

# Gravel Creek at Alabama State Hwy 41 in Wilcox County (31.91803/-87.35910)

### BACKGROUND

The Alabama Department of Environmental Management (ADEM) selected the Gravel Creek watershed for biological and water quality monitoring as part of the 2005 Assessment of the Alabama, Coosa, and Tallapoosa (ACT) River Basins. The objectives of the ACT Basin Assessments were to assess the biological integrity of each monitoring site and to estimate overall water quality within the ACT basin group.



Figure 1. Sampling location and landuse within the Gravel Creek watershed at GRVW-1.

#### WATERSHED CHARACTERISTICS

Watershed characteristics are summarized in Table 1. Gravel Creek is a small *Fish & Wildlife (F&W)* stream located in the Alabama River basin, approximately 5 miles south of Camden, AL, in central Wilcox County. Landuse within the watershed is primarily forest (85%), with some pasture areas (Fig. 1). There is little potential for impacts from point source and urban pollution, since only 1 permit has been issued and the population density in the watershed is very low.

# **REACH CHARACTERISTICS**

General observations (Table 2) and habitat assessments (Table 3) were completed during the macroinvertebrate assessment. In comparison with reference reaches in the same ecoregion, they give an indication of the physical condition of the site and the quality and availability of habitat. Gravel Creek at GRVW-1 is typical of ecoregion 65d, characterized by low-gradient, sand-bottomed streams. Overall habitat quality was categorized as *marginal* due to *poor* sinuosity and *poor* bank stability.

#### **BIOASSESSMENT RESULTS**

Benthic macroinvertebrate communities were sampled using ADEM's Intensive Multi-habitat Bioassessment methodology (WMB-I). The WMB-I uses measures of taxonomic richness, community composition, and community tolerance to assess the overall health of the macroinvertebrate community. Each metric is scored on a 100 point scale. The final score is an average of the score for each metric. Metric results indicated the macroinvertebrate community to be characterized by pollution-tolerant taxa groups, indicating *poor* community condition (Table 4).

| Table 1. Summary of watershed characteristics. |                   |     |  |  |  |
|------------------------------------------------|-------------------|-----|--|--|--|
| Watershed Characteristics                      |                   |     |  |  |  |
| Drainage Area (mi <sup>2</sup> )               |                   | 29  |  |  |  |
| Ecoregion <sup>a</sup>                         |                   | 65d |  |  |  |
| % Landuse                                      |                   |     |  |  |  |
| Open water                                     |                   | <1  |  |  |  |
| Wetland                                        | Woody             | 3   |  |  |  |
| Eme                                            | ergent herbaceous | <1  |  |  |  |
| Forest                                         | Deciduous         | 31  |  |  |  |
|                                                | Evergreen         | 43  |  |  |  |
|                                                | Mixed             | 11  |  |  |  |
| Shrub/scrub                                    |                   | 7   |  |  |  |
| Pasture/hay                                    |                   | 3   |  |  |  |
| Cultivated crops                               |                   | 1   |  |  |  |
| Development                                    | Open space        | 2   |  |  |  |
|                                                | Low intensity     | <1  |  |  |  |
| Population/km <sup>2b</sup>                    |                   | 2   |  |  |  |
| # NPDES Permits <sup>c</sup>                   | TOTAL             | 1   |  |  |  |
| Construction Stormwater                        |                   | 1   |  |  |  |
| a.Southern Hilly Gulf Coastal Plain            | ns                |     |  |  |  |

b.2000 US Census

c.#NPDES permits downloaded from ADEM's NPDES Management System database, 9 Jun 2008

**Table 2.** Physical characteristics at GRVW-1, May 25, 2005.

| Physical characteristics |                |               |  |  |
|--------------------------|----------------|---------------|--|--|
| Width (ft)               |                | 10            |  |  |
| Canopy cover             |                | Mostly Shaded |  |  |
| Depth (ft)               |                |               |  |  |
|                          | Run            | 0.8           |  |  |
|                          | Pool           | 1.0           |  |  |
| % of Reach               |                |               |  |  |
|                          | Run            | 90            |  |  |
|                          | Pool           | 10            |  |  |
| % Substrate              |                |               |  |  |
|                          | Cobble         | 1             |  |  |
|                          | Gravel         | 20            |  |  |
|                          | Sand           | 66            |  |  |
|                          | Silt           | 5             |  |  |
|                          | Clay           | 1             |  |  |
|                          | Organic Matter | 5             |  |  |

Table 3. Results of the habitat assessment conducted on May 25,

| Habitat Assessment<br>(% Maximum Score) |     | Rating              |
|-----------------------------------------|-----|---------------------|
| Instream habitat quality                | 44  | Marginal (40-52)    |
| Sediment deposition                     | 49  | Marginal (40-52)    |
| Sinuosity                               | 38  | Poor (<45)          |
| Bank and vegetative stability           | 24  | Poor (<35)          |
| Riparian buffer                         | 88  | Sub-optimal (70-90) |
| Habitat assessment score                | 106 |                     |
| % Maximum score                         | 48  | Marginal (40-52)    |

 
 Table 4. Results of the macroinvertebrate bioassessment conducted on May 25, 2005.

| Macroinvertebrate Assessment     |         |        |                   |  |  |
|----------------------------------|---------|--------|-------------------|--|--|
|                                  | Results | Scores | Rating            |  |  |
| Taxa richness measures           |         |        |                   |  |  |
| # EPT genera                     | 14      | 56     | Fair (37-56)      |  |  |
| Taxonomic composition measures   |         |        |                   |  |  |
| % Non-insect taxa                | 10      | 74     | Fair (61.8-92.7)  |  |  |
| % Plecoptera                     | 2       | 1      | Very Poor (<1.86) |  |  |
| % Dominant taxa                  | 35      | 38     | Poor (23.5-47.0)  |  |  |
| Functional composition measures  |         |        |                   |  |  |
| % Predators                      | 4       | 1      | Very Poor (<15.1) |  |  |
| Tolerance measures               |         |        |                   |  |  |
| Beck's community tolerance index | 5       | 23     | Fair (21.2-31.8)  |  |  |
| % Nutrient tolerant organisms    | 55      | 24     | Very Poor (<25.4) |  |  |
| WMB-I Assessment Score           |         | 31     | Poor (19-37)      |  |  |

## WATER CHEMISTRY

Results of water chemistry analyses are presented in Table 5. In situ measurements and water samples were collected monthly, semi-monthly (metals), or quarterly (pesticides, herbicides (atrazine), and semi-volatile organics) during March through October of 2005 to help identify any stressors to the biological communities. Median concentrations of alkalinity were above values expected in this ecoregion.

# CONCLUSIONS

Bioassessment results indicated the macroinvertebrate community to be in *poor* condition. Overall habitat quality was categorized as *marginal* due to *poor* sinuosity and bank instability. Median concentrations of alkalinity and were slightly above values expected in this ecoregion.

> FOR MORE INFORMATION, CONTACT: Gina LoGiudice, ADEM Aquatic Assessment Unit 1350 Coliseum Boulevard Montgomery, AL 36110 (334) 260-2700 glogiudice@adem.state.al.us

**Table 5.** Summary of water quality data collected March-October, 2005. Minimum (Min) and maximum (Max) values calculated using minimum detection limits (MDL) when results were less than this value. Median, average (Avg), and standard deviations (SD) values were calculated by multiplying the MDL by 0.5 when results were less than this value. Metals results were compared to ADEM's chronic aquatic life use criteria adjusted for hardness.

| Parameter                            | Ν   |   | Min   |   | Мах   | Median            | Avg   | SD    |
|--------------------------------------|-----|---|-------|---|-------|-------------------|-------|-------|
| Physical                             |     |   |       |   |       |                   |       |       |
| Temperature (°C)                     | 7   |   | 20.0  |   | 26.0  | 21.0              | 22.1  | 2.5   |
| Turbidity (NTU)                      | 8   |   | 2.9   |   | 268.0 | 6.6               | 53.3  | 91.7  |
| Total Dissolved Solids (mg/L)        | 7   |   | 97.0  |   | 224.0 | 167.0             | 164.7 | 38.1  |
| Total Suspended Solids (mg/L)        | 7   |   | 3.0   |   | 472.0 | 10.0              | 88.9  | 171.0 |
| Specific Conductance (µmhos)         | 7   |   | 166.0 |   | 272.4 | 246.8             | 224.1 | 39.7  |
| Hardness (mg/L)                      | 4   |   | 81.9  |   | 124.0 | 106.3             | 104.6 | 18.4  |
| Alkalinity (mg/L)                    | 7   |   | 48.2  |   | 84.4  | 64.4 <sup>M</sup> | 64.5  | 16.1  |
| Stream Flow (cfs)                    | 7   |   | 4.7   |   | 180.1 | 9.6               | 44.0  |       |
| Chemical                             |     |   |       |   |       |                   |       |       |
| Dissolved Oxygen (mg/L)              | 7   |   | 5.7   |   | 9.3   | 8.2               | 8.0   | 1.2   |
| pH (su)                              | 7   |   | 6.5   |   | 7.6   | 7.5               | 7.3   | 0.4   |
| Ammonia Nitrogen (mg/L)              | 7   | < | 0.015 |   | 0.015 | 0.008             | 0.008 | 0.000 |
| Nitrate+Nitrite Nitrogen (mg/L)      | 7   | < | 0.003 |   | 0.033 | 0.024             | 0.019 | 0.015 |
| Total Kjeldahl Nitrogen (mg/L)       | 7   | < | 0.150 |   | 0.585 | 0.215             | 0.234 | 0.189 |
| Total Nitrogen (mg/L)                | 7   | < | 0.076 |   | 0.618 | 0.217             | 0.253 | 0.196 |
| Dissolved Reactive Phosphorus (mg/L) | 7   | < | 0.004 |   | 0.058 | 0.010             | 0.018 | 0.019 |
| Total Phosphorus (mg/L)              | 7   | < | 0.004 |   | 0.088 | 0.058             | 0.051 | 0.028 |
| CBOD-5 (mg/L)                        | 6   | < | 1.0   |   | 3.5   | 1.5               | 1.7   | 1.0   |
| J Chlorides (mg/L)                   | 7   |   | 3.8   |   | 9.5   | 7.1               | 6.9   | 1.8   |
| Atrazine (µg/L)                      | 2   | < | 0.05  |   | 0.05  | 0.03              | 0.03  |       |
| Total Metals                         |     |   |       |   |       |                   |       |       |
| Aluminum (mg/L)                      | 4   | < | 0.015 |   | 0.671 | 0.008             | 0.173 | 0.332 |
| Iron (mg/L)                          | 4   |   | 0.367 |   | 1.84  | 0.53              | 0.817 | 0.686 |
| Manganese (mg/L)                     | 4   |   | 0.016 |   | 0.043 | 0.027             | 0.028 | 0.011 |
| Dissolved Metals                     |     |   |       |   |       |                   |       |       |
| Aluminum (mg/L)                      | 4   | < | 0.015 |   | 0.084 | 0.025             | 0.036 | 0.036 |
| Antimony (µg/L)                      | 4   | < | 2     | < | 2     | 1                 | 1     | 0.0   |
| Arsenic (µg/L)                       | 4   | < | 10    | < | 10    | 5                 | 5     | 0.0   |
| Cadmium (mg/L)                       | 4   | < | 0.005 | < | 0.005 | 0.003             | 0.003 | 0.000 |
| Chromium (mg/L)                      | 4   | < | 0.004 | < | 0.004 | 0.002             | 0.002 | 0.000 |
| Copper (mg/L)                        | 4   | < | 0.005 | < | 0.005 | 0.003             | 0.003 | 0.000 |
| Iron (mg/L)                          | 4   |   | 0.097 |   | 0.123 | 0.1115            | 0.111 | 0.011 |
| Lead (µg/L)                          | 4   | < | 2     | < | 2     | 1                 | 1     | 0.0   |
| Manganese (mg/L)                     | 4   | < | 0.005 |   | 0.048 | 0.018             | 0.022 | 0.023 |
| Mercury (µg/L)                       | 4   | < | 0.3   | < | 0.3   | 0.15              | 0.15  | 0.000 |
| Nickel (mg/L)                        | 4   | < | 0.006 | < | 0.006 | 0.003             | 0.003 | 0.000 |
| Selenium (µg/L)                      | 3   | < | 10    | < | 10    | 5                 | 5     | 0.0   |
| Silver (mg/L)                        | 4   | < | 0.003 | < | 0.003 | 0.002             | 0.002 | 0.000 |
| Thallium (µg/L)                      | 4   | < | 1     | < | 1     | 0.5               | 0.5   | 0.0   |
| Zinc (mg/L)                          | 4   | < | 0.006 | < | 0.006 | 0.003             | 0.003 | 0.000 |
| Biological                           | I . | 1 |       | 1 |       |                   |       |       |
| Chlorophyll a (µg/L)                 | 7   |   | 0.27  |   | 7.48  | 3.56              | 3.18  | 2.76  |
| J Fecal Coliform (col/100 mL)        | 7   |   | 50    |   | 1300  | 260               | 516   | 504   |

J = Estimate; N = Number of Samples; M = Value > 90th percentile of verified ecoregional reference reach samples within eco-region 65d