

Drainage Area (mi²)

Ecoregion^a

% Landuse

2005 Monitoring Summary

Woody

Deciduous

Evergreen

Open space

Low intensity

High intensity

TOTAL

Moderate intensity

Mixed

9

65p

2

15

3

16

7 6

11

26

10 4

1028

37

37

Three Mile Branch at AL Hwy 152 (Montgomery Co.) (32.42232/-86.25517)

BACKGROUND

Three Mile Branch from Lower Wetumpka Road to its source has been on Alabama's Clean Water Act (CWA) §303(d) list of impaired waters since 2002. It is listed for pesticides from unknown sources.

In 2005, the Alabama Department of Environmental Management (ADEM) monitored Three Mile Branch at TMBM-2 to document impairment from pesti cides and to identify po and habitat assessments nities. Results from thes mum Daily Load needs a

Figure 1. sampling location and watershed of Three Mile Branch at TMBM-2.

WATERSHED CHARACTERISTICS

The Three Mile Branch watershed at TMBM-2 is a small Fish & Wildlife (F&W) stream that flows through the city of Montgomery (Fig. 1). Many reaches within the watershed have been converted to culverts. The watershed is in a high population density area where landuse is primarily urban (51%) and forest area (36%). As of June 9, 2008, ADEM's NPDES Management System database showed a total of 37 permitted discharges within the watershed (Table 1).

REACH CHARACTERISTICS

General observations (Table 2) and habitat assessments (Table 3) were completed during the macroinvertebrate assessment. In comparison with reference reaches in the same ecoregion, they give an indication of the physical condition of the site and the quality and availability of habitat. Three Mile Branch at TMBM-2 is a low-gradient, shaded stream reach characterized by sand, clay, and gravel substrates. Overall habitat quality was categorized as sub-optimal due to heavy sediment deposition and a lack of instream habitat.

BIOASSESSMENT RESULTS

Benthic macroinvertebrate communities were sampled using ADEM's Intensive Multi-habitat Bioassessment methodology (WMB-I). The WMB-I uses measures of taxonomic richness, community composition, and community tolerance to assess the overall health of the macroinvertebrate community. Each metric is scored on a 100 point scale. The final score is an average of the score for each metric. Metric results indicated the macroinvertebrate community to be characterized by pollution-tolerant non-insect taxa goups, indicating very poor community condition (Table 4).

ssible sources of the contamination. Macroinvertebrate were conducted to verify impairment to aquatic commu- se data may also be used in determination of Total Maxi- and priorities.	Wetland Forest
	Shrub/scrub
*=	Cultivated crops
	Development
	Population/km ^{2b}
	# NPDES Permits ^c
	Construction Sto
	a.Southeastern Floor

Construction Stormwater Southeastern Flood Plains and Low Terraces

Table 1. Summary of watershed characteristics.

Watershed Characteristics

b.2000 U.S. Census Data

c.#NPDES permits downloaded from ADEM's NPDES Management System database, 9 Jun 2008

Table 2.	Summary of	of physical	characteristics	at TMBM-
2, June 14	4, 2005.			

Physical Characteristics				
Width (ft)		15		
Canopy cover		Shaded		
Depth (ft)				
	Riffle	0.5		
	Run	0.7		
	Pool	0.5		
% of Reach				
	Riffle	10		
	Run	85		
	Pool	5		
% Substrate				
	Gravel	10		
	Sand	61		
	Silt	5		
	Clay	20		
	Organic Matter	4		

Table 3. Result	ts of the habitat	assessment	conducted at	TMBM-2,	June 14.	, 2005
						_

Habitat Assessment (% Maximum Score)		Rating
Instream habitat quality	48	Marginal (40-52)
Sediment deposition	20	Poor (<40)
Sinuosity	70	Sub-optimal (65-84)
Bank and vegetative stability	54	Marginal (35-59)
Riparian buffer	86	Sub-optimal (70-90)
Habitat assessment score	132	
% Maximum score	55	Sub-optimal (53-65)

Table 4. Results of the macroinvertebrate bioassessment conducted at TMBM-2,June 14, 2005.

Macroinvertebrate Assessment Results						
	Results Scores		Rating			
Taxa richness measures		(0-100)				
# Ephemeroptera (mayfly) genera	3	25	Poor (23-46)			
# Plecoptera (stonefly) genera	0	0	Very Poor (<16)			
# Trichoptera (caddisfly) genera	2	17	Very Poor (<22)			
Taxonomic composition measures						
% Non-insect taxa	32	-26	Very Poor (<24.7)			
% Non-insect organisms	8	79	Fair (62.7-93.9)			
% Plecoptera	0	0	Very Poor (<6.56)			
Tolerance measures						
Beck's community tolerance index	0	0	Very Poor (<20.2)			
WMB-I Assessment Score		14	Very Poor (<24)			

WATER CHEMISTRY

Results of water chemistry analyses are presented in Table 5. In situ measurements and water samples were collected monthly, semimonthly (metals), or quarterly (pesticides, herbicides (atrazine), and semi-volatile organics) during March through October of 2005 to help identify any stressors to the biological communities. Results of water chemistry analyses are presented in Table 5. Median concentrations of total dissolved solids, specific conductance, hardness and alkalinity were above values expected in the southeastern floodplains ecoregion. Median nutrient concentrations, CBOD-5, chlorides, and atrazine were greater than expected in ecoregion 65p. The site did not exceed numeric criteria for metals. However, median concentrations of total and dissolved manganese were higher than values expected in this ecoregion. The fecal coliform count was >2,000 colonies/100 mL in 3 of 7 (43%) samples collected (March 23rd, July 12 and August 18th), above water quality criteria for its *F&W* use classification.

CONCLUSIONS

Results of the 2005 macroinvertebrate assessment indicated the macroinvertebrate community to be in *very poor* condition. Results of intensive water quality sampling and a habitat assessment suggest that sedimentation, nutrient enrichment, pathogens, and elevated metals could be potential causes of the degraded biological condition.

FOR MORE INFORMATION, CONTACT: Dusty Miller, ADEM Aquatic Assessment Unit 1350 Coliseum Boulevard Montgomery, AL 36110 (334) 260-2712 jmiller@adem.state.al.us **Table 5.** Summary of water quality data collected March-October, 2005. Minimum (Min) and maximum (Max) values calculated using minimum detection limits (MDL) when results were less than this value. Median, average (Avg), and standard deviations (SD) values were calculated by multiplying the MDL by 0.5 when results were less than this value.

Parameter	Ν		Min		Мах	Median	Avg	SD
Physical								
Temperature (°C)	7		19.0		26.0	25.0	23.1	3.0
Turbidity (NTU)	7		1.9		14.9	3.7	5.4	4.4
Total Dissolved Solids (mg/L)	7		94.0		109.0	100.0 ^M	100.6	6.3
Total Suspended Solids (mg/L)	7		3.0		18.0	6.0	7.4	5.3
Specific Conductance (µmhos)	7		111.8		153	132.0 ^M	132.6	13.7
Hardness (mg/L)	4		45.9		60.4	46.6 ^M	49.9	7.0
Alkalinity (mg/L)	7		40.2		54.9	46 .5 ^M	48.0	5.5
Stream Flow (cfs)	6		2.8		5.4	4.2	4.1	
Chemical								
Dissolved Oxygen (mg/L)	7		5.5		8	7.1	6.9	0.8
pH (su)	7		6.7		7.1	6.9	6.9	0.2
Ammonia Nitrogen (mg/L)	6	<	0.015		0.036	0.017™	0.020	0.014
Nitrate+Nitrite Nitrogen (mg/L)	7		0.610		1.208	0.932™	0.905	0.231
Total Kjeldahl Nitrogen (mg/L)	7		0.207		0.761	0.491™	0.447	0.191
Total Nitrogen (mg/L)	7		1.089		1.921	1.290 ^M	1.352	0.292
Dissolved Reactive Phosphorus (mg/L)	7		0.005		0.059	0.019 ^M	0.025	0.019
Total Phosphorus (mg/L)	7		0.037		0.115	0.065 ^M	0.070	0.026
CBOD-5 (mg/L)	7	<	1.0		5.4	1.6 ^M	1.9	1.6
Chlorides (mg/L)	7		5.6		8.3	6.9 ^M	6.9	0.9
Atrazine (ug/L)	2		0.05		0.26	0.16 ^M	0.16	0.15
Total Metals	1-							1
Aluminum (mg/L)	4	<	0.02	1	0.08	0.026	0.035	0.035
Iron (mg/L)	4		0.3		0.94	0.67	0.647	0.300
Manganese (mg/L)	4		0.05		0.14	0.072 ^M	0.083	0.037
Dissolved Metals								
Aluminum (mg/L)	4	<	0.015		0.021	0.014	0.014	0.008
Antimony (µg/L)	4	<	2	<	2	1	1	0
Arsenic (µg/L)	4	<	10	<	10	5	5	0
Cadmium (mg/L)	4	<	0.005	<	0.005	0.002	0.002	0.000
Chromium (mg/L)	4	<	0.004	<	0.004	0.002	0.002	0.000
Copper (mg/L)	4	<	0.005	<	0.005	0.002	0.002	0.000
Iron (mg/L)	4		0.03		0.25	0.10	0.12	0.09
Lead (µg/L)	4	<	2	<	2	1	1	0
Manganese (mg/L)	4	<	0.010		0.090	0.071™	0.059	0.041
Mercury (µg/L)	4	<	0.3	<	0.3	0.2	0.2	0.0
Nickel (mg/L)	4	<	0.006	<	0.006	0.003	0.003	0.000
Selenium (µg/L)	4	<	10	<	10	5	5	0
Silver (mg/L)	4	<	0.003	<	0.003	0.002	0.002	0.000
Thallium (µg/L)	4	<	1	<	1	0.5	0.5	0.0
Zinc (mg/L)	4	<	0.006	<	0.006	0.003	0.003	0.000
Biological	•			•				
J Fecal Coliform (col/100 mL)	7		110	>	3100	610 ^M	1271	1318

N=# samples; J=Reported value is an estimate; M=value > 25th percentile of all data collected within sub-ecoregion 65p.