Statement of Basis

Sklar Exploration Company, LLC (Sklar) operates Castleberry Oil & Gas Field, Area No. 5 (Area 5) under Major Source Operating Permit (MSOP) No. 103-0039 and Air Permit no. 103-0039-X002 in southeastern Conecuh County, east of Brooklyn, AL. Area 5 is comprised of several oil & gas wells, including planned & unconstructed ones. On January 5, 2018, the Department issued the initial MSOP 103-0039.

On January 23, 2019, Sklar submitted an application to modify their MSOP to include the addition of three wells acquired from Pruet Production Company (Pruet)—the CCL&T 34-12, CCL&T 34-15, and CCL&T 35-13 (the "Pruet wells"). The wells came under the control of Sklar as of January 1, 2019, after the Alabama Oil & Gas Board unitized the oil field into several large, contiguous, single-operator units rather than the patchwork of 1/4 square mile sections of mineral rights that had existed previously. The Department had been in communication with Pruet and Sklar regarding the impending change of ownership prior to the new year.

PROJECT DESCRIPTION

Sklar seeks a direct modification of their MSOP, since no construction permit is warranted for these Pruet wells which have been in operation for years.

PROCESS DESCRIPTION

At each well, the produced full well-stream is separated into gas and liquid phases in the high-pressure separator and heater treater before the liquid phase flows to the power oil tank and flashes. An electrically driven pump may be used to recirculate crude from the power oil tank back into the well to a bottom-hole venturi pump. Flash vapor from the power oil tank and breathing and working losses from all the storage tanks is collected and sent to the flare for combustion or to the pipeline for sales. Each well is connected to the power grid and requires no generator. This process for the Pruet wells is identical to that of the existing, permitted Sklar wells.

EMISSIONS

The potential emissions of the produced gas at the Pruet wells, accounting for their flares, are based on continuously burning well gas at a rate of 70 mscf/d, which is the average production for the two wells over the last year. Tank vapor emissions are determined using EPA's Tanks 4.0.9 program and the Vasquez-Beggs Equation. The emissions from the wells' heaters are based on AP-42 factors. Table 1 below reflects the potential emissions from the project, and Table 2 shows the potential emissions of the facility as a whole from the project added to existing facility emissions. The existing facility emissions are derived from the January 4, 2018 Statement of Basis and the first Title V renewal application.

	Pollutant	Heaters	Flares	Total Emissions	
	РМ	0.049	0.103	0.152	
s	SO ₂	0.004	0.026	0.030	
ollu sion: (Y	NO _X	0.644	3.527	4.171	
Criteria F Emis: (TF	СО	0.541	19.191	19.732	
	VOC	0.035	14.821	14.856	
	Total HAPs	0.012	0.647	0.659	
s	CO ₂	768.533	6,480.691	7,249.223	
GHG mission: (TPY)	N ₂ O	0.001	0.011	0.013	
	CH₄	0.014	23.472	23.487	
Ш	CO _{2e}	769.327	7,070.903	7,840.230	

Table 1 – Pruet Wells Potential Emissions

	Pollutant	Heaters	Engines	Flares	Total Emissions	
	РМ	0.278	0.245	1.873	2.396	
s	SO ₂	0.012	0.000	0.296	0.308	
ollu sion: (۲۷	NO _X	3.650	3.220	72.507	79.377	
Criteria F Emis: (TF	со	3.066	2.710	394.511	400.287	
	VOC	0.201	0.180	392.551	392.931	
	Total HAPs	0.012	0.580	51.157	51.749	
s	CO ₂	4,352.348	0.000	12,140.009	16,492.357	
GHG mission: (TPY)	N ₂ O	2.016	0.000	634.838	636.854	
	CH₄	1.705	0.000	26.515	28.220	
Ш	CO _{2e}	4,356.846	0.000	13,368.091	17,724.937	

Table 2 – Facility Potential Emissions

Sklar would retain their facility-wide anti-PSD limits of 245 TPY for criteria pollutants. Those limits would be met by Sklar not flaring continuously and instead selling their gas; actual emissions from the wells are historically significantly less than their potential emissions.

REGULATIONS

The Pruet wells acquired by Sklar have the same regulatory status as their existing wells in terms of both state and federal regulations, except for the following:

40 CFR 60 Subpart OOOOa, "Standards of Performance for Crude Oil and Natural Gas Production, Transmission and Distribution for which Construction, Modification, or Reconstruction Commenced after September 18, 2015"

This regulation was promulgated by EPA on June 3, 2016 and it contains SO_2 and VOC requirements for oil & gas production wells and natural gas processing plants constructed, reconstructed, or modified after September 18, 2015. The following following table summarizes the portions of this regulation that specifically might apply to the CCL&T 35-13, which was drilled after 2015:

AFFECTED SOURCES	APPLICABILITY
Each single well [§60.5365a(a)]	This applies to a well that is hydraulically fractured or re-
	fractured
Pneumatic Controller [§60.5365a(d)(1)]	This applies to a single continuous-bleed natural-gas-driven
	pneumatic controllers with a bleed rate of > 6 scf/hr at an oil
	or natural gas production segment
Storage Vessels [§60.5365a(e)]	This applies to a single storage vessels located in the oil and
	natural gas production segment, natural gas processing
	segment or natural gas transmission and storage segment
	that has potential uncontrolled VOC emissions > 6 TPY
Collection of fugitive emission components (FEC)	This applies to FEC (valves, flanges, PRVs, tank hatches,
at a well site [§60.5365a(i)]	etc.) at well sites

Each Single Well

The CCL&T 35-13 well is not an affected source under this section of this subpart since it was not hydraulically fractured.

Pneumatic Controller

The pneumatic controllers at the CCL&T 35-13 are not continuous-bleed gas-driven controllers; therefore, there are no affected sources under this section of this subpart.

Storage Vessels

The storage vessels at the CCL&T 35-13 were constructed after September 18, 2015; the power oil tank is considered a Group 2 storage vessel under this subpart based on its uncontrolled emissions. At the well, tank vapor is routed to a flare for combustion. §60.5365a(e) however only applies to tanks with an uncontrolled PTE of greater than 6 TPY of VOCs, and the determination of PTE "may take into account requirements under a legally and practically enforceable limit in an operating permit or other requirement established under a Federal, State, local or tribal authority". Because the permit includes a stipulation that Pruet may not emit gas without combustion, the closed-vent system and flare should be included in the PTE determination of potentially subject tanks. Post-control device, the VOC emissions from all tanks are <6 TPY, and the tanks do not meet the definition of *storage vessels* under Subpart OOOOa.

Collection of Fugitive Emission Components (FEC) at a well site

The CCL&T 35-13 well and its respective collection of FEC is *new* with regards to Subpart OOOOa. FEC are defined in §60.5430a as new pumps, pressure relief devices, valves, connectors, hatches on tanks not already subject to §60.5365a(e), and other required devices/systems (except compressors) capable of leaking methane or VOC. As outlined in §60.5397a(a), the aforementioned equipment are subject to the leak standards in §60.5397a(b)-(g), the reporting requirements of §60.5397a(j) and the recordkeeping requirements of §60.5397a(i).

RECOMMENDATIONS

I recommend that MSOP 103-0039 be modified to include the three aforementioned Pruet wells to be included in the Summary Page of Facility Wells.

May 21, 2019 Date

R. Jackson Rogers, Jr. Industrial Minerals Section Energy Branch Air Division ADEM

ATTACHMENT A

TABLES

	Pollutant	Heaters	Flares	Total Emissions
	РМ	0.049	0.103	0.152
s	SO ₂	0.004	0.026	0.030
ollu و sion: ۲)	NO _X	0.644	3.527	4.171
ria F mis (TF	CO	0.541	19.191	19.732
E	VOC	0.035	14.821	14.856
	Total HAPs	0.012	0.647	0.659
<u>s</u>	CO ₂	768.533	6,480.691	7,249.223
GHG Emission: (TPY)	N ₂ O	0.001	0.011	0.013
	CH ₄	0.014	23.472	23.487
	CO _{2e}	769.327	7,070.903	7,840.230

Table 1 – Pruet Wells Potential Emissions

	Pollutant	Heaters	Engines	Flares	Total Emissions
	РМ	0.278	0.245	1.873	2.396
s	SO ₂	0.012	0.000	0.296	0.308
ollu sion: (Y	NO _X	3.650	3.220	72.507	79.377
Criteria F Emis: (TF	СО	3.066	2.710	394.511	400.287
	VOC	0.201	0.180	392.551	392.931
	Total HAPs	0.012	0.580	51.157	51.749
s	CO ₂	4,352.348	0.000	12,140.009	16,492.357
GHG mission: (TPY)	N ₂ O	2.016	0.000	634.838	636.854
	CH₄	1.705	0.000	26.515	28.220
ш	CO _{2e}	4,356.846	0.000	13,368.091	17,724.937

Table 2 – Facility Potential Emissions

ATTACHMENT B CALCULATIONS

SKLAR EXPLORATION COMPANY, LLC CASTLEBERRY OIL & GAS FIELD AREA NO. 5, 103-0039 STATEMENT OF BASIS, MODIFICATION

Flare Potential Emissions

Data	Total		Separ	Separator Gas Tank Gas		Pilot Gas		GWP (11/29/2013)		40 CFR Part 98 Sub C GHG Emission									
Volume	3,112.02	0	scf/hr (Ind.)	70.0	Mscf/day	3.0	Mscf/day	1.7	Mscf/day	N ₂ 0=	298	1	Factor	Factors (Table C-1)					
H ₂ S mol%	0.0004%	5	mol%	0.0004%	mol%	0.0000%	mol%	0.0000%	mol%	CO ₂ =	1	N ₂ 0=	N ₂ 0= 0.0001		kg/MMBtu				
Heat Content	1268.43		Btu/scf (Ind)	1237.60	Btu/scf (Ind)	2124.62	Btu/scf (Ind)	1020.00	Btu/scf (Ind)	CH ₄ =	25	AP	942 Em	issions Facto	rs ⁷				
VOC MW	6.90		lb/lb-mol ²	6.18	lb/lb-mol ²	27.41	lb/lb-mol ²	0.15	lb/lb-mol ²			NO _x =		0.068	lb/MMBtu				
CO ₂	0.25%		mol%	0.25%	mol%	0.18%	mol%	0.50%	mol%			CO=		0.37	lb/MMBtu				
CH ₄	68.10%	68.10% mol%		69.09%	mol%	30.03%	mol%	95.00%	mol%			PM ₁ =		40	µg/L				
C ₆	0.30	0.30 lb/lb-mol ²		0.27	lb/lb-mol ²	1.17	lb/lb-mol ²	0.01	lb/lb-mol ²						10				
OP Hours	8760		Hrs							(Ind STP)	scf/lbmol=	380.67	60 °F	14 65	nsia				
Destruction Eff	98.00%		DRE	He	at Input	3.95	MMBtu/hr ¹			(FPASTP)	scf/lbmol=	385.5	68 °F	14 696	nsia				
D oo uu ou on En	00.0070		5112		Po	tential F	laro Emissi	l on Calci	lations	(2.7.0.17)	00,000	000.0		111000	pola				
Pollutants					10	Cintian		on ource	ilations										
	40		na	3112.0	scf (Ind.)	2 2 F- 9 lb	8,760	Hr	1 Ton	28 31685	1 1 0 1	scf(FPA)		0 034	Tons				
PM ₁	-	L	1-3		Hr	2.2L-3 10	Yea	ar	2,000 Lb	scf (FPA	L 1.01	scf(Ind)	=	Year	10115				
						P9					y	o oi(iiid.)							
50	168.3		Lb SO24	3.112	MScf (Ind.)	0.000%	H ₂ S Mol%	8,760	Hr	1 Ton			_	0.009	Tons				
502	MS	cf (In	d.)		Hr			١	/ear	2,000 Lb				Year					
NO.	0.068		lb	3.947	MMBtu	8,760	Hr	1	Ton					1.176	Tons				
	Ν	/MBtu	ı		Hr	١	⁄ear	2,0	00 Lb				=	Year	•				
				o o i -	14.05	0 70-									-				
со	0.37		lb	3.947	MMBtu	8,760	Hr	1	Ton				=	6.397 Voor	Tons				
	N	/MBtu	1		Hr)	rear	2,0						Tear					
	3,112.0		Scf (Ind.)	1	lb-mol	6 90	L b VOC	8 760	Hr	1 Ton	2.00%	Inv DRE		4 940	Tone				
VOC⁵				380.67	scf (Ind.)	0.00	-Mole	0,100	/ear	2.000 Lb	2.0070	IIIV. DILL		Year	10113				
					oor (mar)	LU			Car	2,000 2.0									
	3,112.0		Scf (Ind.)	1	lb-mol	0.30	Lb C ₆	8,760	Hr	1 Ton	2.00%	Inv. DRE	_	0.216	Tons				
naps°		Hr		380.67	scf(Ind.)	Lb	-Mole	Year		2,000 Lb			-	Year					
CO ₂ 5,6	98.00% DR	E	2.73E+07	Scf (Ind.)	1.40	lb-mol C	O ₂ (stoich.)	1	lb-mol gas	44.01	lb CO ₂	1 Ton	. = .	2,156.25	Tons				
of Combustion			Yr		1	lb-mol g	as (stoich.)	380.67	scf (Ind.)	lb-mole	e CO ₂	2,000 Lb		Year					
<u> </u>	2 72 - 10	7	Sof (Ind.)	0.25%	mall/ CO	1	lb mol	44.01	16002	1 Ton				2 0 0	Tone				
	2.73E+0	/ 		0.2370	11101% CO ₂	380.67	scf (Ind)	44.01	LD CO2	2 000 L b			=	3.90 Voar	10115				
of Fuel						300.07	301 (110.)	LD-mole		2,000 LD				1641					
	0.001 M	Ton	0.001268	MMBtu	3.112.0	Scf (Ind.)	0.0001	ka	8,760	Hr	1.1023	Tons		0.0038	Tons				
N ₂ O	kg		kg Scf (I		Hr		MMB	Btu Ye		ear 1 Me		ic Ton	= -	Year					
CH₄	2.73E+0	7	Scf (Ind.)	2.00%	Inv. DRE	68.10%	$mol\% CH_4$	1	lb-mol	16.043	Lb CH4	1 Ton	_	7.82	Tons				
Uncombusted	Y							380.675	scf(Ind.)	Lb-mole		2,000 Lb		Year					
	2,16	0.23	Tons	s +		0.0038 Tons		+		7	.82 Tons	=		2,168.06	Tons				
Mass Sum		Year				۱ ۱	Year				Year			Year					
			CO2			N2O				CH4		CH4							
	2 16	0,23	TPY	X 1		0.0038	TPY	X 298		7 82	TP	X 25		0 950 07	Torra				
CO a	2,10	2	160.23			1 14		1 200		105.60) =		2,356.97 Year	Tons				
0026		۷,	CO2				N00			100.00				1641					
1			002				N2U		6		CH4								
⁺ Rated Heat C	apacity (MN	1Btu/	(Hr) = Flowr	ate (Scf/	Hr) * Heat C	Content (Btu/Scf) * (MMBtu/1	LO° Btu)										
² VOC (Lb/Lb-r	nole) = $\Sigma(N$	1ole%	6 of Each Co	mpound)* (1%/100)	*MW of	Each Comp	ound) -S	ee Flare GH	IG Spreed S	Sheet for	gas analy	ysis						
³ Has to be ma	intained <50	00 lb,	/hr or 20 pp	bv offsite	e concentra	tion coul	d potential	ly be exc	eeded										
	H ₂ S (Ih/hr)	- - Vo	lume (Scf/h	r) * (1 lb	-mol/380.67	7) *(H ₂ S n	nol%) * (34	, 081hH ₂ 9	S/Ih-mol)										
4 60 6		~~~~		., (110		, (1251		120 10 1120	,										
SU ₂ Conversi	on Factor 1	.68.3	LD SU ₂ /MSC	t of Gas															
			=(1,000	Scf/MSc	f) *(1Lb-Mo	le/380.6	7 Scf)* (64.0	066 Lb SO	₂ /Lb-Mole)										
⁵ Assuming the	e flare is 98%	6 eff	icient																
⁶ Calculated us	sing the gas	anal	ysis:																
$\Sigma Y_i * R_i$ wh	ere, Y _i = mole	e fra	tion of gas	hydrocar	bon constit	uents' j (such as me	thane, e	thane, prop	ane, carbo	n dioxid	e, etc.) ar	nd R _i = r	umber of ca	rbon				
atoms in gas h	, ydrocarbon	cons	tituent i: 1	for meth	ane and car	bon diox	ide, 2 for e	thane. 3	for propane	e, etc.			,						
⁷ Flare assume	d to be "lig	ntlv s	moking" in	AP-42 ta	ble 13.5-1			_, _											
⁸ n-Hexane, Be	enzene. Tolu	, Jene	. etc are HA	Ps, but i-	Hexanes, n	-Heptane	e, n-Octane	, etc are	not. Assum	e by mass	50% Hexa	anes and	10% He	eptanes+ are	HAPS				

SKLAR EXPLORATION COMPANY, LLC CASTLEBERRY OIL & GAS FIELD AREA NO. 5, 103-0039 STATEMENT OF BASIS, MODIFICATION

Tank Vapor Potential Emissions

Multiplie	er for Power	2	In Series	, Parallel,	Branching	Producti	on bbl/day	140.0	scf/bbl ⁶	19.27					
Oil Recirculation Rate ⁷		or Branching? ²		Dianching	EPA Tanks 4.09		Total Workin	Total Working & Breathing Emissions @			VOC only emissions				
Т	ank Informati	on	FL	ASH Emis	sions	Program	Outputs	MW = 39.228					TOTALS	79061.26	39.53
Tanks	Material Stored	Capacity (barrel) ¹	bbl/day	scf/day	lbs/yr	Working Loss ³ (Ibs/yr)	Breathing Loss ³ (Ibs/yr)	Working Loss ⁵ (Ibs/yr)	Breathing Loss ⁵ (Ibs/yr)	Breathing & Working Losses (scf/day) ⁶	Working Loss ³ (Ibs/yr)	Breathing Loss ³ (Ibs/yr)	Flash Emissions ^{4,6} (lbs/yr)	Total VOC (lbs/yr)	Total VOC TPY
T-01	Power Oil	500.0	140.0	2697.9	102030.34	3087.73	900.34	7267.62	2119.14	249.56	5077.72	1480.59	70900.67	77458.99	38.73
T-02	Condensate	400.0				2091.65	831.35	820.52	326.13	30.49	573.28	227.86		801.14	0.40
T-03	Condensate	400.0						820.52	326.13	30.49	573.28	227.86		801.14	0.40