2005 Monitoring Summary

Calabee Creek at Macon County Road 40 (32.43341/-85.93381)

BACKGROUND

Calabee Creek from the Tallapoosa River to Macon County Road 9 has been on Alabama's Clean Water Act (CWA) §303(d) list of impaired waters for not meeting its *Fish and Wildlife* (F&W) water use classification due to siltation (habitat alteration) from agriculture and surface mining (ADEM 2007).

The Alabama Department of Environmental Management (ADEM) monitored Calabee Creek at CLBM-5 to verify and document impairment from siltation. The ADEM conducted macroinvertebrate and habitat assessments to evaluate impairment to aquatic communities. Monthly water chemistry samples were collected to identify the causes of impairment.

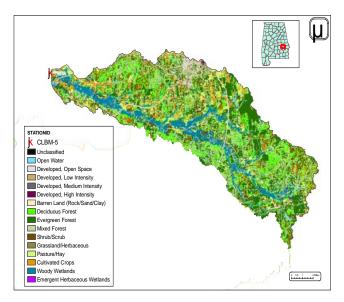


Figure 1. Sampling location and watershed of Calabee Creek at CLBM-5.

WATERSHED CHARACTERISTICS

Watershed characteristics are summarized in Table 1. Calabee Creek at CLBM-5 is a large <u>F&W</u> stream located within the Southeastern Flood Plains and Low Terraces Ecoregion (65p). Landuse within the watershed is primarily forest (56%), shrub (13%), agriculture (13%), and woody wetland (12%). Ten mining permits have also been issued on the watershed.

Table 1. Summary of watershed characteristics.

Watershed Characteristics					
Drainage Area (mi ²)		151			
Ecoregion ^a		65p			
% Landuse		•			
Open water		1			
Wetland	Woody	12			
Forest	Deciduous	18			
	Evergreen	18			
	Mixed	20			
Shrub/scrub		13			
Pasture/hay		8			
Cultivated crops		5			
Development	Open space	5			
	Low intensity	1			
Population/km ^{2 b}		23			
# NPDES Permits ^c	TOTAL	19			
Construction Stormwater		14			
Mining		1			
Municipal Individual		4			

- a. Southeastern Flood Plains and Low Terraces
- b. 2000 US Census data
- c. # NPDES permits in ADEM's NPDES Management System database, 9 June 2008.

Table 2. Summary of physical characteristics at CLBM-5, June 22, 2005.

Physical Characteristics				
Width (ft)		50		
Canopy cover		Mostly Oper		
Depth (ft)				
	Riffle	0.8		
	Run	1.5		
	Pool	3.0		
% of Reach				
	Riffle	10		
	Run	40		
	Pool	50		
% Substrate				
	Boulder	1		
	Cobble	5		
	Gravel	30		
	Sand	32		
	Silt	15		
	Organic Matter	2		

REACH CHARACTERISTICS

General observations (Table 2) and a habitat assessment (Table 3) were completed during the macroinvertebrate assessment. In comparison with reference reaches in the same ecoregion, they give an indication of the physical condition of the site and the quality and availability of habitat. Calabee Creek at CLBM-5 is a low gradient, mostly-open stream reach characterized by gravel and sand substrates. Overall habitat quality was characterized as *optimal*, despite some sedimentation and limited riffle habitat.

Table 3. Results of a habitat assessment conducted at CLBM-5, June 22, 2005.

Habitat Assessment (% Maximum Score)		Rating		
Instream habitat quality	71	Optimal (>65)		
Sediment deposition	59	Sub-optimal (53-65)		
Sinuosity	70	Sub-optimal (65-84)		
Bank and vegetative stability	69	Sub-optimal (60-74)		
Riparian buffer	85	Sub-optimal (70-90)		
Habitat assessment score	169			
% Maximum score	70	Optimal (>65)		

Table 4. Results of the macroinvertebrate bioassessment conducted at CLBM-5, June 22, 2005.

Macroinvertebrate Assessment Results				
	Results	Scores	Rating	
Taxa richness measures		(0-100)		
# Ephemeroptera (mayfly) genera	10	83	Good (71-85)	
# Plecoptera (stonefly) genera	0	0	Very Poor (<16)	
# Trichoptera (caddisfly) genera	8	67	Good (67-83)	
Taxonomic composition measures				
% Non-insect taxa	12	54	Fair (49.4-74.1)	
% Non-insect organisms	1	98	Excellent (>97)	
% Plecoptera	0	0	Very Poor (<6.56)	
Tolerance measures				
Beck's community tolerance index	4	14	Very Poor (<20.2)	
WMB-I Assessment Score		45	Poor (24-48)	

BIOASSESSMENT RESULTS

Benthic macroinvertebrate communities were sampled using ADEM's <u>Intensive Multi-habitat Bioassessment methodology</u> (WMB-I). The WMB-I uses measures of taxonomic richness, community composition, and community tolerance to assess the overall health of the macroinvertebrate community. Each metric is scored on a 100 point scale. The final score is the average of the score for each metric. Metric results indicated the macroinvertebrate community to be in *poor* condition (Table 4).

WATER CHEMISTRY

Results of water chemistry analyses are presented in Table 5. In situ measurements and water samples were collected monthly, semi-monthly (metals), or quarterly (pesticides, herbicides (atrazine), and semi-volatile organics) during March through October of 2005 to help identify any stressors to the biological communities. Fecal coliform counts were >2000 colonies/100ml during the July 14th sampling event, exceeding criteria for F&W use classification. Heavy rains on the previous day could possibly account for this elevated value. Median concentrations of total dissolved and suspended solids, hardness, alkalinity, nutrients, Chlorophyll a, chlorides and total metals were greater than expected based on the 25th percentile of all data collected in the 65p ecoregion.

CONCLUSIONS

Bioassessment results indicated the macroinvertebrate community to be in *poor* condition. Results of a habitat assessment and monthly water sampling support ADEM's 303 (d) listing of Calabee Creek for habitat degradation/siltation impairment. Results also suggest nutrient enrichment to be a potential issue at the site.

Table 5. Summary of water quality data collected March-October, 2005. Minimum (Min) and maximum (Max) values calculated using minimum detection limits (MDL) when results were less than this value. Median, average (Avg), and standard deviations (SD) values were calculated by multiplying the MDL by 0.5 when results were less than this value.

calculated by multiplying the MDL by 0.5 when results were less than this value.								
Parameter	N		Min		Max	Median	Avg	SD
Physical								
Temperature (°C)	8		14.0		27.0	25.0	22.0	4.9
Turbidity (NTU)	8		9.0		47.0	20.9	24.9	12.6
Total Dissolved Solids (mg/L)	7		31.0		85.0	76.0 ^M	65.7	20.8
Total Suspended Solids (mg/L)	7		7.0		54.0	19.0 ^M	25.6	17.7
Specific Conductance (µmhos)	8		43.5		78.7	65.8	65.5	11.0
Hardness (mg/L)	6		18.3		22.4	21.5 ^M	20.8	1.7
Alkalinity (mg/L)	7		11.3		21.2	17.3 ^M	17.2	3.3
Stream Flow (cfs)	3		12.6		62.5	18.1	31.1	
Chemical								
Dissolved Oxygen (mg/L)	8		7.0		10.1	7.5	7.9	1.1
pH (su)	7		6.9		8.2	7.3	7.4	0.5
Ammonia Nitrogen (mg/L)	7	<	0.015		0.046	0.008	0.018	0.016
Nitrate+Nitrite Nitrogen (mg/L)	7		0.053		0.296	0.144 ^M	0.177	0.100
Total Kjeldahl Nitrogen (mg/L)	7	<	0.150		1.053	0.630 ^M	0.558	0.339
Total Nitrogen (mg/L)	7		0.361		1.106	0.774 ^M	0.734	0.274
Dissolved Reactive Phosphorus (mg/L)	7	<	0.004		0.024	0.014 ^M	0.015	0.007
Total Phosphorus (mg/L)	7		0.033		0.161	0.072 ^M	0.077	0.042
CBOD-5 (mg/L)	7		1.3		4.4	1.7 ^M	2.1	1.1
Chlorides (mg/L)	7		4.8		7.8	5.9 ^M	5.9	1.0
Total Metals								
Aluminum (mg/L)	1		0.418		0.418	0.418 ^M	0.418	
Iron (mg/L)	1		1.99		1.99	1.99 ^M	1.990	
Manganese (mg/L)	1		0.076		0.076	0.076 ^M	0.076	
Dissolved Metals								
Aluminum (mg/L)	1	<	0.015	<	0.015	0.008	0.008	
Antimony (µg/L)	1	<	2	<	2	1	1	
Arsenic (µg/L)	1	<	10	<	10	5	5	
Cadmium (mg/L)	1	<	0.005	<	0.005	0.003	0.003	
Chromium (mg/L)	1	<	0.004	<	0.004	0.002	0.002	
Copper (mg/L)	1	<	0.005	<	0.005	0.003	0.003	
Iron (mg/L)	1		0.388		0.388	0.388	0.388	
Lead (µg/L)	1	<	2	<	2	1	1	
Manganese (mg/L)	1		0.067		0.067	0.067	0.067	
Mercury (µg/L)	1	<	0.3	<	0.3	0.3	0.3	
Nickel (mg/L)	1	<	0.006	<	0.006	0.003	0.003	
Selenium (µg/L)	1	<	10	<	10	5	5	
Silver (mg/L)	1	<	0.003	<	0.003	0.002	0.002	
Thallium (µg/L)	1	<	1	<	1	0.5	0.500	
Zinc (mg/L)	1	<	0.006	<	0.006	0.003	0.003	
Biological								
J Chlorophyll a (µg/L)	7		1.07		7.48	3.20 ^M	3.30	2.1
^J Fecal Coliform (col/100 mL)	7		21		2100 ^C	73	362	767

N=# samples; E=estimate; M=median value > 25% of all data collected by ADEM in the 65p ecoregion. C= value exceeds established criteria for F&W water use classification.