

2008 Monitoring Summary

Basin Assessment Site

Mill Creek at Lee Road 246 (32.51223/-85.08752)

BACKGROUND

The Alabama Department of Environmental Management (ADEM) selected the Mill Creek watershed for biological and water quality monitoring as part of the 2008 South East Alabama (SE-AL) Basin Assessment Monitoring Program. The objectives of the SE-AL Basin Assessments were to assess the biological integrity of each monitoring site and to estimate overall water quality within the SE-AL river basins.

Mill Creek was placed on Alabama's Clean Water Act (CWA) 2006 §303(d) list of impaired waters for not meeting its *Fish and Wildlife (F&W)* water use classification. It was listed for unknown impairment from unknown sources. Sampling was conducted in 2008 to identify the causes and sources of impairment. Results from these data may also be used in determining the biological and water quality criteria and Total Maximum Daily Load (TMDL) needs and priorities.

Figure 1. Reach Characteristics of Mill Creek watershed at MICR-2.

WATERSHED CHARACTERISTICS

Watershed characteristics are summarized in Table 1. Mill Creek is a small *Fish and Wildlife (F&W)* stream located in Lee County. Based on the 2000 National Land Cover Dataset, landuse within the watershed is primarily forest (32%), with some patches of shrubs/scrub, pasture, and cultivated crops. Development accounted for 28% of the landuse. There are five permitted discharges located within the watershed.

REACH CHARACTERISTICS

<u>General observations</u> (Table 2) and a <u>habitat assessment</u> (Table 3) were completed during the macroinvertebrate assessment. In comparison with reference reaches in the same ecoregion, they give an indication of the physical condition of the site and the quality and availability of habitat. Mill Creek at MICR-2 is a shallow, low-gradient stream reach characterized by sand and gravel substrates (Figure 1). Overall habitat quality was categorized as *optimal* for supporting macroinvertebrate communities. However, the reach was also characterized by unstable banks and marginal riparian buffer, which contributes to impacts from sedimentation and scouring and minimizes available habitat for aquatic life to populate.

TM Graphics provided by Florida Dept. of Environmental Protection (FDEP); used with permission

Table 1. Summary of wat	ershed characteristic	s.				
Watershed Characteristics						
Basin		Chattahoochee River				
Drainage Area (mi ²)		2				
Ecoregion ^a		65i				
% Landuse						
Open water		1				
Wetland	Woody	<1				
Forest	Deciduous	19				
	Evergreen	6				
	Mixed	7				
Shrub/scrub		14				
Pasture/hay		11				
Cultivated crops		13				
Development	Open space	13				
	Low intensity	9				
	Moderate intensity	4				
	High intensity	2				
Population/km ^{2 b}	0	137				
# NPDES Permits ^c	TOTAL	5				
Construction Stormwat	er	4				
Municipal Individual		1				
a.Fall Line Hills						

a.Fall Line Hills

b.2000 US Census

c.#NPDES permits downloaded from ADEM's NPDES Management System database, February 23, 2011.

at MICR-2, June 10, 2008.						
Physical Characteristics						
Width (ft)	6					
Canopy Cover	Mostly Shaded					
Depth (ft)						
	Riffle	0.2				
	Run	0.5				
	Pool	1.0				
% of Reach						
	Riffle	5				
	Run	5				
	Pool	90				
% Substrate						

Table 2. Physical characteristics of Mill Creek

1 001	<i>)</i> 0
% Substrate	
Cobble	1
Gravel	20
Sand	70
Silt	7
Organic Matter	2

BIOASSESSMENT RESULTS

Benthic macroinvertebrate communities were sampled using ADEM's <u>Intensive Multi-habitat Bioassessment methodology (WMB-I</u>). The WMB-I uses measures of taxonomic richness, community composition, and community tolerance to assess the overall health of the macroinvertebrate community. Each metric is scored on a 100 point scale. The final score is the average of the score for each individual metric. Metric results indicated the macroinvertebrate community to be in *very poor* condition (Table 4).

Table 3. Results of the habitat assessment conducted on Mills Creek at MICR-2, June 10, 2008.

Habitat Assessment %M	aximum Scor	e Rating
Instream Habitat Quality	y 79	Optimal >65
Sediment Deposition	n 65	Sub-optimal (53-65)
Sinuosit	y 100	Optimal >84
Bank and Vegetative Stability	y 51	Marginal (35-59)
Riparian Buffe	r 63	Marginal (50-69)
Habitat Assessment Score	163	
% Maximum Score	68	Optimal >65

Table 4. Results of macroinvertebrate bioassessment conducted in Mill Creek atMICR-2, June 10, 2008.

Macroinvertebrate Assessment					
	Results	Scores	Rating		
Taxa richness measures		(0-100)			
# Ephemeroptera (mayfly) genera	1	8	Very Poor (<23)		
# Plecoptera (stonefly) genera	0	0	Very Poor (<16)		
# Trichoptera (caddisfly) genera	3	25	Poor (22-44)		
Taxonomic composition measures					
% Non-insect taxa	20	18	Very Poor (<24.7)		
% Non-insect organisms	18	52	Poor (31.3-62.7)		
% Plecoptera	0	0	Very Poor (<6.56)		
Tolerance measures					
Beck's community tolerance index	2	7	Very Poor (<20.2)		
WMB-I Assessment Score		16	Very Poor (<24)		

WATER CHEMISTRY

Results of water chemistry analyses are presented in Table 5. In situ measurements and water samples were collected monthly during April through November of 2008 to help identify any stressors to the biological communities. Dissolved oxygen was below the established criteria for F&W use classification in July and August. This could be due to the minimum flow in July and no flow conditions in August. Median concentrations of alkalinity, specific conductance, hardness, chlorides and dissolved iron were higher than expected based on the reference reach data collected in ecoregion/subecoregion 65i.

SUMMARY

As part of the <u>assessment process</u>, ADEM will review the monitoring information presented in this report, along with all other available data.

Bioassessment results indicated an impaired macroinvertebrate community. Low dissolved oxygen concentrations, specific conductance, alkalinity, hardness and chlorides may contribute to the degraded biological conditions. Specific conductance, alkalinity, hardness and chlorides suggest urban/industrial influences as potential sources of these stressors. **Table 5.** Summary of water quality data collected March-October, 2008. Minimum (Min) and maximum (Max) values calculated using minimum detection limits (MDL). Median, average (Avg), and standard deviations (SD) values were calculated by multiplying the MDL by 0.5 when results were less than this value.

Parameter	Ν		Min	Мах	Med	Avg	SD	QE
Physical								
Temperature (°C)	8		12.5	26.0	22.3	21.6	4.5	
Turbidity (NTU)	8		5.5	34.7	11.8	13.4	9.4	
Total Dissolved Solids (mg/L)	8	<	1.0	130.0	39.0	48.6	40.1	
Total Suspended Solids (mg/L)	8	<	1.0	58.0	6.5	12.3	18.9	
Specific Conductance (µmhos)	8		72.8	124.8	113.4 ^G	103.5	22.1	
Hardness (mg/L)	7		21.6	44.2	24.5 ^G	29.3	8.7	
Alkalinity (mg/L)	8		14.9	45.6	38.2 ^M	33.8	12.7	
Stream Flow (cfs)	5		0.2	2.8	1.0	1.3	1.1	
Chemical								
Dissolved Oxygen (mg/L)	8		3.5 ^c	8.3	5.9	6.2	1.7	2
pH (su)	8		6.4	6.8	6.5	6.5	0.1	
Ammonia Nitrogen (mg/L)	8		0.024	0.113	0.036	0.045	0.029	
Nitrate+Nitrite Nitrogen (mg/L)	8		0.060	0.176	0.132	0.129	0.039	
Total Kjeldahl Nitrogen (mg/L)	8	<	0.150	0.689	0.350	0.380	0.204	
Total Nitrogen (mg/L)	8	<	0.165	0.861	0.448	0.509	0.230	
Dissolved Reactive Phosphorus (mg/L)	8		0.007	0.015	0.011	0.011	0.002	
Total Phosphorus (mg/L)	8		0.020	0.066	0.032	0.039	0.016	
CBOD-5 (mg/L)	8	<	1.0	3.1	0.5	1.0	0.9	
Chlorides (mg/L)	8		5.4	10.5	8.0 ^M	7.8	1.8	
Total Metals								
Aluminum (mg/L)	7		0.021	0.288	0.074	0.095	0.090	J
Iron (mg/L)	7		1.140	3.010	1.960	1.886	0.743	
Manganese (mg/L)	7		0.168	0.590	0.302	0.343	0.162	
Dissolved Metals								
Aluminum (mg/L)	7	<	0.015	0.077	0.010	0.020	0.026	
Antimony (µg/L)	7	<	2.0	< 2.0	1.0	1.0	0.0	
Arsenic (µg/L)	7	<	1.6	2.2	1.1	1.1	0.1	
Cadmium (mg/L)	7	<	0.003	0.005	0.002	0.002	0.000	
Chromium (mg/L)	7	<	0.004	0.013	0.002	0.003	0.002	
Copper (mg/L)	7	<	0.005	0.013	0.002	0.004	0.002	
Iron (mg/L)	7		0.269	1.460	1.130 ^M	0.929	0.497	
Lead (µg/L)	7	<	0.6	1.5	0.7	0.7	0.2	
Manganese (mg/L)	7		0.149	0.528	0.273	0.314	0.147	
Mercury (µg/L)	7	<	0.0	0.1	0.0	0.0	0.0	
Nickel (mg/L)	7	<	0.004	0.016	0.003	0.005	0.005	J
Selenium (µg/L)	7	<	1.5	1.6	0.8	0.8	0.0	
Silver (mg/L)	7	<	0.002	0.003	0.002	0.001	0.000	
Thallium (µg/L)	7	<	0.5	0.6	0.3	0.3	0.0	
Zinc (mg/L)	7	<	0.003	0.006	0.003	0.003	0.001	J
Biological								
Fecal Coliform (col/100 mL)	8		21	320	120	133	95	J

E=# samples that exceeded criteria; J=estimate; N=# samples; Q=qualifier; M=value > 90% of ADEM's verified reference reaches collected in ecoregions 65i; C=value exceeds established criteria for F&W water use classification; G=value higher than median of all verified ecoregional reference reach data collected in ecoregion (65i).

FOR MONITORING INFORMATION, CONTACT: Sreeletha P. Kumar, ADEM Environmental Indicators Section 1350 Coliseum Boulevard Montgomery, AL 36110 (334) 260-2782 skumar@adem.state.al.us