

# 2007 Monitoring **Summary**



Little Yellow Creek at AL Hwy 69 in Tuscaloosa County (33.56672/-87.41025)

#### BACKGROUND

The Alabama Department of Environmental Management (ADEM) selected the Little Yellow Creek watershed for biological and water quality monitoring as part of the 2007 Black Warrior/Cahaba (BWC) Basin Assessment Monitoring. The objectives of the BWC Basin Assessments were to assess each monitoring location and to estimate the overall water quality within the basin. These data were also used for metric and criteria development.

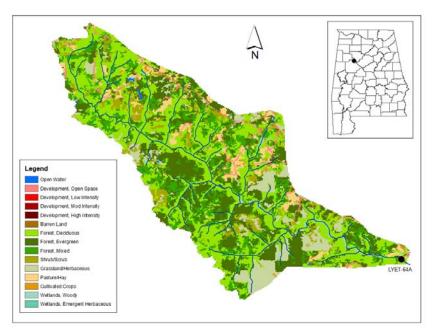



Figure 1. Watershed Characteristics of Little Yellow Creek at LYET-64A.

## WATERSHED CHARACTERISTICS

Watershed characteristics are summarized in Table 1. Little Yellow Creek is a Fish & Wildlife (F&W) stream located in Tuscaloosa County. Based on the 2000 National Land Cover Dataset, landuse within the watershed is primarily forest (76%) with some grassland, shrubs and pasture (Figure 1). Population density is relatively low in this area. As of February 23, 2011, six NPDES permits have been issued in this watershed, including five mining permits.

### REACH CHARACTERISTICS

General observations (Table 2) and a habitat assessment (Table 3) were completed during the macroinvertebrate assessment. In comparison with reference reaches in the same ecoregion, they give an indication of the physical condition of the site and the quality and availability of habitat. Little Yellow Creek at LYET-64A is a low gradient stream characterized by a primarily bedrock substrate. This watershed lies in the Shale Hills sub ecoregion (68f). Overall habitat quality was categorized as *sub-optimal*. A lack of instream habitat was noted within the reach.

Table 1. Summary of watershed characteristics.

| Watershed Characteristics        |            |                     |  |  |
|----------------------------------|------------|---------------------|--|--|
| Basin                            | ]          | Black Warrior River |  |  |
| Drainage Area (mi <sup>2</sup> ) |            | 15                  |  |  |
| Ecoregion <sup>a</sup>           |            | 68f                 |  |  |
| % Landuse                        |            |                     |  |  |
| Open water                       |            | <1                  |  |  |
| Wetland                          | Woody      | 1                   |  |  |
| Forest                           | Deciduous  | 38                  |  |  |
|                                  | Evergreen  | 23                  |  |  |
|                                  | Mixed      | 15                  |  |  |
| Shrub/scrub                      |            | 7                   |  |  |
| Grassland/herbaceous             |            | 9                   |  |  |
| Pasture/hay                      |            | 5                   |  |  |
| Cultivated crops                 |            | <1                  |  |  |
| Development                      | Open space | 2                   |  |  |
| Barren                           |            | <1                  |  |  |
| Population/km <sup>2 b</sup>     |            | 5                   |  |  |
| # NPDES Permits <sup>c</sup>     | TOTAL      | 6                   |  |  |
| Construction Stormwater          |            | 1                   |  |  |
| Mining                           |            | 5                   |  |  |
| - C11- TT:11-                    |            |                     |  |  |

a.Shale Hills

Table 2. Physical Characteristics of Little Yellow Creek at LYET-64A, May 9, 2007.

| Physical Characteristics |           |               |  |
|--------------------------|-----------|---------------|--|
| Width (ft)               |           | 25            |  |
| <b>Canopy Cover</b>      |           | Mostly Shaded |  |
| Depth (ft)               |           |               |  |
|                          | Riffle    | 0.3           |  |
|                          | Run       | 0.7           |  |
|                          | Pool      | 1.0           |  |
| % of Reach               |           |               |  |
|                          | Riffle    | 5             |  |
|                          | Run       | 80            |  |
|                          | Pool      | 15            |  |
| % Substrate              |           |               |  |
|                          | Bedrock   | 68            |  |
|                          | Boulder   | 2             |  |
|                          | Cobble    | 10            |  |
|                          | Gravel    | 4             |  |
|                          | Sand      | 5             |  |
|                          | Silt      | 8             |  |
| Organ                    | ic Matter | 3             |  |

## BIOASSESSMENT RESULTS

Benthic macroinvertebrate communities were sampled using ADEM's Intensive Multi-habitat Bioassessment methodology (WMB-I). The WMB-I uses measures of taxonomic richness, community composition, and community tolerance to assess the overall health of the macroinvertebrate community. Each metric is scored on a 100 point scale. The final score is the average of the scores for all individual metrics. Metric results indicated the macroinvertebrate community to be in fair community condition (Table 4).

b.2000 US Census

c.#NPDES permits downloaded from ADEM's NPDES Management System database, February 23, 2011.

**Table 3.** Results of the habitat assessment conducted on Little Yellow Creek at LYET-64A, May 9, 2007.

| Habitat Assessment              | %Maximur | n Score Rating      |
|---------------------------------|----------|---------------------|
| Instream Habitat Qua            | lity 47  | Marginal (41-58)    |
| Sediment Deposit                | ion 82   | Optimal >70         |
| Sinuo                           | sity 53  | Marginal (45-64)    |
| Bank and Vegetative Stabi       | lity 65  | Sub-optimal (60-74) |
| Riparian Bu                     | ffer 70  | Sub-optimal (70-89) |
| <b>Habitat Assessment Score</b> | 155      |                     |
| % Maximum Score                 | 65       | Sub-optimal (59-70) |

**Table 4.** Results of the macroinvertebrate bioassessment conducted in Little Yellow Creek at LYET-64A, May 9, 2007.

| Macroinvertebrate Assessment     |         |         |                  |  |  |
|----------------------------------|---------|---------|------------------|--|--|
|                                  | Results | Scores  | Rating           |  |  |
| Taxa richness measures           |         | (0-100) |                  |  |  |
| # Ephemeroptera (mayfly) genera  | 10      | 83      | Good (75-85)     |  |  |
| # Plecoptera (stonefly) genera   | 3       | 50      | Good (50-75)     |  |  |
| # Trichoptera (caddisfly) genera | 3       | 25      | Poor (22-44)     |  |  |
| Taxonomic composition measures   |         |         |                  |  |  |
| % Non-insect taxa                | 13      | 48      | Poor (24.7-49.4) |  |  |
| % Non-insect organisms           | 6       | 84      | Fair (62.8-93.9) |  |  |
| % Plecoptera                     | 3       | 13      | Fair (13.2-19.7) |  |  |
| Tolerance measures               |         |         |                  |  |  |
| Beck's community tolerance index | 10      | 36      | Poor (20.2-40.9) |  |  |
| WMB-I Assessment Score           |         | 48      | Fair (49-72)     |  |  |

#### WATER CHEMISTRY

Results of water chemistry analyses are presented in Table 5. *In situ* measurements and water samples were collected monthly, or semi-monthly (metals), during March through October of 2007, to help identify any stressors to the biological communities. The dissolved oxygen concentration was below *F&W* use classification criterion in July. Flow during this sampling event was 3.2 cfs. Median concentrations of specific conductance, hardness, chlorophyll <u>a</u> and dissolved manganese were higher than expected based on reference data collected in the ecoregion 68. Dissolved thallium exceeded the Human Health (HH) criterion for fish consumption on March 27, 2007.

#### **SUMMARY**

As part of <u>assessment process</u>, ADEM will review the monitoring information presented in this report along with all other available data.

Bioassessment results indicated the macroinvertebrate community to be in *fair* condition. The overall habitat assessment score was *sub-optimal*, although there was a lack of good instream habitat. Specific conductance and hardness were higher than expected as compared to data from ADEM's least-impaired reference reaches in ecoregion 68. Monitoring should continue to ensure that water quality and biological conditions remain stable.

FOR MORE INFORMATION, CONTACT: Sreeletha P Kumar, ADEM Environmental Indicators Section 1350 Coliseum Boulevard Montgomery, AL 36110 (334) 260-2782 skumar@adem.state.al.us

**Table 5.** Summary of water quality data collected March-October, 2007. Minimum (Min) and maximum (Max) values calculated using minimum detection limits (MDL). Median, average (Avg), and standard deviations (SD) values were calculated by multiplying the MDL by 0.5 when results were less than this value.

| Parameter                            | N  |   | Min   | Max     | Med                | Avg   | SD Q E  |
|--------------------------------------|----|---|-------|---------|--------------------|-------|---------|
| Physical                             |    |   |       |         |                    |       |         |
| Temperature (°C)                     | 8  |   | 18.1  | 25.9    | 23.4               | 22.7  | 2.6     |
| Turbidity (NTU)                      | 10 |   | 0.0   | 9.0     | 3.2                | 3.7   | 2.8     |
| Total Dissolved Solids (mg/L)        | 6  |   | 10.0  | 130.0   | 49.0               | 54.7  | 48.6    |
| Total Suspended Solids (mg/L)        | 6  |   | 2.0   | 18.0    | 10.0               | 9.8   | 6.6     |
| Specific Conductance (µmhos)         | 8  |   | 71.4  | 163.5   | 89.8 <sup>G</sup>  | 94.5  | 29.2    |
| Hardness (mg/L)                      | 4  |   | 21.1  | 42.0    | 33.8 <sup>G</sup>  | 32.7  | 8.7     |
| Alkalinity (mg/L)                    | 6  |   | 6.7   | 13.4    | 11.4               | 10.6  | 2.9     |
| Stream Flow (cfs)                    | 7  |   | 0.1   | 4.2     | 0.4                | 1.4   | 1.6     |
| Chemical                             |    |   |       |         |                    |       |         |
| Dissolved Oxygen (mg/L)              | 8  |   | 0.3   | 9.4     | 7.6                | 6.9   | 3.0 1   |
| pH (su)                              | 8  |   | 6.6   | 7.4     | 6.8                | 6.9   | 0.3     |
| Ammonia Nitrogen (mg/L)              | 6  | < | 0.015 | < 0.015 | 0.008              | 0.008 | 0.000   |
| Nitrate+Nitrite Nitrogen (mg/L)      | 6  | < | 0.003 | 0.076   | 0.019              | 0.027 | 0.028 J |
| Total Kjeldahl Nitrogen (mg/L)       | 6  | < | 0.150 | 0.559   | 0.284              | 0.279 | 0.187   |
| Total Nitrogen (mg/L)                | 6  | < | 0.076 | 0.597   | 0.325              | 0.306 | 0.197 J |
| Dissolved Reactive Phosphorus (mg/L) | 6  |   | 0.005 | 0.062   | 0.011              | 0.018 | 0.022   |
| Total Phosphorus (mg/L)              | 6  |   | 0.020 | 0.057   | 0.024              | 0.030 | 0.014 J |
| CBOD-5 (mg/L)                        | 6  | < | 1.0   | < 1.0   | 0.5                | 0.6   | 0.2     |
| Chlorides (mg/L)                     | 6  |   | 2.6   | 4.4     | 3.8                | 3.6   | 0.8 J   |
| Total Metals                         |    |   |       |         |                    |       |         |
| Aluminum (mg/L)                      | 5  |   | 0.052 | 0.380   | 0.095              | 0.148 | 0.132 J |
| Iron (mg/L)                          | 5  |   | 0.220 | 0.980   | 0.419              | 0.481 | 0.291 J |
| Manganese (mg/L)                     | 5  |   | 0.040 | 0.290   | 0.126              | 0.156 | 0.095 J |
| Dissolved Metals                     |    |   |       |         |                    |       |         |
| Aluminum (mg/L)                      | 5  | < | 0.015 | 0.280   | 0.008              | 0.070 | 0.119   |
| Antimony (µg/L)                      | 5  | < | 1.6   | 5.0     | 1.0                | 1.2   | 0.7     |
| Arsenic (µg/L)                       | 3  | < | 0.5   | < 5.0   | 1.1                | 1.3   | 1.1     |
| Cadmium (mg/L)                       | 5  | < | 0.000 | < 0.005 | 0.002              | 0.002 | 0.001 J |
| Chromium (mg/L)                      | 5  | < | 0.003 | 0.010   | 0.002              | 0.003 | 0.001   |
| Copper (mg/L)                        | 5  | < | 0.002 | 0.010   | 0.002              | 0.003 | 0.001   |
| Iron (mg/L)                          | 5  |   | 0.070 | 0.201   | 0.180              | 0.151 | 0.058 J |
| Lead (µg/L)                          | 5  | < | 1.1   | 5.0     | 0.7                | 1.0   | 0.8     |
| Manganese (mg/L)                     | 5  |   | 0.040 | 0.173   | 0.080 <sup>M</sup> | 0.089 | 0.050 J |
| Mercury (µg/L)                       | 5  | < | 0.0   | < 0.5   | 0.2                | 0.2   | 0.1 J   |
| Nickel (mg/L)                        | 5  | < | 0.004 | 0.010   | 0.003              | 0.003 | 0.001   |
| Selenium (µg/L)                      | 5  | < | 1.6   | 5.0     | 0.8                | 1.2   | 0.8     |
| Silver (mg/L)                        | 4  | < | 0.000 | < 0.003 | 0.001              | 0.001 | 0.001   |
| Thallium (µg/L)                      | 4  | < | 0.6   | 1.8 H   | 0.4                | 8.0   | 0.7 1   |
| Zinc (mg/L)                          | 5  | < | 0.002 | 0.010   | 0.003              | 0.003 | 0.001   |
| Biological                           |    |   |       |         |                    |       |         |
| Chlorophyll a (ug/L)                 | 6  |   | 1.07  | 14.69   | 3.50 <sup>M</sup>  | 5.12  | 5.06 J  |
| Fecal Coliform (col/100 mL)          | 6  |   | 10    | 230     | 57                 | 74    | 82 J    |

C=value exceeds toxic criteria for F& W use classification; E=# samples that exceeded criteria; G=value > median of all ecoregional reference reach data collected in ecoregion 68; H=(F&W) human health criterion exceeded; J=estimate; N=# samples; M=value > 90th percentile of all verified ecoregional reference reach data collected within ecoregions 68; Q=Laboratory qualifier codes.