

Rivers and Streams Monitoring Program

2008 Monitoring Summary

Hawkins Creek at Butler County Road 37 (31.74882/-86.62421)

BACKGROUND

The Alabama Department of Environmental Management (ADEM) selected the Hawkins Creek watershed for biological and water quality monitoring as part of the 2004 Basin-wide Screening Assessment of the South East Alabama (SE-AL) River Basins. The screening assessments were conducted at stream reaches where land use estimates and non-point source information from the local Soil and Water Conservation Districts indicated a moderate or high potential for impairment from non-point sources in non-urban areas. Results of the 2004 screening-level evaluation identified Hawkins Creek at HWKB-1 for further monitoring during the 2008 Basin Assessment of the South East Alabama (SE-AL) River Basins to more fully assess biological conditions at the site, as well as the extent and cause of any impairment.

Figure 1. Reach Characteristics of Hawkins Creek watershed at HWKB-1.

WATERSHED CHARACTERISTICS

Watershed characteristics are summarized in Table 1. Hawkins Creek at HWKB-1 is a *Fish & Wildlife (F&W)* stream located near Greenville in Butler County. The Hawkins Creek watershed falls within the Southern Hilly Gulf Coastal Plain (65d) ecoregion, which is characterized by low to moderate gradient, mostly sand bottomed streams (Griffith et al. 2001). Based on the 2000 National Land Cover Dataset, landuse within the watershed is mainly forest followed by shrubs/scrub and pasture/hay. As of February 23, 2011, thirty four permits have been issued in this watershed.

REACH CHARACTERISTICS

<u>General observations</u> (Table 2) and a <u>habitat assessment</u> (Table 3) were completed during the macroinvertebrate assessment. In comparison with reference reaches in the same ecoregion, they give an indication of the physical condition of the site and the quality and availability of habitat. Typical of ecoregion 65d, Hawkins Creek at HWKB-1 is a low gradient, sand bottomed stream (Figure 1). In 2008, instream habitat, particularly root banks, was limited within the reach. The reach was also characterized by relatively straight channel.

Wa	tershed Characteris	tics
Basin		Perdido-Escambia River
Drainage Area (mi ²)		42
Ecoregion ^a		65d
% Landuse		
Open water		<1
Wetland	Woody	6
Η	Emergent herbaceous	<1
Forest	Deciduous	31
	Evergreen	20
	Mixed	8
Shrub/scrub		15
Grassland/herbaceo	<1	
Pasture/hay		10
Cultivated crops		2
Development	Open space	5
*	Low intensity	1
	Moderate intensity	<1
	High intensity	<1
Barren		1
Population/km ^{2 b}		15
# NPDES Permits ^c	TOTAL	34
401 Water Quality Certification		3
Construction Storm	water	29
Industrial General	2	

b.2000 US Census

c.#NPDES permits downloaded from ADEM's NPDES Management System database, February 23, 2011.

Table 2.	Physic	al chara	acteristic	es of Haw	kins
Creek at	HWKI	3-1, Jul	y 21, 20	08.	
					-

Physical Characteristics					
Width (ft)	15				
Canopy Cover	Mostly Shaded				
Depth (ft)					
Ru	ın 0.5				
Po	ol 2.5				
% of Reach					
Ru	in 50				
Po	ol 50				
% Substrate					
Cla	ny 5				
Mud/Muc	ck 5				
Sar	nd 56				
Si	ilt 10				
Organic Matt	er 24				

BIOASSESSMENTS

Benthic macroinvertebrate communities were sampled using ADEM's <u>Intensive Multi-habitat Bioassessment methodology</u> (<u>WMB-I</u>). Table 4 summarizes results of taxonomic richness, community composition, and community tolerance metrics. Data collected at HWKB-1 may be used to develop an index of ADEM's WMB-I for ecoregion 65d.

Table 3. Results of the habitat assessment conducted on Hawkins

 Creek at HWKB-1, July 21, 2008.

Habitat Assessment	%Maximum Score		
Instream Habitat Quality	35		
Sediment Deposition	55		
Sinuosity	38		
Bank and Vegetative Stability	29		
Riparian Buffer	83		
Habitat Assessment Score	103		
% Maximum Score	47		

Table 4. Results of the macroinvertebrate bioassessment conducted inHawkins Creek at HWKB-1, July 21, 2008.

Macroinvertebrate Assessment				
	Results			
Taxa richness measures				
# EPT genera	10			
Taxonomic composition measures				
% Non-insect taxa	26			
% Plecoptera	0			
% Dominant taxa	31			
Functional composition measures				
% Predators	10			
Tolerance measures				
Beck's community tolerance index	7			
% Nutrient tolerant organisms	14			

WATER CHEMISTRY

Results of water chemistry are presented in Table 5. In situ measurements and water samples were collected in June, August and October, 2008. The reach was characterized by very low flows and, as a result, dissolved oxygen was below the criteria for F&W water use classification for all sampling events. Collected metals were generally below detection limits.

SUMMARY

Hawkins Creek at HWKB-1 was typical of other streams in the Southern Hilly Gulf Coastal Plains, which are generally low -gradient streams with sand substrates (<u>Griffith et al. 2001</u>). However, results of the habitat assessment suggested that instream habitat was very limited. Bioassessment results indicated low scores in the pollution intolerant groups. Low dissolved oxygen concentrations could be a limiting factor for the aquatic community.

FOR MONITORING INFORMATION, CONTACT: Sreeletha P. Kumar, ADEM Environmental Indicators Section 1350 Coliseum Boulevard Montgomery, AL 36110 (334) 260-2782 skumar@adem.state.al.us **Table 5.** Summary of water quality data collected March-October, 2008. Minimum (Min) and maximum (Max) values calculated using minimum detection limits (MDL) when results were less than this value. Median, average (Avg), and standard deviations (SD) values were calculated by multiplying the MDL by 0.5 when results were less than this value.

Parameter	Ν		Min	Max	Med	Avg	SD	Q
Physical						-		
Temperature (°C)	4		19.4	27.3	23.8	23.6	3.3	
Turbidity (NTU)	4		9.4	19.3	11.2	12.8	4.5	
Total Dissolved Solids (mg/L)	3		26.0	76.0	46.0	49.3	25.2	
Total Suspended Solids (mg/L)	3		2.0	7.0	3.0	4.0	2.6	
Specific Conductance (µmhos)	4		95.6	133.1	98.8	106.6	17.9	
Hardness (mg/L)	3		32.7	49.3	45.7	42.6	8.7	
Alkalinity (mg/L)	3		38.8	45.2	44.7	42.9	3.6	
Stream Flow (cfs)	2		0.1	0.3	0.2	0.2	0.1	
Chemical								
Dissolved Oxygen (mg/L)	4		2.5 ^C	5.0	3.9	3.8	1.0	
pH (su)	4		6.5	6.9	6.6	6.7	0.2	
Ammonia Nitrogen (mg/L)	3	<	0.015	0.105	0.015	0.042	0.054	
Nitrate+Nitrite Nitrogen (mg/L)	3		0.006	0.047	0.042	0.032	0.022	
Total Kjeldahl Nitrogen (mg/L)	3		0.339	0.533	0.473	0.448	0.099	
Total Nitrogen (mg/L)	3		0.345	0.575	0.520	0.480	0.120	
Dissolved Reactive Phosphorus (mg/L)	3		0.008	0.011	0.010	0.010	0.002	
Total Phosphorus (mg/L)	3		0.022	0.026	0.024	0.024	0.002	
CBOD-5 (mg/L)	3	<	1.0	< 1.0	0.5	0.5	0.0	
Chlorides (mg/L)	3		2.5	3.8	3.2	3.1	0.6	
Total Metals								
Aluminum (mg/L)	3		0.018	0.113	0.033	0.055	0.051	
Iron (mg/L)	3		1.810	2.670	1.980	2.153	0.455	
Manganese (mg/L)	3		0.309	1.150	0.559	0.673	0.432	
Dissolved Metals								
Aluminum (mg/L)	3	<	0.015	0.019	0.008	0.008	0.001	
Antimony (µg/L)	3	<	2.0	< 2.0	1.0	1.0	0.0	
Arsenic (µg/L)	3	<	2.2	< 2.2	1.1	1.1	0.0	
Cadmium (mg/L)	3	<	0.003	0.005	0.002	0.002	0.001	
Chromium (mg/L)	3	<	0.004	0.013	0.002	0.004	0.003	
Copper (mg/L)	3	<	0.005	0.013	0.002	0.004	0.002	
Iron (mg/L)	3		0.826	0.925	0.922	0.891	0.056	
Lead (µg/L)	3	<	1.5	< 1.5	0.7	0.7	0.0	
Manganese (mg/L)	3		0.292	1.110	0.518	0.640	0.422	
Mercury (µg/L)	3	<	0.0	< 0.0	0.0	0.0	0.0	
Nickel (mg/L)	3	<	0.004	0.006	0.003	0.003	0.001	
Selenium (µg/L)	3	<	1.5	1.6	0.8	0.8	0.0	
Silver (mg/L)	3	<	0.002	0.003	0.002	0.001	0.000	
Thallium (µg/L)	3	<	0.6	< 0.6	0.3	0.3	0.0	
Zinc (mg/L)	3	<	0.003	0.006	0.003	0.002	0.001	
Biological								
Chlorophyll a (ug/L)	3		0.53	3.20	1.34	1.69	1.37	
Fecal Coliform (col/100 mL)	3		52	120	97	90	35	J

J=estimate; N= # of samples; Q=qualifier; C= value exceeds established criteria for *Fish & Wildlife* water use classification.