2007 Monitoring Summary

Jock Creek at mouth at unnamed road in Tuscaloosa County (33.45310/-87.42820)

BACKGROUND

The Alabama Department of Environmental Management (ADEM) selected the Jock Creek watershed for biological and water quality monitoring as part of the 2007 Black Warrior Cahaba (BWC) Basin Assessment Monitoring. The objectives of the study were to assess each monitoring location and estimate overall water quality within the basin. Data collected from this project will also be used for metric and criteria development.

Figure 1. Watershed Characteristics of Jock Creek at JKC-1.

WATERSHED CHARACTERISTICS

Watershed characteristics are summarized in Table 1. Jock Creek is a small *Fish & Wildlife (F&W)* stream that drains through two square miles in the Tuscaloosa County. Based on the 2000 National Land Cover Dataset, landuse within the watershed is primarily forest (77%) (Figure 1), interspersed with some shrubs and grasslands. Population density is relatively very low in this area. As of February 23, 2011, only two NPDES permits have been issued in this monitoring site.

REACH CHARACTERISTICS

General observations (Table 2) and a <u>habitat assessment</u> (Table 3) were completed during the macroinvertebrate assessment. In comparison with reference reaches in the same ecoregion, they give an indication of the physical condition of the site and the quality and availability of habitat. Jock Creek at JKC-1 is a moderate gradient stream with bedrock, gravel, cobble, boulder, and sand substrates. This watershed lies in the Shale Hills sub ecoregion (68f). Overall habitat quality was categorized as *optimal*.

Table 1. Summary of watershed characteristics.

watersned Characteristics				
Basin		Black Warrior River		
Drainage Area (mi ²)		2		
Ecoregion ^a		68f		
% Landuse				
Open water		<1		
Forest	Deciduous	31		
	Evergreen	36		
	Mixed	10		
Shrub/scrub		15		
Grassland/herbaceous		4		
Development	Open space	1		
	Low intensity	<1		
Barren		1		
Population/km ^{2 b}		<1		
# NPDES Permits ^c	TOTAL	2		
Mining		1		
Municipal Individual		1		
o Cholo Hillo				

Watershed Characteristics

Table 2. Physical characteristics of Jock Creek at JKC-1, May 9, 2007.

Physical Characteristics					
Width (ft)	6				
Canopy Cover	Shaded				
Depth (ft)					
Riffle	0.3				
Run	0.5				
Pool	1.5				
% of Reach					
Riffle	35				
Run	30				
Pool	35				
% Substrate					
Bedrock	33				
Boulder	10				
Cobble	20				
Gravel	25				
Sand	5				
Silt	3				
Organic Matter	4				

BIOASSESSMENT RESULTS

Benthic macroinvertebrate communities were sampled using ADEM's <u>Intensive Multi-habitat Bioassessment methodology (WMB-I)</u>. The WMB-I uses measures of taxonomic richness, community composition, and community tolerance to assess the overall health of the macroinvertebrate community. Each metric is scored on a 100 point scale. The final score is the average of the scores of all individual metrics. Metric results indicated the macroinvertebrate community to be characterized mainly by pollution-tolerant taxa groups, indicating *poor* community condition (Table 4).

a.Shale Hills

b.2000 US Census

c.#NPDES permits downloaded from ADEM's NPDES Management System database, February 23, 2011.

Table 3. Results of the habitat assessment conducted on Jock Creek at

Habitat Assessment %	⁄₀Maxim	um Score Rating
Instream Habitat Qual	ity 68	Sub-optimal (59-70)
Sediment Depositi	on 77	7 Optimal >70
Sinuos	ity 88	3 Optimal >84
Bank and Vegetative Stability		Sub-optimal (60-74)
Riparian Buffer		Optimal >89
Habitat Assessment Score	17	6
% Maximum Score		3 Optimal >70

Table 4. Results of the macroinvertebrate bioassessment conducted in Jock Creek at JKC-1, May 9, 2007.

Macroinvertebrate Assessment						
	Results	Scores	Rating			
Taxa richness measures		(0-100)				
# Ephemeroptera (mayfly) genera	1	8	Very Poor (<23)			
# Plecoptera (stonefly) genera	2	33	Fair (32-49)			
# Trichoptera (caddisfly) genera	6	50	Fair (45-66)			
Taxonomic composition measures						
% Non-insect taxa	11	57	Fair (49.5-74.1)			
% Non-insect organisms	2	94	Fair (62.8-93.9)			
% Plecoptera	3	16	Fair (13.2-19.7)			
Tolerance measures						
Beck's community tolerance index	12	43	Fair (41.0-60.9)			
WMB-I Assessment Score		43	Poor (24-48)			

WATER CHEMISTRY

Results of water chemistry analyses are presented in Table 5. In situ measurements and water samples were collected monthly, semi-monthly (metals), or once (pesticides, atrazine, and semi-volatile organics) during March through October of 2007 to help identify any stressors to the biological communities. In situ parameters suggested that Jock Creek at JKC-1 was meeting its F&W use classification criteria, although stream pH exceeded the criterion during one sampling event. Median values of total dissolved solids, specific conductance, hardness, alkalinity, and chlorides were higher than expected based on ecoregional reference data collected in the ecoregion 68.

SUMMARY

Bioassessment results indicated the macroinvertebrate community to be in *poor* condition, although the habitat assessment score was *optimal* with good instream habitat. Macroinvertebrate communities in very small stream are typically not as diverse as communities further downstream. However, total dissolved solids, specific conductance, alkalinity, hardness and chlorides were elevated as compared to data from ADEM's least-impaired reference reaches in ecoregion 68. Elevated concentrations of total dissolved solids, specific conductance, hardness, alkalinity and chlorides are potential causes of the degraded biological conditions within the reach.

FOR MORE INFORMATION, CONTACT:

Sreeletha P Kumar, ADEM Environmental Indicators Section 1350 Coliseum Boulevard Montgomery, AL 36110 (334) 260-2782 skumar@adem.state.al.us

Table 5. Summary of water quality data collected March-October, 2007. Minimum (Min) and maximum (Max) values calculated using minimum detection limits (MDL). Median, average (Avg), and standard deviations (SD) values were calculated by multiplying the MDL by 0.5 when results were less than this value.

MDL by 0.5 when results were less Parameter	N		Min	Max	Med	Avg	SD	Q	Ε
Physical									
Temperature (°C)	9		14.7	25.9	22.1	21.1	3.4		
Turbidity (NTU)	9		0.6	6.8	1.4	2.5	2.1		
Total Dissolved Solids (mg/L)	8		188.0	1,008.0	355.5 ^M	414.4	246.9		
Total Suspended Solids (mg/L)	8	<	1.0	25.0	3.0	7.2	8.8		
Specific Conductance (µmhos)	9		432.6	3,642.0	529.7 ^G	887.6	1,035.4		
Hardness (mg/L)	5		118.0	270.0	227.0 ^G	212.4	59.6		
Alkalinity (mg/L)	8		44.3	56.7	52.8 ^M	51.9	4.0		
Stream Flow (cfs)	8		0.1	6.4	0.7	1.4	2.1		
Chemical									
Dissolved Oxygen (mg/L)	9		7.2	10.9	8.7	8.7	1.0		
pH (su)	9		7.2	8.8 C	7.5	7.6	0.5		1
Ammonia Nitrogen (mg/L)	8	<	0.015	< 0.015	0.008	0.008	0.000		
Nitrate+Nitrite Nitrogen (mg/L)	8	<	0.002	0.160	0.070	0.074	0.061		
Total Kjeldahl Nitrogen (mg/L)	8	<	0.150	0.170	0.075	0.087	0.034		
Total Nitrogen (mg/L)	8	<	0.076	0.259	0.148	0.161	0.073		
Dissolved Reactive Phosphorus (mg/L)	8		0.011	0.048	0.014	0.019	0.012		
Total Phosphorus (mg/L)	8		0.012	0.053	0.020	0.023	0.013	J	
CBOD-5 (mg/L)	8	<	1.0	1.4	0.5	0.8	0.4		
Chlorides (mg/L)	8		6.6	15.3	10.8 ^M	11.2	3.0	J	
Atrazine (µg/L)	1					0.08			
Total Metals									
Aluminum (mg/L)	5	<	0.015	0.200	0.023	0.080	0.093	J	
Iron (mg/L)	5		0.028	0.180	0.050	0.073	0.061	J	
Manganese (mg/L)	5		0.010	0.071	0.061	0.047	0.028	J	
Dissolved Metals									
Aluminum (mg/L)	6	<	0.015	0.190	0.008	0.045	0.073		
Antimony (µg/L)	6	<	0.2	< 2.0	1.0	0.8	0.3		
Arsenic (µg/L)	4	<	0.5	< 5.0	1.1	1.2	0.9		
Cadmium (mg/L)	6	<	0.000	0.005	0.002	0.002	0.001		
Chromium (mg/L)	6	<	0.002	0.010	0.002	0.002	0.001		
Copper (mg/L)	6	<	0.005	0.010	0.002	0.003	0.001		
Iron (mg/L)	6	<	0.005	0.060	0.002	0.008	0.011		
Lead (µg/L)	6	<	1.1	5.0	0.7	0.1	0.7		
Manganese (mg/L)	6		0.010	0.100	0.014	0.029	0.035	J	
Mercury (µg/L)	6	<	0.0	0.5 A	0.1	0.1	0.1	J	1
Nickel (mg/L)	6	<	0.004	0.010	0.003	0.003	0.001		
Selenium (µg/L)	6	<	1.6	5.0	0.8	1.1	0.7		
Silver (mg/L)	5	<	0.000	0.003	0.002	0.001	0.001		
Thallium (µg/L)	5	<	0.6	2.5	0.3	0.6	0.4		
Zinc (mg/L)	6	<	0.002	2.500	0.003	0.210	0.509		
Biological									
Chlorophyll a (ug/L)	8	<	0.10	3.20	0.94	1.20	1.10	J	
Fecal Coliform (col/100 mL)	8		20	170	60	78	60		
	-							-	

A=(F&W) aquatic life criterion exceeded; C=(F&W) criterion violated; G=value> median of all ecoregional reference reach data collected(68); J=estimate; M=value> 90th percentile of all verified ecoregional reference reach data collected within ecoregion(68); N=# samples; Q=Laboratory qualifier code.