

Rivers and Streams Monitoring Program

2005 Monitoring Summary

Watson Creek at Chilton CR 800 and unnamed road approximately 2.5 miles upstream of Cobb Creek (32.03091/-87.50447)

BACKGROUND

Alabama Department of Environmental Managemen

Basin Assessment Site

The Alabama Department of Environmental Management (ADEM) selected the Watson Creek watershed for biological and water quality monitoring as part of the 2005 Assessment of the Alabama, Coosa, and Tallapoosa (ACT) River Basins. The objectives of the ACT Basin Assessments were to assess the biological integrity of each monitoring site and to estimate overall water quality within the ACT basin group.

Figure 1. Sampling location and land use within the Watson Creek watershed at WTNC-1.

WATERSHED CHARACTERISTICS

Watershed characteristics are summarized in Table 1. Watson Creek is a small *Fish and Wildlife (F & W)* stream located near the city of Calera in the Coosa River Basin (Fig. 1). Landuse within the watershed is primarily forest (60%), with some pasture, and urban areas (8%). Interstate 65 runs through the watershed. Watson Creek is located in the Southern Inner Piedmont (45a) ecoregion.

REACH CHARACTERISTICS

General observations (Table 2) and habitat assessments (Table 3) were completed during the macroinvertebrate assessment. In comparison with reference reaches in the same ecoregion, they give an indication of the physical condition of the site and the quality and availability of habitat. Watson Creek at WTNC-1 is a medium-gradient stream characterized by sand and gravel substrates. Overall habitat quality was categorized as *marginal* due to sedimentation, bank erosion, and limited riparian buffers.

BIOASSESSMENT RESULTS

Benthic macroinvertebrate communities were sampled using ADEM's Intensive Multi-habitat Bioassessment methodology (WMB-I). The WMB-I uses measures of taxonomic richness, community composition, and community tolerance to assess the overall health of the macroinvertebrate community. Each metric is scored on a 100 point scale. The final score is an average of the score for each metric. Metric results indicated the macroinvertebrate community to be in *poor* condition (Table 4).

Table 1. Summary of watershed characteristics.					
Watershed Characteristics					
Drainage Area (mi ²)		12			
Ecoregion ^a		45a			
% Landuse					
Open water		1			
Wetland	Woody	3			
Forest	Deciduous	28			
	Evergreen	29			
	Mixed	3			
Shrub/scrub		2			
Grassland/herbaceous		8			
Pasture/hay		15			
Cultivated crops		3			
Development	Open space	6			
	Low intensity	1			
	Moderate intensity	<1			
Barren		1			
Population/km ^{2b}		31			
# NPDES Permits	TOTAL	1			
Mining		1			

a.Southern Inner Piedmont

b.2000 US Census

c.#NPDES permits downloaded from ADEM's NPDES Management System database, 9 Jun 2008

Table 2. Summa	ary of Physical	characteristics of
Watson Creek a	t WTNC-1 on	May 12, 2005.

Physical Characteristics				
Width (ft)		12		
Canopy cover		Mostly Open		
Depth (ft)				
	Riffle	0.2		
	Run	1.0		
	Pool	2.0		
% of Reach				
	Riffle	5		
	Run	40		
	Pool	55		
% Substrate				
E	Bedrock	1		
	Cobble	10		
	Gravel	33		
	Sand	50		
	Silt	3		
Organic	Matter	3		

Table 3. Results of the habitat assessment conducted at WTNC-1 onWatson Creek on May 12, 2005.

Habitat Assessment (% Maximum Score)		Rating		
Instream habitat quality	61	Sub-optimal (59-70)		
Sediment deposition	43	Marginal (41-58)		
Sinuosity	75	Sub-optimal (65-84)		
Bank and vegetative stability	46	Marginal (35-59)		
Riparian buffer	20	Poor (<50)		
Habitat assessment score	125			
% Maximum score	52	Marginal (41-58)		

 Table 4. Results of the macroinvertebrate assessment conducted at

 WTNC-1 on Watson Creek on May 12, 2005.

Macroinvertebrate Assessment Results					
	Results	Scores	Rating		
Taxa richness measures		(0-100)			
# Ephemeroptera (mayfly) genera	8	67	Fair (48-72)		
# Plecoptera (stonefly) genera	4	67	Fair (48-72)		
# Trichoptera (caddisfly) genera	5	42	Poor (24-48)		
Taxonomic composition measures					
% Non-insect taxa	13	50	Fair (48-72)		
% Non-insect organisms	34	9	Very Poor (<24)		
% Plecoptera	5	23	Very Poor (<24)		
Tolerance measures					
Beck's community tolerance index	13	46	Poor (24-48)		
WMB-I Assessment Score		43	Poor (24-48)		

WATER CHEMISTRY

Results of water chemistry analyses are presented in Table 5. In situ measurements and water samples were collected monthly, semi-monthly (metals), or quarterly (pesticides, herbicides (atrazine), and semi-volatile organics) during March through October of 2005 to help identify any stressors to the biological communities. Median concentrations of specific conductance, total dissolved solids, hardness and alkalinity were higher than expected based on the 90% of verified ecoregional reference reach samples.

CONCLUSIONS

Bioassesment results indicated the macroinvertebrate community to be in *poor* condition. Results of monthly water samples and a habitat assessment suggest sedimentation, high conductivity, hardness and alkalinity as potential causes of the degraded biological condition.

> FOR MORE INFORMATION, CONTACT: Aaron L Goar, ADEM Aquatic Assessment Unit 1350 Coliseum Boulevard Montgomery, AL 36110 (334) 260-2755 agoar@adem.state.al.us

Table 5. Summary of water quality data collected March-May 2005. Minimum (Min) and maximum (Max) values calculated using minimum detection limits (MDL) when results were less than this value. Median, average (Avg), and standard deviations (SD) values were calculated by multiplying the MDL by 0.5 when results were less than this value .

hardness. Parameter	Ν		Min		Max	Median	Avg	SD
Physical								<u>.</u>
Temperature (ºC)	7		13.0		28.5	23.0	21.4	5.3
Turbidity (NTU)	7		5.2		23.3	12.6	12.8	6.6
Total dissolved solids (mg/L)	6		37.0		163.0	118.0 ^M	111.2	40.9
Total suspended solids (mg/L)	6		5.0		41.0	12.5	16.7	13.1
Specific conductance (µmhos)	7		75.9		209.7	149.2 ^M	152.9	47.7
Hardness (mg/L)	4		28.3		104.0	81.6 ^M	73.9	35.4
Alkalinity (mg/L)	6		23.5		100.5	62.6 ^M	64.7	27.9
Stream Flow (cfs)	7		0.3		55	4.3	14.0	
Chemical								
Dissolved oxygen (mg/L)	7		6.1		9.5	8.3	7.9	1.2
pH (su)	7		7.0		8.2	7.4	7.5	0.4
Ammonia Nitrogen (mg/L)	6	<	0.015		0.035	0.008	0.013	0.011
Nitrate+Nitrite Nitrogen (mg/L)	6	<	0.003		0.318	0.105 ^M	0.129	0.114
Total Kjeldahl Nitrogen (mg/L)	6	<	0.150		1.17	0.221	0.377	0.407
Total nitrogen (mg/L)	6	<	0.213		1.488	0.320	0.506	0.487
Dissolved reactive phosphorus (mg/L)	6	<	0.004		0.012	0.010	0.008	0.005
Total phosphorus (mg/L)	6		0.005		0.077	0.041	0.040	0.029
CBOD-5 (mg/L)	6	<	1.0		3.5	2.3	2.1	1.2
^J Chlorides (mg/L)	6		4.2		7.2	5.2 ^M	5.5	1.1
Atrazine (µg/L)	2	<	0.05		0.06	0.04	0.04	0.0
Total Metals								
Aluminum (mg/L)	4	<	0.015		0.126	0.008	0.037	0.1
Iron (mg/L)	4		0.304		0.598	0.419	0.435	0.1
Manganese (mg/L)	4		0.034		0.128	0.081	0.081	0.0
Dissolved Metals								
Aluminum (mg/L)	4	<	0.015	<	0.015	0.008	0.008	0.0
Antimony (µg/L)	4	<	2	<	2	1	1	0.0
Arsenic (µg/L)	4		10		10	5	5	0.0
Cadmium (mg/L)	4	<	0.005	<	0.005	0.003	0.003	0.0
Chromium (mg/L)	4	<	0.004	<	0.004	0.002	0.002	0.0
Copper (mg/L)	4	<	0.005	<	0.005	0.0025	0.003	0.0
Iron (mg/L)	4	<	0.005		0.344	0.168	0.171	0.2
Lead (µg/L)	4	<	2	<	2	1	1	0.0
Manganese (mg/L)	4	<	0.005		0.07	0.043	0.040	0.0
Mercury (µg/L)	4	<	0.3	<	0.3	0.15	0.15	0.0
Nickel (mg/L)	4	<	0.006	<	0.006	0.003	0.003	0.0
Selenium (µg/L)	4	<	10	<	10	5	5	0.0
Silver (mg/L)	4	<	0.003	<	0.003	0.002	0.002	0.0
Thallium (µg/L)	4	<	1	<	1	0.5	0.500	0.0
Zinc (mg/L)	4	<	0.006	<	0.006	0.003	0.003	0.0
Biological								
^J Chlorophyll <i>a</i> (µg/L)	6		0.53		20.83	1.87	4.66	8.0
J Fecal Coliform (col/100 mL)	6	1	27	ĺ	440	315	285	169

J =estimate; N=# samples; M=value >90 th percentile of all data collected within ecoregion 45a