

Hurricane Creek at Randolph County Road 26 (33.17546/-85.59829)

BACKGROUND

Hurricane Creek is one of the streams the Alabama Department of Environmental Management (ADEM) monitors as a "best attainable condition" reference watershed for comparison with streams throughout the Piedmont ecoregion. Silver Creek was selected for biological and water quality monitoring as part of the 2005 Assessment of the Alabama, Coosa, and Tallapoosa (ACT) River Basins. The objectives of the ACT Basin Assessments were to assess the biological integrity of each site and to estimate overall water quality within the ACT basin group.

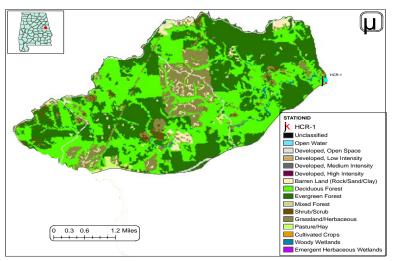


Figure 1. Sampling location and landuse within the Hurricane Creek watershed at HCR-1.

WATERSHED CHARACTERISTICS

Watershed characteristics are summarized in Table 1. Hurricane Creek is a small *Fish & Wildlife (F&W)* stream located near the city of Wadley in the Tallapoosa River basin (Fig. 1). Landuse within the watershed is primarily forest (79%), with some grassland areas. The presence of deciduous forest and evergreen forests are characteristic of streams in the Southern Inner Piedmont (Table 1).

REACH CHARACTERISTICS

General observations (Table 2) and habitat assessments (Table 3) were completed during the macroinvertebrate assessment. In comparison with reference reaches in the same ecoregion, they give an indication of the physical condition of the site and the quality and availability of habitat. Hurricane Creek at HCR-1 is a low-gradient, sand-bottomed stream. Overall habitat quality was categorized as *sub-optimal* due to low sinuosity and limited riparian buffers. Some sedimentation was also noted within the reach.

BIOASSESSMENT RESULTS

Benthic macroinvertebrate communities were sampled using ADEM's Intensive Multi-habitat Bioassessment methodology (WMB-I). The WMB-I uses measures of taxonomic richness, community composition, and community tolerance to assess the overall health of the macroinvertebrate community. Each metric is scored on a 100 point scale. The final score is an average of the score for each metric. Metric results indicated the macroinvertebrate community to be in *excellent* (Table 4).

Watershed Characteristics					
Drainage Area (mi ²)		14			
Ecoregion ^a		45a			
% Landuse					
Open water		<1			
Wetland	Woody	1			
Forest	Deciduous	40			
	Evergreen	39			
	Mixed	<1			
Shrub/scrub		1			
Grassland/herbaceous		13			
Pasture/hay		1			
Development	Open space	2			
	Low intensity	<1			
Barren		3			
Population/km ^{2b}		8			
# NPDES Permits ^c	TOTAL	2			
Mining General Permit (old)		2			

a.Southern Inner Piedmont

b.2000 US Census Data

c#NPDES permits downloaded from ADEM's NPDES Management System database, 9 Jun 2008

Table 2. Physic	cal characteristics a	t HCR-1, May
10, 2005.		

Physical Characteristics					
Width (ft)		35			
Canopy cover		Mostly Open			
Depth (ft)					
	Riffle	0.5			
	Run	1.3			
	Pool	2.0			
% of Reach					
	Riffle	10			
	Run	85			
	Pool	5			
% Substrate					
	Boulder	2			
	Cobble	10			
	Gravel	25			
	Sand	55			
	Silt	4			
Organi	ic Matter	4			

Table 3. Results of the habitat assessment conducted May 10, 2005.

Habitat Assessment (% Maximu	Habitat Assessment (% Maximum Score)		
Instream habitat quality	73	Optimal (> 70)	
Sediment deposition	65	Sub-optimal (59-70)	
Sinuosity	58	Marginal (45-64)	
Bank and vegetative stability	76	Optimal (≥75)	
Riparian buffer	50	Marginal (50-69)	
Habitat assessment score	165		
% Maximum score	69	Sub-optimal (59-70)	

Table 4. Results of the macroinvertebrate bioassessment conducted May 10, 2005.

Macroinvertebrate Assessment Results					
	Result	s Scores	Rating		
Taxa richness measures		(0-100)			
# Ephemeroptera (mayfly) genera	14	100	Excellent (>85)		
# Plecoptera (stonefly) genera	8	100	Excellent (>75)		
# Trichoptera (caddisfly) genera	11	92	Excellent (>83)		
Taxonomic composition measures					
% Non-insect taxa	3	90	Excellent (>87.1)		
% Non-insect organisms	0	99	Excellent (>97)		
% Plecoptera	13	63	Excellent (>59.8)		
Tolerance measures					
Beck's community tolerance index	33	100	Excellent (>80.4)		
WMB-I Assessment Score		92	Excellent (>86)		

WATER CHEMISTRY

Results of water chemistry analyses are presented in Table 5. In situ measurements and water samples were collected monthly, semimonthly (metals), or quarterly (pesticides, herbicides (atrazine), and semi-volatile organics) during March through October of 2005 to help identify any stressors to the biological communities. Median values of nitrate+nitrite-nitrogen, hardness, and alkalinity were above concentrations expected in this ecoregion.

CONCLUSIONS

Bioassessment results indicated the macroinvertebrate community to be in *excellent* condition. However, results of habitat and water sampling suggested the potential for sedimentation and nutrient enrichment to become issues at the site.

> FOR MORE INFORMATION, CONTACT: Tonya Mayberry, ADEM Aquatic Assessment Unit 1350 Coliseum Boulevard Montgomery, AL 36110 (334) 260-2759 tmayberry@adem.state.al.us

Table 5. Summary of water quality data collected March-October, 2005. Minimum (Min) and maximum (Max) values calculated using minimum detection limits (MDL) when results were less than this value. Median, average (Avg), and standard deviations (SD) values were calculated by multiplying the MDL by 0.5 when results were less than this value. Metals results were compared to ADEM's chronic aquatic life use criteria adjusted for hardness.

Parameter	Ν		Min		Мах	Median	Avg	SD
Physical								
Temperature (°C)	9		12.0		23.0	21.4	19.6	3.9
Turbidity (NTU)	9		2.1		6.5	3.0	3.5	1.7
Total dissolved solids (mg/L)	7		29.0		145.0	68.0	70.6	38.0
Total suspended solids (mg/L)	7		5.0		70.0	14.0	23.6	22.5
Specific conductance (µmhos)	9		5.1		22.1	18.0	16.9	5.1
Hardness (mg/L)	5		5.3		101.0	45.8 ^M	52.9	41.0
Alkalinity (mg/L)	7		5.6		92.3	58.5 ^M	55.9	34.0
Stream Flow (cfs)	7		4.4		36.5	17.7	16.3	
Chemical				•				
Dissolved oxygen (mg/L)	9		8.0		10.1	8.8	8.9	0.7
pH (su)	9		6.8		8.27	7.0	7.1	0.4
Ammonia Nitrogen (mg/L)	7	<	0.015		0.019	< 0.015	0.014	0.004
Nitrate+Nitrite Nitrogen (mg/L)	7		0.023		0.332	0.246 ^M	0.219	0.092
Total Kjeldahl Nitrogen (mg/L)	7	<	0.098		0.488	0.125	0.178	0.147
Total nitrogen (mg/L)	7		0.192		0.734	0.401	0.428	0.161
Dissolved reactive phosphorus (mg/L)	7		0.005		0.020	0.010	0.010	0.005
Total phosphorus (mg/L)	7		0.018		0.066	0.046	0.045	0.017
CBOD-5 (mg/L)	7	<	1.0		4.5	0.5	1.7	1.8
Chlorides (mg/L)	7		3.6		4.6	4.0	4.1	0.4
Atrazine (µg/L)	2	<	0.05	<	0.05	0.03	0.03	0.00
Total Metals								
Aluminum (mg/L)	4	<	0.015		0.102	0.0235	0.039	0.0
Iron (mg/L)	4		0.141		0.355	0.3155	0.282	0.1
Manganese (mg/L)	4		0.005		0.115	0.06	0.059	0.0
Dissolved Metals								
Aluminum (mg/L)	4	<	0.015	<	0.015	0.0075	0.008	0.0
Antimony (µg/L)	4	<	2	<	2	1	1	0.0
Arsenic (µg/L)	3	<	10	<	10	5	5	0.0
Cadmium (mg/L)	4	<	0.005	<	0.005	0.0025	0.0025	0.0
Chromium (mg/L)	4	<	0.004	<	0.004	0.002	0.002	0.0
Copper (mg/L)	4	<	0.005	<	0.005	0.0025	0.003	0.0
Iron (mg/L)	4	<	0.005		0.084	0.0705	0.0569	0.0
Lead (µg/L)	4	<	2	<	2	1	1	0.0
Manganese (mg/L)	4	<	0.005		0.021	0.0053	0.009	0.0
Mercury (µg/L)	4	<	0.3	<	0.3	0.15	0.1875	0.1
Nickel (mg/L)	4	<	0.006	<	0.006	0.003	0.003	0.0
Selenium (µg/L)	4	<	10	<	10	5	5	0.0
Silver (mg/L)	4	<	0.003	<	0.003	0.0015	0.0015	0.0
Thallium (µg/L)	4	<	1	<	1	0.5	0.500	0.0
Zinc (mg/L)	4	<	0.006	<	0.006	0.003	0.003	0.0
Biological								
^J Chlorophyll a (µg/L)	7		0.71		3.47	2.85	2.45	1.1
^J Fecal Coliform (col/100 mL)	7		5		510	150	208	174

J=estimate; N=# samples; M=value > 90% of all data collected within eco-region 45a