Fivemile Creek on Central Avenue in Jefferson County (33.58654, -86.79341)

BACKGROUND

The Alabama Department of Environmental Management (ADEM) monitored Fivemile Creek at FMCJ-3 and several other locations for possible impacts from added discharges from Sloss Industries and ABC Polymer Industries. Results from monthly water sampling events may be used in determining TMDL needs and priorities. In addition to water samples, macroinvertebrate and habitat assessments were also conducted to verify any impairment to the aquatic communities.

Figure 1. Fivemile Creek at FMCJ-3.

WATERSHED CHARACTERISTICS

Watershed characteristics are summarized in Table 1. Fivemile Creek at FMCJ-3 is a Fish and Wildlife (F\&W) stream in Jefferson County, 0.5 miles downstream of the Sloss discharge. Based on the 2000 National Land Cover Dataset landuse, the watershed is primarily development (65\%). Population density is relatively high within the watershed. As of February 23, 2011, 118 permitted discharges have been issued within the watershed.

REACH CHARACTERISTICS

General observations (Table 2) and a habitat assessment (Table 3) were completed during the macroinvertebrate assessment. In comparison with reference reaches in the same ecoregion, they give an indication of the physical condition of the site and the quality and availability of habitat. Fivemile Creek at FMCJ-3 is characterized by cobble and gravel substrates (Figure 1). Overall habitat quality was categorized as sub-optimal for supporting macroinvertebrate communities. However, much of the riparian area within this reach was developed.

Table 1. Summary of watershed characteristics.

Watershed Characteristics	
Basin	Black Warrior River
Drainage Area (mi')	30
Ecoregion ${ }^{\text {a }}$	68f
\% Landuse	
Open water	1
Wetland Woody	<1
Forest Deciduous	18
Evergreen	5
Mixed	3
Shrub/scrub	1
Grassland/herbaceous	1
Pasture/hay	1
Cultivated crops	<1
Development Open space	35
Low intensity	22
Moderate intensity	7
High intensity	3
Barren	2
Population/km ${ }^{\text {2b }}$	717
\# NPDES Permits ${ }^{\text {c }}$ (TOTAL	55
401 Water Quality Certification	2
Construction Stormwater	19
Mining	3
Industrial	29
Municipal Individual	7
a.Shale Hills	
b. 2000 US Census	
c.\#NPDES permits downloaded from ADEM's NPDES database, February 23, 2011	Management System

Table 2. Physical characteristics of Fivemile Creek at FMCJ-3, May 29, 2007.

Physical Characteristics		
Width (ft) Canopy cover Depth (ft)		35
		Open
	Riffle	0.3
	Run	1
	Pool	1.5
\% of Reach		
	Riffle	40
	Run	40
	Pool	20
\% Substrate	Bedrock	2
	Boulder	15
	Cobble	35
	Gravel	38
	Sand	1
	Silt	7
	Organic Matter	2

BIOASSESSMENT RESULTS

Benthic macroinvertebrate communities were sampled using ADEM's Intensive Multi-habitat Bioassessment methodology (WMB-I). The WMB-I uses measures of taxonomic richness, community composition, and community tolerance to assess the overall health of the macroinvertebrate community. Each metric is scored on a 100 point scale. The final score is the average of all individual metric scores. Metric results indicated the macroinvertebrate community to be characterized by pollution-tolerant taxa groups, indicating very poor community condition (Table 4).

Table 3. Results of the habitat assessment conducted in Fivemile Creek at FMCJ-3, May 29, 2007.

Habitat Assessment	\% Maximum Score	Rating
Instream Habitat Quality	76	Optimal (> 70)
Sediment Deposition	63	Sub-optimal (59-70)
Sinuosity	90	Optimal (> 84)
Bank and Vegetative Stability	66	Sub-optimal (60-74)
Riparian Buffer	49	Poor (<50)
Habitat Assessment Score	$\mathbf{1 6 4}$	
\% Maximum score	$\mathbf{6 8}$	Sub-optimal (59-70)

Table 4. Results of the macroinvertebrate bioassessment conducted in Fivemile Creek at FMCJ-3, May 29, 2009

Macroinvertebrate Assessment Results			
Results			

(\mathbf{0 - 1 0 0})\end{array}\right]\) Rating

WATER CHEMISTRY

Results of water chemistry analyses are presented in Table 5. In situ measurements and water samples were collected monthly, semimonthly or quarterly (pesticides, herbicides, atrazine, and semivolatile organics) during March through October of 2007 to help identify any stressors to the biological communities. Arsenic values exceeded its $F \& W$ use classification human health criterion during all sampling events. Based on the 90th percentile of reference reach data collected in ecoregion 67f, median concentrations of total dissolved solids, nutrients (ammonia nitrogen, nitrate+nitrite-nitrogen, total kjeldahl nitrogen, total nitrogen, dissolved reactive phosphorus, and total phosphorus) and chlorides were above concentrations expected in this ecoregion.

SUMMARY

As part of the assessment process, ADEM will review the monitoring information presented in this report along with other available data to develop water quality criteria for Shale Hills ecoregion (68f).

Results of the habitat assessment indicated the habitat of Fivemile Creek at FMCJ-3 to be in sub-optimal condition. However, the bioassessment indicated the macroinvertebrate community to be in very poor condition. Elevated concentrations of arsenic, total dissolved solids, chlorides and nutrients are potential causes for the stressed biological conditions. The large amount of development (65\%), permitted discharges (118), and limited riparian buffer within this watershed suggest urban/industrial influences as potential sources of these stressors.

FOR MORE INFORMATION, CONTACT: Preston Roberts ADEM Aquatic Assessment Unit 1350 Coliseum Boulevard Montgomery, AL 36110
(334) 260-2703 sproberts@adem.state.al.us

Table 5. Summary of water quality data collected March-October, 2007. Minimum (Min) and maximum (Max) values calculated using minimum detection limits (MDL) when results were less than this value. Median, average (Avg), and standard deviations (SD) values were calculated by multiplying the MDL by 0.5 when results were less than this value this value.

Parameter	N		Min		Max	Med	Avg	SD E
Physical								
Temperature (${ }^{\circ} \mathrm{C}$)	17		16.6		28.5	25.3	25.0	3.4
Turbidity (NTU)	17		2.6		28.3	6.4	9.5	7.4
Total Dissolved Solids (mg/L)	8		301.0		449.0	387.5 M	384.5	45.6
Total Suspended Solids (mg/L)	8		3.0		16.0	5.5	6.8	4.2
Specific Conductance ($\mu \mathrm{mhos}$)	17		488.0		897.0	620.0	676.3	123.9
Hardness (mg/L)	8		185.0		224.0	199.5	202.4	14.2
Alkalinity (mg/L)	8		115.4		170.3	140.7	138.3	18.4
Stream Flow (cfs)	17		14.2		30.1	24.6	23.6	4.0
Chemical								
Dissolved Oxygen (mg/L)	17		7.1		13.1	8.0	8.4	1.4
pH (su)	17		7.6		8.3	7.9	7.9	0.2
Ammonia Nitrogen (mg/L)	8		0.075		0.335	0.262 M	0.237	0.096
Nitrate+Nitrite Nitrogen (mg / L)	8		1.265		2.730	1.914 M	1.947	0.452
${ }^{\mathrm{J}}$ Total Kjeldahl Nitrogen (mg/L)	8		0.293		1.850	0.740 M	0.856	0.520
${ }^{\text {J }}$ Total Nitrogen (mg/L)	8		2.022		3.640	2.868 M	2.803	0.556
Dissolved Reactive Phosphorus (mg/L)	8		0.020		0.166	0.058 M	0.066	0.044
${ }^{\text {J }}$ Total Phosphorus (mg/L)	8	<	0.006		0.222	0.078 M	0.096	0.070
CBOD-5 (mg/L)	8	<	0.2		2.3	0.5	0.8	0.7
Chlorides (mg / L)	8		20.1		55.6	28.4 M	33.9	13.9
Atrazine ($\mu \mathrm{g} / \mathrm{L}$)	4	<	0.05		0.11	0.02	0.05	0.04
Total Metals								
Aluminum (mg/L)	8		0.068		0.901	0.265	0.365	0.310
Iron (mg/L)	8	$<$	0.050		0.361	0.166	0.160	0.099
Manganese (mg/L)	8	$<$	0.046		0.064	0.049	0.046	0.014
Dissolved Metals								
Aluminum (mg/L)	8	$<$	0.050		0.899	0.025	0.307	0.393
Antimony ($\mu \mathrm{g} / \mathrm{L}$)	8	<	10.0	<	10.0	5.0	5.0	0.0
Arsenic ($\mu \mathrm{g} / \mathrm{L}$)	8		2.0		$3.6{ }^{\text {H }}$	3.1	3.0	0.68
Cadmium (mg/L)	8	$<$	0.002	$<$	0.015	0.004	0.004	0.004
Chromium (mg/L)	8	$<$	0.002	$<$	0.050	0.013	0.013	0.013
Copper (mg/L)	8	$<$	0.007	$<$	0.050	0.020	0.016	0.010
Iron (mg/L)	8	<	0.014	<	0.050	0.025	0.024	0.005
Lead ($\mu \mathrm{g} / \mathrm{L}$)	8	<	0.5	<	2.0	0.2	0.5	0.3
Manganese (mg/L)	8	$<$	0.020		0.036	0.010	0.018	0.012
Mercury ($\mu \mathrm{g} / \mathrm{L}$)	8	$<$	0.010	<	0.010	0.005	0.005	0.000
Nickel (mg/L)	8	<	0.002	<	0.050	0.013	0.013	0.013
Selenium ($\mu \mathrm{g} / \mathrm{L}$)	8		1.8		4.6	3.2	3.2	1.0
Silver (mg/L)	8	$<$	0.005	$<$	0.050	0.002	0.011	0.012
Thallium ($\mu \mathrm{g} / \mathrm{L}$)	8	$<$	0.7	<	1.0	0.4	0.4	0.1
Zinc (mg/L)	8	$<$	0.017	<	0.050	0.017	0.017	0.009
Biological								
${ }^{\text {J Fecal Coliform (col/100 mL) }}$	16		4		270	53	73	68

E=\# of samples that exceeded criteria; $\mathrm{H}=F \& W$ human health criterion exceeded;
$\mathrm{J}=$ estimate; $\mathrm{M}=$ value $>90 \%$ of all verified ecoregional reference reach data collected in the ecoregion [68f]; $\mathrm{N}=\#$ samples

