

# 2006 Monitoring Summary



# **Puppy Creek** at Mobile County Road 21 (30.9842/-88.4011)

### BACKGROUND

The ten mile segment of Puppy Creek from AL Hwy 217 upstream to its source in Citronelle has been on Alabama's Clean Water Act (CWA) §303(d) list of impaired waters since 1996. It was listed for pathogens and nutrients due to storm sewer and urban runoff. ADEM monitored Puppy Creek at PPYM-1 downstream of the listed reach to investigate the extent of the impairment. Monthly water chemistry samples were also collected. These data were used to develop Total Maximum Daily Loads (TMDLs) which were approved by the EPA in 2004 (pathogens) and 2008 (nutrients).



Figure 1. Land use map of Puppy Creek at PPYM-1.

# WATERSHED CHARACTERISTICS

Watershed characteristics are summarized in Table 1. Puppy Creek at PPYM-1 is a low-gradient *Fish & Wildlife (F&W)* stream in Mobile County. Land use within the watershed is primarily forest (61%) with some shrub/scrub and pastureland (Figure 1). The Department has issued seven NPDES permits in this watershed.

# **REACH CHARACTERISTICS**

General observations (Table 2) and a habitat assessment (Table 3) were completed during the macroinvertebrate assessment. In comparison with reference reaches in the same ecoregion, they give an indication of the physical condition of the site and the quality and availability of habitat. Puppy Creek at PPYM-1 is a sand-bottomed, glide-pool stream typical of the Southern Pine Plains and Hills sub-ecoregion. Overall habitat quality was rated as *marginal* due to limited instream habitat, a straight stream channel, and eroded banks.

| Watershed Characteristics        |                     |                 |  |  |  |  |
|----------------------------------|---------------------|-----------------|--|--|--|--|
| Basin                            |                     | Escatawpa River |  |  |  |  |
| Drainage Area (mi <sup>2</sup> ) |                     | 42              |  |  |  |  |
| Ecoregion <sup>a</sup>           |                     | 65f             |  |  |  |  |
| % Landuse                        |                     |                 |  |  |  |  |
| Open water                       |                     | 1               |  |  |  |  |
| Wetland                          | Woody               | 4               |  |  |  |  |
|                                  | Emergent herbaceous | <1              |  |  |  |  |
| Forest                           | Deciduous           | 3               |  |  |  |  |
|                                  | Evergreen           | 44              |  |  |  |  |
|                                  | Mixed               | 14              |  |  |  |  |
| Shrub/scrub                      |                     | 15              |  |  |  |  |
| Grassland/herbaceous             |                     | <1              |  |  |  |  |
| Pasture/hay                      |                     | 10              |  |  |  |  |
| Cultivated crops                 |                     | 3               |  |  |  |  |
| Development                      | Open space          | 3               |  |  |  |  |
|                                  | Low intensity       | 1               |  |  |  |  |
|                                  | Moderate intensity  | <1              |  |  |  |  |
|                                  | High intensity      | <1              |  |  |  |  |
| Population/km <sup>2b</sup>      |                     | 22              |  |  |  |  |
| # NPDES Permits <sup>c</sup>     | TOTAL               | 7               |  |  |  |  |
| Construction Stormwater          |                     | 3               |  |  |  |  |
| Industrial General               |                     | 1               |  |  |  |  |
| Industrial Individual            |                     | 1               |  |  |  |  |
| Municipal Individual             |                     | 1               |  |  |  |  |
| Underground Injection Co         | ontrol              | 1               |  |  |  |  |

. . ..

a. Southern Pine Plains & Hills

b. 2000 US Census

 c. #NPDES permits downloaded from ADEM's NPDES Management System database, 9 June 2008

| Physical Characteristics |                |             |  |  |  |
|--------------------------|----------------|-------------|--|--|--|
| Width (ft)               |                | 30          |  |  |  |
| Canopy cover             |                | Mostly Open |  |  |  |
| Depth (ft)               | Run            | 1.0         |  |  |  |
|                          | Pool           | 2.0         |  |  |  |
| % of Reach               | Run            | 80          |  |  |  |
|                          | Pool           | 20          |  |  |  |
| % Substrate              | Gravel         | 1           |  |  |  |
|                          | Sand           | 89          |  |  |  |
|                          | Organic Matter | 10          |  |  |  |

| Table 2. Physical characteristics | at Puppy Creek at PPYM-1 on |
|-----------------------------------|-----------------------------|
| May 23, 2006                      |                             |

**Table 3.** Results of the habitat assessment of Puppy Creek at PPYM-1May 23, 2006.

| Habitat Assessment (% N       | Rating |                     |  |
|-------------------------------|--------|---------------------|--|
| Instream habitat quality      | 36     | Poor (<40)          |  |
| Sediment deposition           | 59     | Sub-optimal (53-65) |  |
| Sinuosity                     | 33     | Poor (<45)          |  |
| Bank and vegetative stability | 45     | Marginal (35-59)    |  |
| Riparian buffer               | 83     | Sub-optimal (70-90) |  |
| Habitat assessment score      | 111    |                     |  |
| % Maximum score               | 50     | Marginal (40-52)    |  |

#### **BIOASSESSMENT RESULTS**

Benthic macroinvertebrate communities were sampled using ADEM's Intensive Multi-habitat Bioassessment methodology (WMB-I). The WMB-I measures taxonomic richness, community composition, and community tolerance to assess the overall health of the macroinvertebrate community. Each score is based on a 100 point scale. The final score is the average of the individual metric scores. The metric results indicated the macroinvertebrate community to be in *good* condition (Table 4).

**Table 4.** Results of the macroinvertebrate bioassessment of Puppy Creek at PPYM-1 on May 23, 2006.

| Macroinvertebrate Assessment                   |         |        |                   |  |  |
|------------------------------------------------|---------|--------|-------------------|--|--|
|                                                | Results | Scores | Rating            |  |  |
| Taxa richness measures                         |         |        |                   |  |  |
| # EPT genera                                   | 19      | 76     | Good (57-78)      |  |  |
| Taxonomic composition measures                 |         |        |                   |  |  |
| % Non-insect taxa                              | u 24    | 5      | Very Poor (<30.9) |  |  |
| % Plecoptera                                   | ı 11    | 53     | Excellent (>52.8) |  |  |
| % Dominant taxa                                | 16      | 86     | Excellent (>85.2) |  |  |
| Functional composition measures<br>% Predators | 21      | 72     | Good (45.3-72.1)  |  |  |
| Tolerance measures                             |         |        |                   |  |  |
| Beck's community tolerance index               | 19      | 86     | Excellent (>65.9) |  |  |
| % Nutrient tolerant organisms                  | 24      | 76     | Fair (50.9-76.2)  |  |  |
| WMB-I Assessment Score                         |         | 65     | Good (57-78)      |  |  |

#### WATER CHEMISTRY

Results of water chemistry analyses are presented in Table 5. When possible, in situ measurements and water samples are collected monthly, semi-monthly (metals), or quarterly (pesticides, herbicides (atrazine), and semivolatile organics) during March through October to help identify any stressors to the biological communities. Total nitrogen and total aluminum concentrations were higher than expected based on the 90th percentile of reference reaches within ecoregion 65f. In situ pH measurements were also slightly acidic, but this a natural condition in this ecoregion.

#### SUMMARY

As part of the assessment process, ADEM will review the monitoring information presented in this report, along with all other available data.

Bioassessment results indicated the macroinvertebrate community in Puppy Creek at PPYM-1 to be in *good* condition.

FOR MORE INFORMATION, CONTACT: James Worley, ADEM Aquatic Assessment Unit 1350 Coliseum Boulevard Montgomery, AL 36110 (334) 394-4343 jworley@adem.state.al.us **Table 5.** Summary of water quality data collected March-October, 2005. Minimum (Min) and maximum (Max) values calculated using minimum detection limits (MDL) when results were less than this value. Median, average (Avg), and standard deviations (SD) values were calculated by multiplying the MDL by 0.5 when results were less than this value. Metals results were compared to ADEM's chronic aquatic life use criteria adjusted for hardness.

| Parameter                                | Ν |   | Min              |   | Max    | Median             | Avg    | SD     |
|------------------------------------------|---|---|------------------|---|--------|--------------------|--------|--------|
| Physical                                 |   | L |                  |   |        |                    |        |        |
| Temperature (°C)                         | 9 |   | 13.0             |   | 25.0   | 24.0               | 22.7   | 3.7    |
| Turbidity (NTU)                          | 9 |   | 3.2              |   | 51.6   | 4.2                | 12.5   | 16.0   |
| Total Dissolved Solids (mg/L)            | 8 |   | 12.0             |   | 79.0   | 41.5               | 38.0   | 21.9   |
| Total Suspended Solids (mg/L)            | 8 |   | 1.0              |   | 99.0   | 7.0                | 22.4   | 33.7   |
| Specific Conductance (µmhos)             | 9 |   | 35.1             |   | 45.7   | 38.6               | 39.3   | 3.4    |
| Hardness (mg/L)                          | 3 |   | 22.0             |   | 35.0   | 28.0               | 28.3   | 6.5    |
| Alkalinity (mg/L)                        | 8 | < | 1.0              |   | 16.0   | 5.6                | 6.0    | 4.6    |
| Stream Flow (cfs)                        | 8 |   | 10.3             |   | 109.5  | 18.6               | 31.0   | 32.9   |
| Chemical                                 |   |   |                  |   |        |                    |        |        |
| Dissolved Oxygen (mg/L)                  | 9 |   | 7.3              |   | 9.5    | 7.9                | 8.0    | 0.6    |
| pH (su)                                  | 9 |   | 5.2 <sup>C</sup> |   | 6.5    | 6.2                | 6.0    | 0.5    |
| Ammonia Nitrogen (mg/L)                  | 8 | < | 0.010            |   | 0.037  | 0.008              | 0.014  | 0.012  |
| Nitrate+Nitrite Nitrogen (mg/L)          | 8 |   | 0.063            |   | 0.463  | 0.250              | 0.248  | 0.132  |
| Total Kjeldahl Nitrogen (mg/L)           | 8 | < | 0.150            |   | 2.400  | 0.447              | 0.722  | 0.728  |
| Total Nitrogen (mg/L)                    | 8 |   | 0.331            |   | 2.463  | 0.718 <sup>M</sup> | 0.970  | 0.676  |
| Dissolved Reactive Phosphorus (mg/L)     | 8 |   | 0.004            |   | 0.011  | 0.003              | 0.005  | 0.004  |
| Total Phosphorus (mg/L)                  | 8 | < | 0.004            |   | 0.189  | 0.029              | 0.046  | 0.060  |
| CBOD-5 (mg/L)                            | 8 | < | 1.0              |   | 1.7    | 1.4                | 1.2    | 0.6    |
| COD (mg/L)                               | 1 |   | 2.0              |   | 2.0    | 1.0                | 1.0    |        |
| TOC (mg/L)                               | 2 |   | 2.3              |   | 3.6    | 3.0                | 3.0    | 0.9    |
| Chlorides (mg/L)                         | 5 | < | 2.0              |   | 8.7    | 3.0                | 4.0    | 2.7    |
| Atrazine (µg/L)                          | 1 |   | 0.05             |   | 0.05   | 0.03               | 0.03   |        |
| Total Metals                             |   |   |                  | 1 |        |                    |        | 1      |
| Aluminum (mg/L)                          | 3 |   | 0.26             |   | 1.5    | 0.490 <sup>M</sup> | 0.750  | 0.660  |
| Iron (mg/L)                              | 3 |   | 0.676            |   | 2.26   | 1.04               | 1.325  | 0.830  |
| Manganese (mg/L)                         | 3 |   | 0.019            |   | 0.112  | 0.038              | 0.056  | 0.049  |
| Dissolved Metals                         |   |   |                  |   |        |                    |        | 1      |
| Aluminum (mg/L)                          | 3 |   | 0.120            |   | 0.180  | 0.120              | 0.140  | 0.035  |
| Antimony (µg/L)                          | 3 | < | 7.5              | < | 7.5    | 3.8                | 3.8    | 0.0    |
| Arsenic (µg/L)                           | 3 | < | 5                | < | 5      | 2.5                | 2.5    | 0.0    |
| Cadmium (mg/L)                           | 3 | < | 0.0003           | < | 0.0003 | 0.0001             | 0.0002 | 0.0001 |
| Chromium (mg/L)                          | 3 | < | 0.005            | < | 0.005  | 0.003              | 0.003  | 0.000  |
| Copper (mg/L)                            | 3 | < | 0.005            | < | 0.005  | 0.003              | 0.003  | 0.000  |
| Iron (mg/L)                              | 3 |   | 0.145            |   | 0.300  | 0.205              | 0.217  | 0.078  |
| Lead (µg/L)                              | 3 | < | 5                | < | 5      | 2.5                | 2.5    | 0.0    |
| Manganese (mg/L)                         | 3 |   | 0.016            |   | 0.083  | 0.032              | 0.044  | 0.035  |
| Mercury (µg/L)                           | 3 | < | 0.5              | < | 0.5    | 0.3                | 0.3    | 0.0    |
| Nickel (mg/L)                            | 3 | < | 0.005            |   | 0.014  | 0.003              | 0.006  | 0.007  |
| Selenium (µg/L)                          | 3 | < | 7.5              | < | 7.5    | 3.8                | 3.8    | 0.0    |
| Silver (mg/L)                            | 3 | < | 0.0008           | < | 0.0008 | 0.0004             | 0.0004 | 0.000  |
| Thallium (µg/L)                          | 3 | < | 2.5              |   | 9      | 4.5                | 3.4    | 1.9    |
| Zinc (mg/L)                              | 3 | < | 0.005            | < | 0.005  | 0.003              | 0.003  | 0.000  |
| Biological                               |   |   |                  |   |        |                    |        |        |
| Chlorophyll a (µg/L)                     | 8 |   | 0.53             |   | 10.68  | 1.80               | 3.36   | 3.68   |
| <sup>J</sup> Fecal Coliform (col/100 mL) | 5 |   | 120              |   | 2000   | 200                | 582    | 801    |

J=estimate; N=# of samples; M=value >90% of collected samples in ecoregion 65f; C=value exceeds established criteria for F&W water use classification.