the Reservoir Water Quality Monitoring (now known as RRMP) Program was initiated by the Field Operations Division of the ADEM. The current objectives of this program are to provide data that can be used to assess current water quality conditions, identify trends in water quality conditions and to develop Total Maximum Daily Loads (TMDLs) and water quality criteria. Descriptions of all RRMP monitoring activities are available in ADEM's 2012 Monitoring Strategy (ADEM 2012).

In 2010, the ADEM implemented specific water quality criteria for nutrient management at the lower and mid Lay Reservoir stations. These criteria represents the maximum growing season mean (April-October) chlorophyll a (chl a) concentration allowable while still fully supporting Lay Reservoir's PWS, S and F&W use classifications.



The purpose of this report is to summarize data collected at nine stations in Lay Reservoir during the 2010 growing season and to evaluate growing season trends in lake trophic status and nutrient concentrations using ADEM's fourteen-year dataset. Monthly and/or mean concentrations of nutrients [total nitrogen (TN); total phosphorus (TP)], algal biomass/productivity [chl *a*; algal growth potential testing (AGPT)], sediment [total suspended solids (TSS)] and trophic state [Carlson's trophic state index (TSI)] were compared to ADEM's historical data and established criteria.

## **METHODS**

Sampling stations were selected using historical data and previous assessments (Fig. 1). Specific location information can be found in <u>Table 1</u>. Lay Reservoir was sampled in the dam forebay, mid reservoir, and upper reservoir. Tributary embayment stations monitored include: Waxahatchee, Peckerwood, Yellowleaf, Tallaseehatchee, Talladega and Kelly Creeks.

Water quality assessments were conducted at monthly intervals, April-October. All samples were collected, preserved, stored and transported according to procedures in the ADEM Field Operations Division Standard Operating Procedures (ADEM 2010), Surface Water Quality Assurance Project Plan (ADEM 2008a) and Quality Management Plan (ADEM 2008b).

Mean growing season TN, TP, chl *a* and TSS were calculated to evaluate water quality conditions at each site. Monthly concentrations of these parameters were graphed with the closest available flow data and ADEM's previously collected data to help interpret the 2010 results.



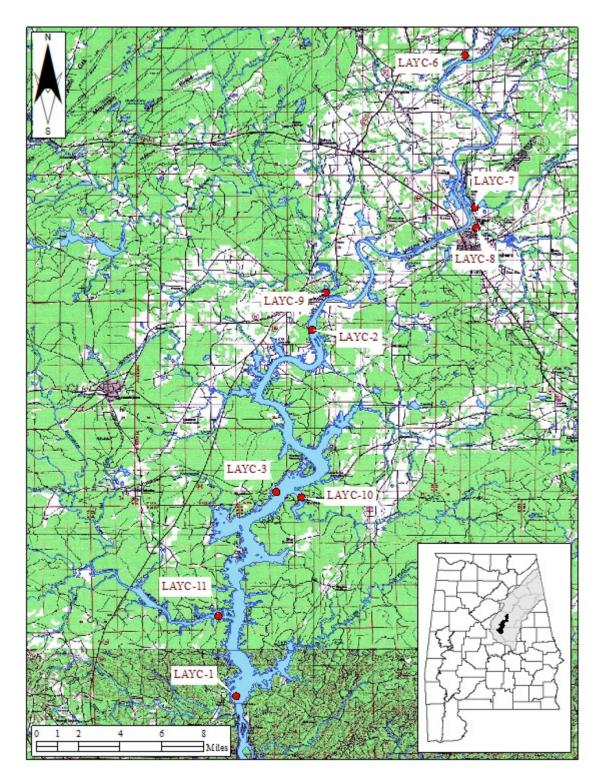



Figure 1. Lay Reservoir with 2010 sampling locations.



| HUC          | County    | Station<br>Number | Report<br>Designation | Waterbody          | Station Description                                                                                                     | Chl <i>a</i><br>Criteria | Latitude | Longitude |
|--------------|-----------|-------------------|-----------------------|--------------------|-------------------------------------------------------------------------------------------------------------------------|--------------------------|----------|-----------|
|              |           |                   |                       |                    | <b>*</b>                                                                                                                |                          |          |           |
| 031501070503 | Chilton   | LAYC-1*           | Lower                 | Coosa R            | Deepest point, main river channel, dam forebay.                                                                         | 17 ug/L                  | 32.9683  | -86.5189  |
| 031501070304 | Shelby    | LAYC-2            | Upper                 | Coosa R            | Deepest point, main river channel, upstream of Bullock's Islands.                                                       |                          | 33.2217  | -86.4665  |
| 031501070503 | Shelby    | LAYC-3*           | Mid                   | Coosa R            | Deepest point, main river channel, immediately<br>downstream of Peckerwood Ck/Coosa River<br>confluence.                | 17 ug/L                  | 33.1097  | -86.4912  |
| 031501060808 | St Clair  | LAYC-6            | Kelly Ck              | Kelly Ck           | Deepest point, main creek channel, Kelly Ck<br>embayment, approximately 0.5 miles upstream of<br>lake confluence.       |                          | 33.4115  | -86.3606  |
| 031501060703 | Talladega | LAYC-7            | Talladega Ck          | Talladega Ck       | Deepest point, main creek channel, Talladega Ck<br>embayment, immediately upstream of AL Hwy.<br>235 bridge.            |                          | 33.3064  | -86.3537  |
| 031501070106 | Talladega | LAYC-8            | Tallaseehatchee Ck    | Tallaseehatchee Ck | Deepest point, main creek channel,<br>Tallaseehatchee Ck embayment, immediately<br>upstream of AL Hwy. 235 bridge.      |                          | 33.2923  | -86.3528  |
| 031501070205 | Shelby    | LAYC-9            | Yellowleaf Ck         | Yellowleaf Ck      | Deepest point, main creek channel, Yellowleaf<br>Ck embayment, upstream of Gaston Steam Plant<br>discharge.             |                          | 33.2476  | -86.4570  |
| 031501070501 | Talladega | LAYC-10           | Peckerwood Ck         | Peckerwood Ck      | Deepest point, main creek channel, Peckerwood<br>Ck embayment, approximately 0.5 miles<br>upstream of lake confluence.  |                          | 33.1058  | -86.4738  |
| 031501070406 | Shelby    | LAYC-11           | Waxahatchee Ck        | Waxahatchee Ck     | Deepest point, main creek channel, Waxahatchee<br>Ck embayment, approximately 0.5 miles<br>upstream of lake confluence. |                          | 33.0236  | -86.5312  |

Table 1. Descriptions of the 2010 monitoring stations in Lay Reservoir.

\*Growing season mean chl *a* criteria implemented at this station in 2010.

10

#### RESULTS

Growing season mean graphs for TN, TP, chl *a* and TSS are provided in this section (Figs. 2 and 3). Monthly graphs for TN, TP, chl *a*, TSS, DO and TSI are also provided (Figs. 4-8 and 12). Mean monthly discharge is included in monthly graphs for TN, TP, chl *a*, TSS and TSI as an indicator of flow and retention time in the months sampled. AGPT results appear in Table 2. Depth profile graphs of temperature, DO and conductivity appear in Figures 9-11. Summary statistics of all data collected during 2010 are presented in <u>Appendix Table 1</u>. The table contains the minimum, maximum, median, mean and standard deviation of each parameter analyzed. Due to resource constraints AGPT samples were collected in one mainstem location in August. Results for TKN, TP and TN analyses in Lay Reservoir embayment stations did not meet laboratory QC requirements.

Stations with the highest concentrations of nutrients, chlorophyll and TSS are noted in the paragraphs to follow. Though stations with lowest concentrations may not always be mentioned, review of the graphs that follow will indicate these stations that may be potential candidates for reference waterbodies and watersheds.

In 2010 the highest mean growing season TN value calculated among Lay Reservoir mainstem stations was in the upper station while the lower and mid stations were similar (Fig. 2). Mean growing season TN values in the mainstem stations have shown an overall decline from 2000 through 2010. Historic high monthly TN concentrations were measured in the lower and upper stations in September (Fig. 4). Historic, or near historic, low TN concentrations were measured in the lower stations in June, August and October, and the mid and upper stations in October.

In 2010 the highest mean growing season TP value among Lay Reservoir mainstem stations was in the upper station while the lowest value was in the lower station (Fig. 2). Mean growing season TP values in all Lay Reservoir mainstem stations during 2010 were the lowest since monitoring began and have declined overall at most locations in the years monitored. Monthly TP concentrations measured in all Lay Reservoir mainstem stations were at or below historic means most months monitored April-October, 2010 (Fig. 5). Historic low monthly TP

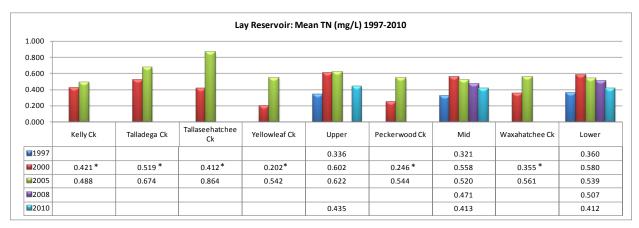


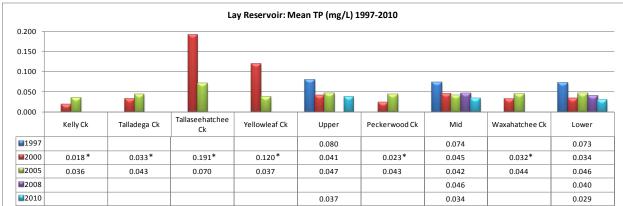
concentrations were measured during September in the lower station and during April, July and September in the mid and upper stations.

Specific water quality criteria for nutrient management have been established for the lower and mid stations on Lay Reservoir. The growing season mean chl *a* values calculated in the lower and mid stations in Lay Reservoir during 2010 were in compliance with the criteria limits (Fig. 3). In 2010 the highest mean growing season chl *a* value calculated among Lay Reservoir mainstem stations was in the mid station. The highest value calculated among tributary stations was in Tallaseehatchee Creek. Mean growing season chl *a* values in the lower, mid and upper mainstem stations and the Waxahatchee Creek, Peckerwood Creek and Yellowleaf Creek embayment station were the lowest since monitoring began. Values in the Talledega Creek and Kelly Creek embayments were variable. Historic low monthly chl *a* concentrations were measured in the lower station during June, September and October and in the upper station during April, September and October.

In 2010 the highest mean growing season TSS value calculated among Lay Reservoir mainstem stations was in the upper station and the lowest was in the mid station (Fig. 3). Mean growing season TSS values in all mainstem stations have varied since monitoring began. All values in tributary embayment stations were the lowest since monitoring began and have declined overall at most locations in the years monitored. Historic low monthly TSS concentrations were measured during October in the lower station, May and October in the mid station, and April, June, July and October in the upper station (Fig. 7). Historic high concentrations were measured in the lower and upper stations in May during a high flow period.

AGPT results for the lower Lay Reservoir station indicate it was nitrogen limited in 1997 and non-limiting in 2000 and 2005 (<u>Table 2</u>). The mid station has remained nitrogen limited all years monitored while the upper station has varied. AGPT results from August 2010 indicate the upper station exceeded 5 mg/L MSC, the value that Raschke et al. (1996) defined as protective of reservoir and lake systems.

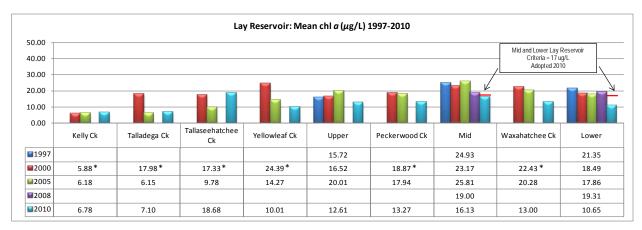


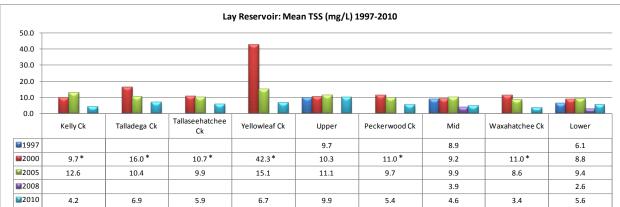


Dissolved oxygen (DO) concentrations were near or below the ADEM Criteria (ADEM Admin. Code R. 335-6-10-.09) limit of 5.0 mg/L at 5.0 ft (1.5 m) in the lower Lay Reservoir station August-October, and the mid station in August (Fig. 8). DO concentrations were also near or below the ADEM Criteria value in Yellowleaf Creek in July and August. Based on monthly DO profiles, DO concentrations were near or below 5.0 mg/L in the entire water column in the lower station in June and August-October and in the mid and upper stations during August (Fig. 9).

TSI values were calculated using monthly chl *a* concentrations and Carlson's Trophic State Index. TSI values in the lower station were mesotrophic in April and eutrophic May through October (Fig. 12). The mid station was eutrophic April-October and the upper station was mesotrophic in April, oligotrophic in September, and eutrophic all other months monitored. Among the tributaries, Tallaseehatchee Creek had the highest TSI value reaching hypereutrophic conditions in June while Kelly Creek had the lowest, remaining oligotrophic all months except September.



Figure 2. Mean growing season TN and TP measured in Lay Reservoir, April-October, 1997-2010. Stations are illustrated from upstream to downstream as the graph is read from left to right.




\* Mean of April/June/August only.



Figure 3. Mean growing season chl *a* and TSS measured in Lay Reservoir, April-October, 1997-2010. Stations are illustrated from upstream to downstream as the graph is read from left to right. Chl *a* criteria applies to the growing season means of the lower and mid stations.






\* Mean of April/June/August only.



Figure 4. Monthly TN concentrations measured in Lay Reservoir, April-October 2010 vs. average monthly discharge. Discharge provided by APCO. Each bar graph depicts monthly changes in each station. The historic mean (1990-2010) and min/max range are also displayed for comparison. The "n" value equals the number of datapoints included in the monthly historic calculations.



Apr

May

Jun

Jul

Aug

Sep

Oct

Figure 5. Monthly TP concentrations measured in Lay Reservoir, April-October 2010 vs. average monthly discharge. Discharge provided by APCO. Each bar graph depicts monthly changes in each station. The historic mean (1990-2010) and min/max range are also displayed for comparison. The "n" value equals the number of datapoints included in the monthly historic calculations.

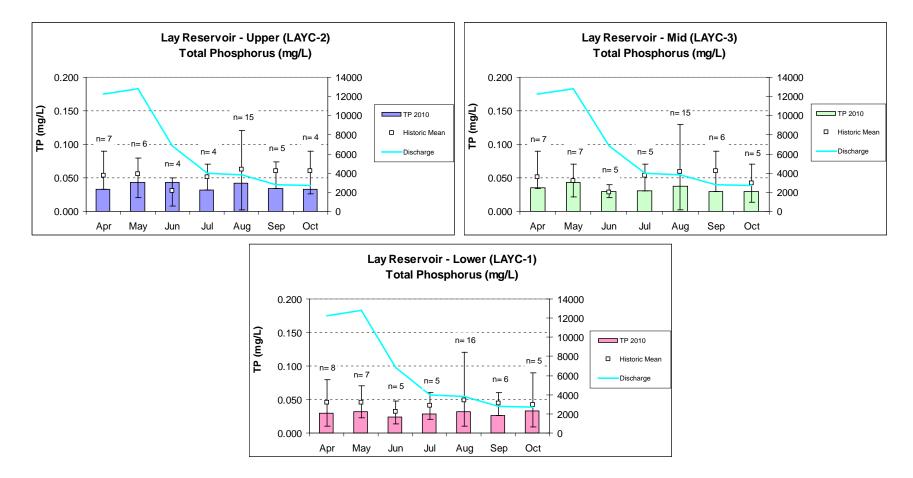



Figure 6. Monthly chl *a* concentrations measured in Lay Reservoir, April-October 2010 vs. average monthly discharge. Discharge provided by APCO. Each bar graph depicts monthly changes in each station. The historic mean (1990-2010) and min/max range are also displayed for comparison. The "n" value equals the number of datapoints included in the monthly historic calculations.

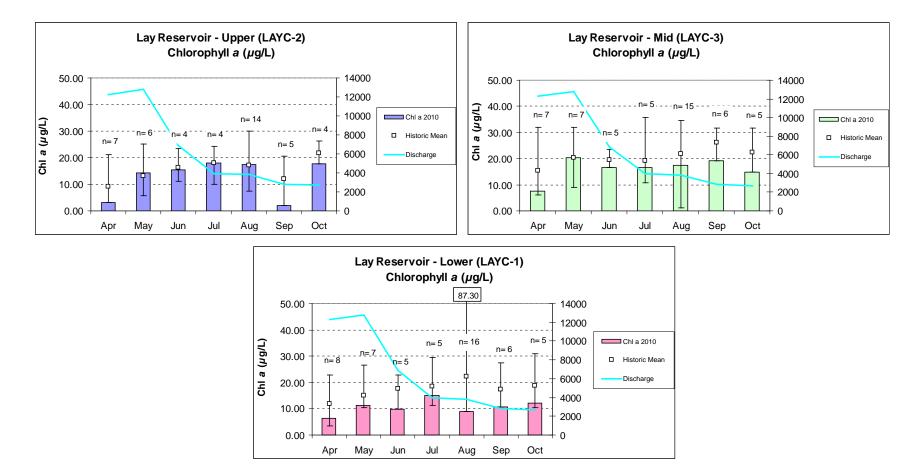
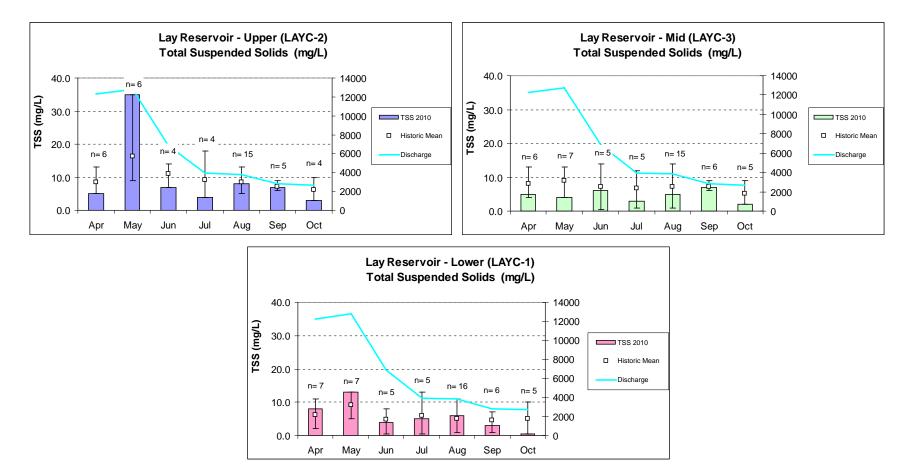
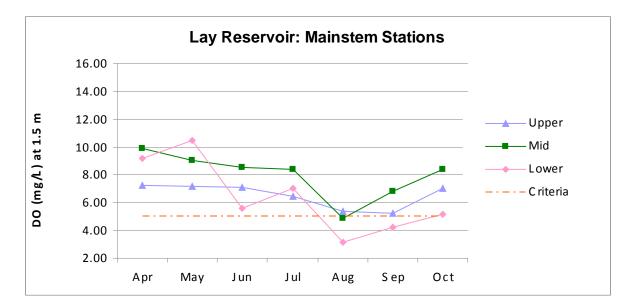
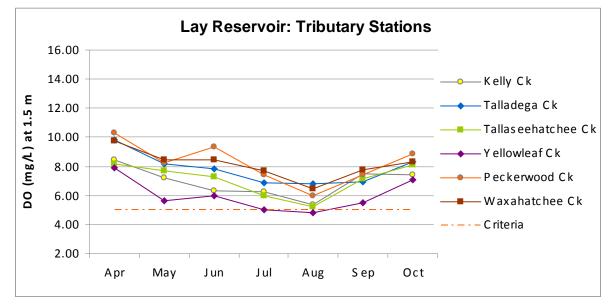



Figure 7. Monthly TSS concentrations measured in Lay Reservoir, April-October 2010 vs. average monthly discharge. Discharge provided by APCO. Each bar graph depicts monthly changes in each station. The historic mean (1990-2010) and min/max range are also displayed for comparison. The "n" value equals the number of datapoints included in the monthly historic calculations.



Table 2. Algal growth potential test results, Lay Reservoir, 1997-2010 (expressed as mean Maximum Standing Crop (MSC) dry weights of Selenastrum capricornutum in mg/L) and limiting nutrient status. MSC values below 5 mg/L are considered to be protective in reservoirs and lakes; values below 20 mg/L MSC are considered protective of flowing streams and rivers. (Raschke and Schultz 1987).

| Station     | Station Upper |             |      | <b>/Iid</b> | Lower |              |  |
|-------------|---------------|-------------|------|-------------|-------|--------------|--|
|             | MSC           | Limiting    | MSC  | Limiting    | MSC   | Limiting     |  |
|             |               | Nutrient    |      | Nutrient    |       | Nutrient     |  |
| August 1997 | 10.48         | Co-limiting | 2.21 | Nitrogen    | 6.8   | Nitrogen     |  |
| August 2000 | 3.04          | Co-limiting | 5.55 | Nitrogen    | 2.67  | Non-limiting |  |
| August 2005 | 10.35         | Nitrogen    | 3.72 | Nitrogen    | 3.31  | Non-limiting |  |
| August 2010 | 9.71          | Phosphorus  | -    | -           | -     | -            |  |



Figure 8. Monthly DO concentrations at 1.5 m (5 ft) for Lay Reservoir stations collected April-October 2010. ADEM Water Quality Criteria pertaining to reservoir waters require a DO concentration of 5.0 mg/L at this depth (ADEM 2005).







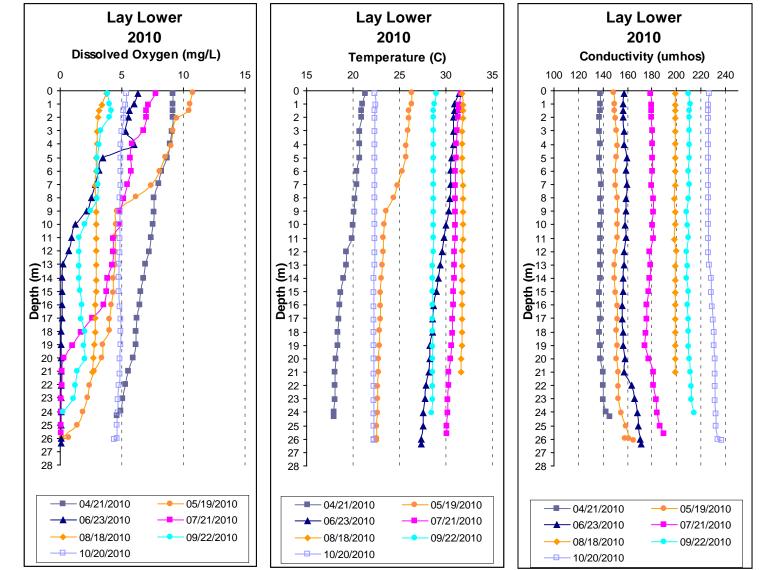



Figure 9. Monthly depth profiles of dissolved oxygen (mg/L), temperature (C), and conductivity (umhos) in the lower Lay Reservoir station, April-October 2010.

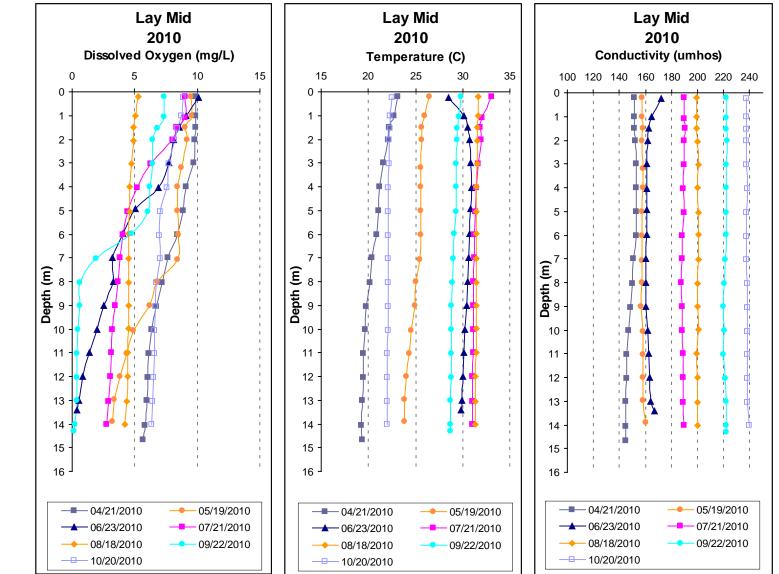



Figure 10. Monthly depth profiles of dissolved oxygen (mg/L), temperature (C), and conductivity (umhos) in the mid Lay Reservoir station, April-October 2010.

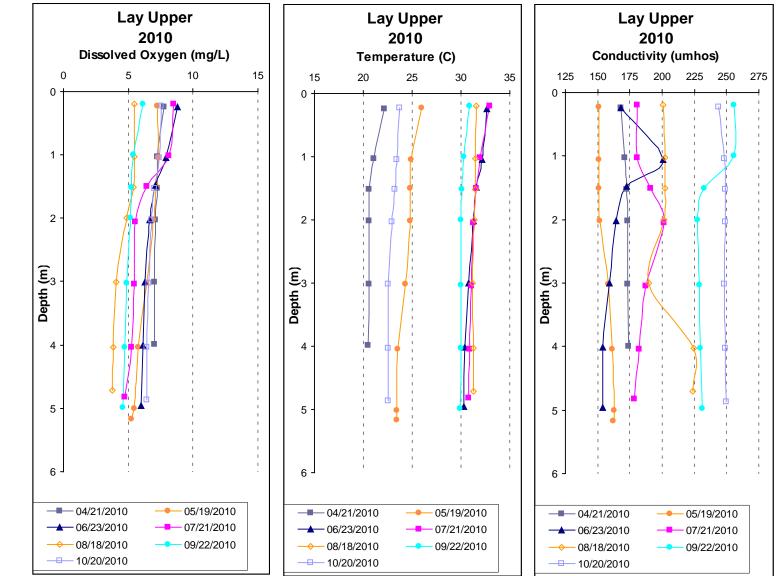
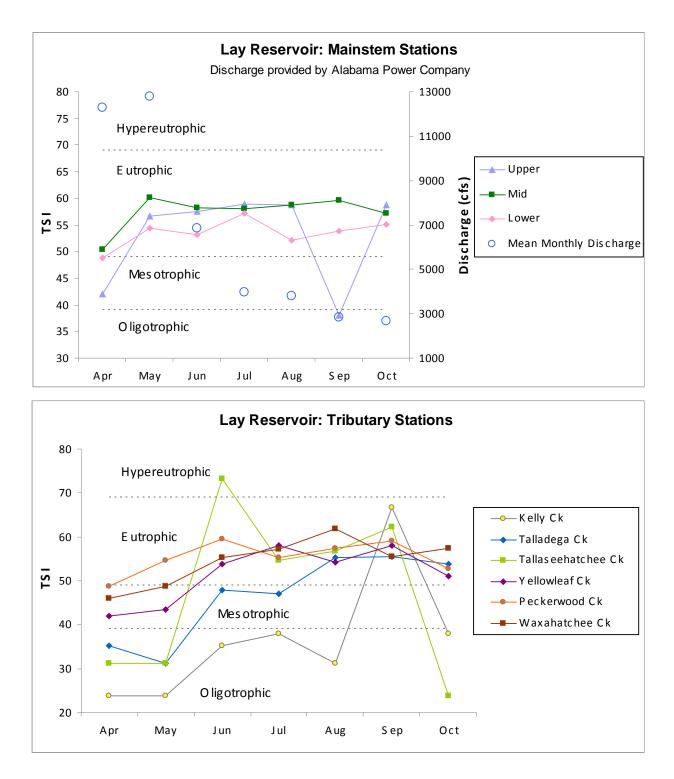




Figure 11. Monthly depth profiles of dissolved oxygen (mg/L), temperature (C), and conductivity (umhos) in the upper Lay Reservoir station, April-October 2010.

Figure 12. Monthly TSI values calculated for mainstem and tributary Lay Reservoir stations using chl *a* concentrations and Carlson's Trophic State Index calculation. Monthly discharge provided by APCO.





#### REFERENCES

- ADEM. 2008a. Quality Management Plan For The Alabama Department Of Environmental, Alabama Department of Environmental Management (ADEM), Montgomery, AL. 58 pp.
- ADEM. 2008b. Quality Assurance Project Plan (QAPP) for Surface Water Quality Monitoring in Alabama. Alabama Department of Environmental Management (ADEM), Montgomery, AL. 78 pp.
- ADEM. 2008c. FINAL Total Maximum Daily Loads (TMDLs) for Neely Henry Lake (Nutrients, OE/DO & pH), Logan Martin Lake (Nutrients & OE/DO), Lay Lake (Nutrients & OE/DO), and Mitchell Lake (Nutrients). <u>http://adem.alabama.gov/programs/water/wquality/tmdls/FinalCoosaLakesTMDLReport</u>
- ADEM. 2010 (as amended). Standard Operating Procedures #2041 *In Situ* Surface Water Quality Field Measurements-Temperature, Alabama Department of Environmental Management (ADEM), Montgomery, AL.
- ADEM. 2010 (as amended). Standard Operating Procedures #2044 *In Situ* Surface Water Quality Field Measurements–Turbidity, Alabama Department of Environmental Management (ADEM), Montgomery, AL.
- ADEM. 2010 (as amended). Standard Operating Procedures #2046 Photic Zone Measurement and Visibility Determination, Alabama Department of Environmental Management (ADEM), Montgomery, AL.
- ADEM. 2010 (as amended). Standard Operating Procedures #2047 *In Situ* Surface Water Quality Field Measurements–By Datasonde, Alabama Department of Environmental Management (ADEM), Montgomery, AL.
- ADEM. 2010 (as amended). Standard Operating Procedures #2061 General Surface Water Sample Collection, Alabama Department of Environmental Management (ADEM), Montgomery, AL.
- ADEM. 2010 (as amended). Standard Operating Procedures #2062 Dissolved Reactive Phosphorus (DRP) Surface Water Sample Collection and Field Processing, Alabama Department of Environmental Management (ADEM), Montgomery, AL.
- ADEM. 2010 (as amended). Standard Operating Procedures #2063 Water Column Chlorophyll *a* Sample Collection and Field Processing, Alabama Department of Environmental Management (ADEM), Montgomery, AL.
- ADEM. 2012. State of Alabama Water Quality Monitoring Strategy June 19, 2012. Alabama Department of Environmental Management (ADEM), Montgomery, AL. 88 pp. <u>http://www.adem.alabama.gov/programs/water/wqsurvey/2012WQMonitoringStrategy</u>
- Alabama Department of Environmental Management Water Division (ADEM Admin. Code R. 335-6-10-.09). 2010. Specific Water Quality Criteria. Water Quality Program. Chapter 10. Volume 1. Division 335-6.



- Alabama Department of Environmental Management Water Division (ADEM Admin. Code R. 335-6-10-.11). 2010. Water Quality Criteria Applicable to Specific Lakes. Water Quality Program. Chapter 10. Volume 1. Division 335-6.
- American Public Health Association, American Water Works Association and Water Pollution Control Federation. 1998. Standard methods for the examination of water and wastewater. 20th edition. APHA, Washington, D.C.
- Carlson, R.E. 1977. A trophic state index. Limnology and Oceanography. 22(2):361-369.
- Lind, O.T. 1979. Handbook of common methods in limnology. The C.V. Mosby Co., St. Louis, Missouri. 199 pp.
- Raschke, R.L. and D.A. Schultz. 1987. The use of the algal growth potential test for data assessment. Journal of Water Pollution Control Federation 59(4):222-227.
- Raschke, R. L., H. S. Howard, J. R. Maudsley, and R. J. Lewis. 1996. The Ecological Condition of Small Streams in the Savannah River Basin: A REMAP Progress Report. EPA Region 4, Science and Ecosystem Support Division, Ecological Assessment Branch, Athens, GA.
- U.S. Environmental Protection Agency. 1990. The lake and reservoir restoration guidance manual. 2<sup>nd</sup> edition. EPA-440/4-90-006. U.S.E.P.A. Office of Water. Washington, D.C. 326 pp.
- Welch, E.B. 1992. Ecological Effects of Wastewater. 2<sup>nd</sup> edition. Chapman and Hall Publishers. London, England. 425 pp.
- Wetzel, R.G. 1983. Limnology. 2<sup>nd</sup> edition. Saunders College Publishing. Philadelphia, Pennsylvania. 858 pp.



APPENDIX



Appendix Table 1. Summary of Lay Reservoir water quality data collected April-October, 2010. Minimum (min) and maximum (max) values calculated using minimum detection limits when results were less than this value. Median (med), mean and standard deviation (SD) values were calculated by multiplying the MDL by 0.5 when results were less than this value.

| Station | Parameter                                         | Ν |   | Min   | Мах   | Med   | Mean   | SD   |
|---------|---------------------------------------------------|---|---|-------|-------|-------|--------|------|
| LAYC-1  | Physical                                          |   |   |       |       |       |        |      |
|         | Turbidity (NTU)                                   | 7 |   | 2.4   | 5.0   | 3.1   | 3.5    | 1.1  |
|         | Total Dissolved Solids (mg/L) <sup>,</sup>        | 7 |   | 58.0  | 136.0 | 102.0 | 101.1  | 25.8 |
|         | Total Suspended Solids (mg/L) <sup>J</sup>        | 7 | < | 1.0   | 13.0  | 5.0   | 5.6    | 4.0  |
|         | Hardness (mg/L)                                   | 4 |   | 56.6  | 78.4  | 65.6  | 66.5   | 10.  |
|         | Alkalinity (mg/L)                                 | 7 |   | 55.4  | 87.9  | 70.9  | 71.7   | 12.3 |
|         | Photic Zone (m)                                   | 7 |   | 3.08  | 5.28  | 4.55  | 4.43   | 0.72 |
|         | Secchi (m)                                        | 7 |   | 1.07  | 2.14  | 1.80  | 1.75   | 0.3  |
|         | Chemical                                          |   |   |       |       |       |        |      |
|         | Ammonia Nitrogen (mg/L)                           | 7 | < | 0.021 | 0.021 | 0.010 | 0.010  | 0.00 |
|         | Nitrate+Nitrite Nitrogen (mg/L)                   | 7 | < | 0.003 | 0.098 | 0.033 | 0.040  | 0.03 |
|         | Total Kjeldahl Nitrogen (mg/L)                    | 7 | < | 0.080 | 0.617 | 0.426 | 0.372  | 0.20 |
|         | Total Nitrogen (mg/L) <sup>J</sup>                | 7 | < | 0.103 | 0.715 | 0.428 | 0.412  | 0.21 |
|         | Dissolved Reactive Phosphorus (mg/L) <sup>,</sup> | 7 | < | 0.004 | 0.010 | 0.006 | 0.006  | 0.00 |
|         | Total Phosphorus (mg/L)                           | 7 |   | 0.024 | 0.033 | 0.030 | 0.029  | 0.00 |
|         | CBOD-5 (mg/L)                                     | 7 | < | 2.0   | 3.2   | 1.0   | 1.3    | 0.   |
|         | Chlorides (mg/L)                                  | 7 |   | 3.6   | 8.8   | 4.9   | 5.6    | 1.9  |
|         | Biological                                        |   |   |       |       |       |        |      |
|         | Chlorophyll a (ug/L)                              | 7 |   | 6.41  | 14.95 | 10.68 | 10.65  | 2.6  |
|         | E. coli (mpn/100mL) <sup>J</sup>                  | 3 |   | 1     | 1     | 1     | 1      |      |
| LAYC-2  | Physical                                          |   |   |       |       |       |        |      |
|         | Turbidity (NTU)                                   | 7 |   | 3.8   | 8.5   | 5.5   | 5.6    | 1.   |
|         | Total Dissolved Solids (mg/L) <sup>J</sup>        | 7 |   | 76.0  | 152.0 | 112.0 | 113.1  | 30.  |
|         | Total Suspended Solids (mg/L)                     | 7 |   | 3.0   | 35.0  | 7.0   | 9.9    | 11.  |
|         | Hardness (mg/L)                                   | 4 |   | 64.6  | 83.0  | 72.2  | 73.0   | 8.   |
|         | Alkalinity (mg/L)                                 | 7 |   | 60.8  | 102.0 | 75.6  | 79.0   | 15.  |
|         | Photic Zone (m)                                   | 7 |   | 2.55  | 4.10  | 3.31  | 3.31   | 0.5  |
|         | Secchi (m)                                        | 7 |   | 1.13  | 1.66  | 1.22  | 1.32   | 0.2  |
|         | Chemical                                          |   |   |       |       |       |        |      |
|         | Ammonia Nitrogen (mg/L)                           | 7 | < | 0.021 | 0.048 | 0.010 | 0.016  | 0.01 |
|         | Nitrate+Nitrite Nitrogen (mg/L)                   | 7 |   | 0.056 | 0.213 | 0.124 | 0.134  | 0.06 |
|         | Total Kjeldahl Nitrogen (mg/L)                    | 7 | < | 0.080 | 0.549 | 0.293 | 0.301  | 0.17 |
|         | Total Nitrogen (mg/L)                             | 7 | < | 0.217 | 0.630 | 0.436 | 0.435  | 0.16 |
|         | Dissolved Reactive Phosphorus (mg/L) <sup>J</sup> | 7 |   | 0.006 | 0.016 | 0.010 | 0.010  | 0.00 |
|         | Total Phosphorus (mg/L)                           | 7 |   | 0.032 | 0.043 | 0.034 | 0.037  | 0.00 |
|         | CBOD-5 (mg/L)                                     | 7 | < | 2.0   | 2.6   | 1.0   | 1.4    | 0.   |
|         | Chlorides (mg/L)                                  | 7 |   | 4.4   | 11.1  | 5.1   | 6.5    | 2.   |
|         | Biological                                        |   |   |       |       |       |        |      |
|         | Chlorophyll o (ug/l)                              | 7 |   | 2.14  | 10 OF | 15.49 | 10 / 1 | 6.9  |
|         | Chlorophyll a (ug/L)                              | 7 |   | 2.14  | 18.05 | 10.49 | 12.61  | 0.9  |



| Station | Parameter                                         | Ν |   | Min   | Max   | Med   | Mean  | SD    |
|---------|---------------------------------------------------|---|---|-------|-------|-------|-------|-------|
| LAYC-3  | Physical                                          |   |   |       |       |       |       |       |
|         | Turbidity (NTU)                                   | 7 |   | 4.1   | 7.7   | 6.1   | 5.9   | 1.4   |
|         | Total Dissolved Solids (mg/L) <sup>J</sup>        | 7 |   | 74.0  | 144.0 | 112.0 | 113.4 | 28.5  |
|         | Total Suspended Solids (mg/L)                     | 7 |   | 2.0   | 7.0   | 5.0   | 4.6   | 1.7   |
|         | Hardness (mg/L)                                   | 4 |   | 60.4  | 81.2  | 67.6  | 69.2  | 10.2  |
|         | Alkalinity (mg/L)                                 | 7 |   | 61.9  | 90.5  | 76.1  | 75.0  | 11.9  |
|         | Photic Zone (m)                                   | 7 |   | 2.80  | 3.88  | 3.58  | 3.43  | 0.38  |
|         | Secchi (m)                                        | 7 |   | 0.93  | 1.54  | 1.23  | 1.25  | 0.20  |
|         | Chemical                                          |   |   |       |       |       |       |       |
|         | Ammonia Nitrogen (mg/L)                           | 7 | < | 0.021 | 0.021 | 0.010 | 0.010 | 0.000 |
|         | Nitrate+Nitrite Nitrogen (mg/L)                   | 7 | < | 0.002 | 0.117 | 0.002 | 0.034 | 0.046 |
|         | Total Kjeldahl Nitrogen (mg/L)                    | 7 |   | 0.196 | 0.533 | 0.428 | 0.379 | 0.140 |
|         | Total Nitrogen (mg/L)                             | 7 | < | 0.197 | 0.610 | 0.430 | 0.413 | 0.146 |
|         | Dissolved Reactive Phosphorus (mg/L) <sup>J</sup> | 7 | < | 0.003 | 0.007 | 0.004 | 0.004 | 0.002 |
|         | Total Phosphorus (mg/L)                           | 7 |   | 0.029 | 0.043 | 0.031 | 0.034 | 0.005 |
|         | CBOD-5 (mg/L)                                     | 7 | < | 2.0   | 3.2   | 1.0   | 1.5   | 0.8   |
|         | Chlorides (mg/L)                                  | 7 |   | 4.1   | 9.9   | 5.4   | 6.1   | 2.2   |
|         | Biological                                        |   |   |       |       |       |       |       |
|         | Chlorophyll a (ug/L)                              | 7 |   | 7.48  | 20.47 | 16.66 | 16.13 | 4.22  |
|         | E. coli (mpn/100mL) <sup>j</sup>                  | 3 |   | 1     | 1     | 1     | 1     | 0     |
| LAYC-6  | Physical                                          |   |   |       |       |       |       |       |
|         | Turbidity (NTU)                                   | 7 |   | 2.2   | 22.3  | 4.9   | 8.0   | 7.0   |
|         | Total Dissolved Solids (mg/L)                     | 7 |   | 63.0  | 164.0 | 89.0  | 97.3  | 32.1  |
|         | Total Suspended Solids (mg/L)                     | 7 | < | 0.3   | 10.0  | 4.0   | 4.2   | 3.3   |
|         | Hardness (mg/L)                                   | 4 |   | 47.8  | 61.2  | 53.2  | 53.9  | 5.5   |
|         | Alkalinity (mg/L)                                 | 7 |   | 33.8  | 71.9  | 46.2  | 49.6  | 15.0  |
|         | Photic Zone (m)                                   | 7 |   | 1.63  | 3.10  | 2.40  | 2.38  | 0.45  |
|         | Secchi (m)                                        | 7 |   | 0.68  | 2.54  | 1.83  | 1.61  | 0.78  |
|         | Chemical                                          |   |   |       |       |       |       |       |
|         | Ammonia Nitrogen (mg/L) <sup>JB</sup>             | 1 |   |       |       |       | 0.500 |       |
|         | Nitrate+Nitrite Nitrogen (mg/L) <sup>J</sup>      | 7 | < | 0.007 | 0.263 | 0.152 | 0.138 | 0.085 |
|         | Total Kjeldahl Nitrogen (mg/L) <sup>B</sup>       |   |   |       |       |       |       |       |
|         | Total Nitrogen (mg/L) <sup>B</sup>                |   |   |       |       |       |       |       |
|         | Dissolved Reactive Phosphorus (mg/L) <sup>J</sup> | 7 | < | 0.003 | 0.004 | 0.002 | 0.002 | 0.001 |
|         | Total Phosphorus (mg/L) <sup>B</sup>              |   |   |       |       |       |       |       |
|         | CBOD-5 (mg/L) <sup>J</sup>                        | 7 | < | 1.0   | 1.3   | 0.5   | 0.6   | 0.3   |
|         | Chlorides (mg/L)                                  | 7 |   | 2.1   | 19.5  | 11.9  | 10.9  | 6.6   |
|         | Biological                                        |   |   |       |       |       |       |       |
|         |                                                   |   |   |       |       |       |       |       |
|         | Chlorophyll a (ug/L)                              | 7 | < | 1.00  | 39.50 | 1.60  | 6.78  | 14.44 |



| Station | Parameter                                         | Ν | Min    | Мах   | Med   | Mean  | SD    |
|---------|---------------------------------------------------|---|--------|-------|-------|-------|-------|
| LAYC-7  | Physical                                          |   |        |       |       |       |       |
|         | Turbidity (NTU)                                   | 7 | 6.5    | 10.7  | 7.2   | 8.0   | 1.4   |
|         | Total Dissolved Solids (mg/L)                     | 7 | 101.0  | 141.0 | 115.0 | 117.0 | 13.5  |
|         | Total Suspended Solids (mg/L)                     | 7 | 5.0    | 8.0   | 7.0   | 6.9   | 1.1   |
|         | Hardness (mg/L)                                   | 4 | 87.8   | 108.0 | 97.2  | 97.6  | 8.8   |
|         | Alkalinity (mg/L)                                 | 7 | 67.2   | 99.5  | 80.6  | 79.6  | 10.9  |
|         | Photic Zone (m)                                   | 7 | 3.30   | 4.07  | 3.56  | 3.58  | 0.25  |
|         | Secchi (m)                                        | 7 | 1.19   | 1.45  | 1.20  | 1.27  | 0.12  |
|         | Chemical                                          |   |        |       |       |       |       |
|         | Ammonia Nitrogen (mg/L) <sup>JB</sup>             | 1 |        |       |       | 0.500 |       |
|         | Nitrate+Nitrite Nitrogen (mg/L)                   | 7 | 0.305  | 0.457 | 0.375 | 0.374 | 0.057 |
|         | Total Kjeldahl Nitrogen (mg/L) <sup>B</sup>       |   |        |       |       |       |       |
|         | Total Nitrogen (mg/L) <sup>B</sup>                |   |        |       |       |       |       |
|         | Dissolved Reactive Phosphorus (mg/L) <sup>J</sup> | 7 | 0.005  | 0.014 | 0.008 | 0.008 | 0.003 |
|         | Total Phosphorus (mg/L) <sup>B</sup>              |   |        |       |       |       |       |
|         | CBOD-5 (mg/L) <sup>J</sup>                        | 7 | < 1.0  | 1.0   | 0.5   | 0.5   | 0.0   |
|         | Chlorides (mg/L)                                  | 7 | 11.7   | 23.6  | 17.2  | 16.8  | 3.6   |
|         | Biological                                        |   |        |       |       |       |       |
|         | Chlorophyll a (ug/L)                              | 7 | 1.07   | 12.80 | 5.87  | 7.10  | 4.89  |
|         | E. coli (mpn/100mL)                               | 2 | 5      | 17    | 11    | 11    | 8     |
| LAYC-8  | Physical                                          |   |        |       |       |       |       |
|         | Turbidity (NTU)                                   | 7 | 4.7    | 8.1   | 6.0   | 6.0   | 1.2   |
|         | Total Dissolved Solids (mg/L)                     | 7 | 101.0  | 143.0 | 120.0 | 120.1 | 13.2  |
|         | Total Suspended Solids (mg/L)                     | 7 | 5.0    | 9.0   | 5.0   | 5.9   | 1.6   |
|         | Hardness (mg/L)                                   | 4 | 79.9   | 103.0 | 89.8  | 90.6  | 10.9  |
|         | Alkalinity (mg/L)                                 | 7 | 60.3   | 102.6 | 82.6  | 83.4  | 17.1  |
|         | Photic Zone (m)                                   | 7 | 3.33   | 4.67  | 3.58  | 3.79  | 0.53  |
|         | Secchi (m)                                        | 7 | 1.06   | 1.56  | 1.35  | 1.33  | 0.16  |
|         | Chemical                                          |   |        |       |       |       |       |
|         | Ammonia Nitrogen (mg/L) <sup>JB</sup>             | 1 |        |       |       | 0.500 |       |
|         | Nitrate+Nitrite Nitrogen (mg/L) <sup>J</sup>      | 7 | 0.179  | 0.631 | 0.348 | 0.378 | 0.176 |
|         | Total Kjeldahl Nitrogen (mg/L) <sup>B</sup>       |   |        |       |       |       |       |
|         | Total Nitrogen (mg/L) <sup>B</sup>                |   |        |       |       |       |       |
|         | Dissolved Reactive Phosphorus (mg/L) <sup>J</sup> | 7 | 0.005  | 1.150 | 0.008 | 0.174 | 0.430 |
|         | Total Phosphorus (mg/L) <sup>B</sup>              |   |        |       |       |       |       |
|         | CBOD-5 (mg/L) <sup>J</sup>                        | 7 | < 1.0  | 1.7   | 1.0   | 1.0   | 0.5   |
|         | Chlorides (mg/L)                                  | 7 | 3.4    | 41.8  | 13.7  | 15.7  | 14.0  |
|         | Biological                                        |   |        |       |       |       |       |
|         |                                                   |   |        |       |       |       |       |
|         | Chlorophyll a (ug/L)                              | 7 | < 1.00 | 76.90 | 11.70 | 18.68 | 27.23 |



| Station | Parameter                                         | Ν |   | Min   | Max   | Med   | Mean  | SD    |
|---------|---------------------------------------------------|---|---|-------|-------|-------|-------|-------|
| LAYC-9  | Physical                                          |   |   |       |       |       |       |       |
|         | Turbidity (NTU)                                   | 7 |   | 5.9   | 10.8  | 7.1   | 7.8   | 2.0   |
|         | Total Dissolved Solids (mg/L)                     | 7 |   | 84.0  | 149.0 | 99.0  | 106.0 | 24.8  |
|         | Total Suspended Solids (mg/L)                     | 7 |   | 5.0   | 8.0   | 7.0   | 6.7   | 1.2   |
|         | Hardness (mg/L)                                   | 4 |   | 58.0  | 81.8  | 67.2  | 68.6  | 10.0  |
|         | Alkalinity (mg/L)                                 | 7 |   | 43.4  | 76.1  | 58.2  | 60.6  | 11.6  |
|         | Photic Zone (m)                                   | 7 |   | 1.00  | 3.54  | 2.52  | 2.53  | 0.85  |
|         | Secchi (m)                                        | 7 |   | 0.91  | 1.22  | 1.02  | 1.04  | 0.12  |
|         | Chemical                                          |   |   |       |       |       |       |       |
|         | Ammonia Nitrogen (mg/L) <sup>JB</sup>             | 1 |   |       |       |       | 0.500 |       |
|         | Nitrate+Nitrite Nitrogen (mg/L) <sup>J</sup>      | 7 |   | 0.017 | 0.127 | 0.066 | 0.071 | 0.036 |
|         | Total Kjeldahl Nitrogen (mg/L) <sup>B</sup>       |   |   |       |       |       |       |       |
|         | Total Nitrogen (mg/L) <sup>B</sup>                |   |   |       |       |       |       |       |
|         | Dissolved Reactive Phosphorus (mg/L) <sup>J</sup> | 7 | < | 0.003 | 0.003 | 0.002 | 0.002 | 0.000 |
|         | Total Phosphorus (mg/L) <sup>B</sup>              |   |   |       |       |       |       |       |
|         | CBOD-5 (mg/L) <sup>J</sup>                        | 7 | < | 1.0   | 1.7   | 1.0   | 0.9   | 0.4   |
|         | Chlorides (mg/L)                                  | 7 |   | 2.5   | 26.4  | 11.4  | 12.8  | 9.2   |
|         | Biological                                        |   |   |       |       |       |       |       |
|         | Chlorophyll a (ug/L)                              | 7 |   | 3.20  | 16.60 | 10.70 | 10.01 | 5.45  |
|         | E. coli (mpn/100mL)                               | 2 |   | 10    | 35    | 22    | 22    | 18    |
| LAYC-10 | Physical                                          |   |   |       |       |       |       |       |
|         | Turbidity (NTU)                                   | 7 |   | 3.6   | 9.2   | 4.4   | 5.4   | 2.1   |
|         | Total Dissolved Solids (mg/L)                     | 7 |   | 82.0  | 202.0 | 116.0 | 122.7 | 39.5  |
|         | Total Suspended Solids (mg/L)                     | 7 |   | 3.0   | 8.0   | 5.0   | 5.4   | 1.5   |
|         | Hardness (mg/L)                                   | 4 |   | 57.1  | 84.6  | 72.8  | 71.8  | 12.7  |
|         | Alkalinity (mg/L)                                 | 7 |   | 33.8  | 74.8  | 50.8  | 54.0  | 14.3  |
|         | Photic Zone (m)                                   | 7 |   | 2.53  | 4.00  | 3.37  | 3.39  | 0.46  |
|         | Secchi (m)                                        | 7 |   | 1.00  | 1.57  | 1.35  | 1.31  | 0.21  |
|         | Chemical                                          |   |   |       |       |       |       |       |
|         | Ammonia Nitrogen (mg/L) <sup>JB</sup>             | 1 |   |       |       |       | 0.500 |       |
|         | Nitrate+Nitrite Nitrogen (mg/L) <sup>J</sup>      | 7 | < | 0.007 | 0.027 | 0.004 | 0.008 | 0.009 |
|         | Total Kjeldahl Nitrogen (mg/L) <sup>B</sup>       |   |   |       |       |       |       |       |
|         | Total Nitrogen (mg/L) <sup>B</sup>                |   |   |       |       |       |       |       |
|         | Dissolved Reactive Phosphorus (mg/L) <sup>J</sup> | 7 | < | 0.003 | 0.003 | 0.002 | 0.002 | 0.000 |
|         | Total Phosphorus (mg/L) <sup>B</sup>              |   |   |       |       |       |       |       |
|         | CBOD-5 (mg/L) <sup>J</sup>                        | 7 | < | 1.0   | 1.8   | 1.2   | 1.2   | 0.5   |
|         | Chlorides (mg/L)                                  | 7 |   | 13.1  | 30.5  | 26.2  | 23.3  | 7.7   |
|         | Biological                                        |   |   |       |       |       |       |       |
|         |                                                   |   |   |       |       |       |       |       |
|         | Chlorophyll a (ug/L)                              | 7 |   | 6.41  | 19.20 | 12.30 | 13.27 | 4.62  |



| Station | Parameter                                         | Ν |   | Min   | Max   | Med   | Mean  | SD   |
|---------|---------------------------------------------------|---|---|-------|-------|-------|-------|------|
| LAYC-11 | Physical                                          |   |   |       |       |       |       |      |
|         | Turbidity (NTU)                                   | 7 |   | 2.6   | 4.3   | 3.6   | 3.5   | 0.6  |
|         | Total Dissolved Solids (mg/L)                     | 7 |   | 82.0  | 198.0 | 118.0 | 122.3 | 38.1 |
|         | Total Suspended Solids (mg/L)                     | 7 |   | 1.0   | 5.0   | 4.0   | 3.4   | 1.7  |
|         | Hardness (mg/L)                                   | 4 |   | 58.9  | 79.2  | 70.2  | 69.6  | 9.8  |
|         | Alkalinity (mg/L)                                 | 7 |   | 34.8  | 72.1  | 55.9  | 54.1  | 11.4 |
|         | Photic Zone (m)                                   | 7 |   | 2.76  | 4.62  | 3.76  | 3.84  | 0.6  |
|         | Secchi (m)                                        | 7 |   | 1.00  | 2.22  | 1.31  | 1.47  | 0.52 |
|         | Chemical                                          |   |   |       |       |       |       |      |
|         | Ammonia Nitrogen (mg/L) <sup>JB</sup>             | 1 |   |       |       |       | 0.500 |      |
|         | Nitrate+Nitrite Nitrogen (mg/L) <sup>J</sup>      | 7 | < | 0.007 | 0.086 | 0.016 | 0.025 | 0.02 |
|         | Total Kjeldahl Nitrogen (mg/L) <sup>B</sup>       |   |   |       |       |       |       |      |
|         | Total Nitrogen (mg/L) <sup>B</sup>                |   |   |       |       |       |       |      |
|         | Dissolved Reactive Phosphorus (mg/L) <sup>J</sup> | 7 | < | 0.003 | 0.003 | 0.002 | 0.002 | 0.00 |
|         | Total Phosphorus (mg/L) <sup>B</sup>              |   |   |       |       |       |       |      |
|         | CBOD-5 (mg/L) <sup>J</sup>                        | 7 | < | 1.0   | 1.4   | 1.2   | 0.9   | 0.4  |
|         | Chlorides (mg/L)                                  | 7 |   | 5.3   | 38.2  | 23.4  | 23.4  | 10.  |
|         | Biological                                        |   |   |       |       |       |       |      |
|         | Chlorophyll a (ug/L)                              | 7 |   | 4.81  | 24.00 | 12.80 | 13.00 | 6.3  |
|         | E. coli (mpn/100mL)                               | 2 | < | 1     | 2     | 1     | 1     |      |

J=one or more of the values provided are estimated. B=Samples did not meet ADEM's laboratory QC requirements. < = Actual value is less than the detection limit.

