HOW THE
Birmingham Water Works
 Implemented the
J100 (RAMCAP®) Standard
Scott Starkey, EIT, JD, CPP, PSP
SECURITY

Imagine the result
Security vs. Law Enforcement

Primary Role of Security - to Prevent and Deter

Imagine the result
What’s to Come

Introductory Remarks

Assets and Malevolent Threats

All-Hazards Approach

Risk Reduction

Imagine the result
Section 2013 of the America’s Water Infrastructure Act of 2018 (AWIA requires community water system’s that serve more than 3,300 people to complete a risk and resilience assessment and develop an emergency response plan.
Important Dates

<table>
<thead>
<tr>
<th>Risk and Resilience Assessment</th>
<th>Emergency Response Plan</th>
</tr>
</thead>
<tbody>
<tr>
<td>March 31, 2020</td>
<td>September 30, 2020</td>
</tr>
<tr>
<td>December 31, 2020</td>
<td>June 30, 2021</td>
</tr>
<tr>
<td>June 30, 2021</td>
<td>December 30, 2021</td>
</tr>
</tbody>
</table>

Serving

- **>100,000 People**
- **50,000 to 99,999 People**
- **3,301 to 49,999 People**

Imagine the result...
ANSI/ASME-ITI/AWWA-J100: a voluntary, consensus-based standard to support utilities becoming more secure and resilient.

AWWA and ASME-ITI developed the J100 standard in response to recent natural disasters and it was intended to help water and wastewater utilities identify potential threats to U.S. water infrastructure and prepare for or mitigate damage.

In short, it focuses on an “all hazards” approach.
J100 differentiates itself from previous RAM-W℠ methodology by providing guidance for calculating:

- The Probability of Attack
- The Probability of Occurrence of natural hazard
- Asset and utility resilience
What Was Covered

The BWWB Vulnerability Assessment update included a review of each of the elements identified below:

- Raw water pipes and facilities
- Physical barriers
- Water collection and treatment
- Water storage and distribution facilities
- Use, storage & handling of various chemicals
- Operation and maintenance of the system
Imagine the result

What Else is Covered

Computer Systems

- Data Center
- Laboratory Information Management System
- Financial and Billing Systems
- Filter Plant Distributed Control Systems
- Remote site SCADA RTU panel PLCs
- Raw water PLCs
Imagine the result

Introductory Remarks

The Players

BWWB Core Security Task Force

Responsible for completing the vulnerability assessment and recommending improvements

Knowledge and experience included

- Water Purification
- Pumping
- SCADA/IT
- Security
- Engineering & Project management
- Electrical System Experts
- Financial Systems
Assets and Malevolent Threats

The Process (workshop-based approach)

The Task Force met to complete tasks required by RAM-WSM and to incorporate elements of J100

- Facility Prioritization
- Critical Asset Identification
- Threat Assessment
- Consequence Assessment
- Risk Analysis - RAM-WSM & J100
- Risk Reduction Alternatives
BWWB Mission Objectives

- Maintaining Fire and Sanitary Water Supply
- Maintaining Potable Water Supply
- Supporting Critical Customers

Specific Aspects of Each Facility Considered

- Capacity
- Water Quality
- Geographic Extent
- Critical Customers
- Maintaining Pressure

Assets and Malevolent Threats

Facility Prioritization Workshop

- Identified facilities requiring *particular attention* when searching for critical assets.
- Helped prioritize proposed *risk reduction ideas*
Assets and Malevolent Threats

Critical Asset Workshop

- Identified *“Single Points of Failure”* within the water system (*assets without which BWWB cannot meet objectives*)
- Identified **Critical Assets** of the system that warranted the *highest level of attention*

<table>
<thead>
<tr>
<th>Impact(s) on the utility objectives</th>
<th>Probability of Threat</th>
<th>Vulnerability to Threat</th>
<th>Consequence of Occurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall risk equation for the corresponding critical asset</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Assets and Malevolent Threats

Critical Asset Workshop

Risk Equation Applied to Each Critical Asset

\[R = (T) \times (V) \times (C) \]

- **R**: Asset Risk Value
- **T**: Probability of Threat (Ranges from 0-1)
- **V**: Vulnerability to Threat (Ranges from 0-1)
- **C**: Consequence of Occurrence ($)

Imagine the result
• BWWB Core Security Task Force stepped through a simulated terrorist cell attack on the BWWB based on their collective knowledge of the system.

Examined for each High Priority facility
Additional threats will be taken into account under J100: Natural Hazards.
The loss of a critical asset was evaluated in terms of the following measures of consequence, as defined in J100:

- Economic Loss
- Community impact
- Number of injuries
- Deaths
All-Hazards Approach

Risk Analysis Workshop

RAM-WSM Methodology

- Calculated the relative risk associated with each of our critical assets
- Established a risk mitigation target
- Risk values were calculated using the RAM-WSM equation \(R = P_A \times (1 - P_E) \times C \).
- Risk values are asset-specific: calculation was performed for each critical asset developed.
- **RAM-W Methodology**: \(P_A \) equal to 1.0 in every case.
- \(P_E \) appear as high (0.9), high/medium (0.7), medium (0.5), or low (0.1), as applicable.
All-Hazards Approach

Risk Analysis Workshop

J100 Methodology

• J100 Risk Analysis assumes that the likelihood of an attack is not equal to 1.

• J100 Risk Analysis allows calculation of a Proxy Measure to calculate the likelihood of an adversarial attack on a specific metro region and asset by placing metro regions in Tiers.

• Birmingham : Tier 7 after review of Appendix F of the J100 Document.

• Guidance for consequence and vulnerability given in Appendix B.
Risk Analysis
Workshop
J100
Methodology

RISK ANALYSIS: Natural Hazards

- Appendix G of the J100, takes into account Natural Hazard risks for each
- Used elements of J100 to measure BWWB risk of potential natural hazards for the following
 - Tornadoes
 - Earthquakes
 - Floods
 - Hurricanes
All-Hazards Approach

Tornadoes

Tornado Hazard measures risk

Statewide Data & County Data*

Strong Violent Tornadoes (EF2-EF5)

Hazard risk analysis

(*http://www.awwa.org/standardj100)

Imagine the result
Imagine the result

Tornadoes

Risk calculation consisted of five components

1. **Annual Probability**

 (state/county calculation)

2. **Planning Horizon**

 (20 years)

3. **Probability**

 (Annual Probability x Planning Horizon)

4. **Vulnerability**

 EF2-EF5, given number set equal to 1

5. **Consequence**

 *

6. **Risk**

 (Probability x Vulnerability x Consequence)
Tornadoes

Tornado hazard risk calculation:

\[R_T = P_T \times V_T \times C_T \]

- \(R_T \) = Risk associated with a Tornado
- \(P_T \) = Probability of a Tornado
 - (Probability \times 20 Year Planning Horizon)
- \(V_T \) = Vulnerability to Tornado (assumed to be 1)
- \(C_T \) = Consequence of a Tornado
All-Hazards Approach

Earthquakes

- Risk for each critical asset for Earthquakes of different sizes:
 - > 5.0, ≤ 6.0
 - > 6.0, ≤ 6.5
 - > 6.5, < 7.0

Given data in Appendix G of J100.
Imagine the result

Risk calculation consisted of eight components

1. Time Interval
2. Probability of a 5.0 to 6.0 Earthquake
3. Vulnerability to a 5.0 to 6.0 Earthquake
4. Probability of 6.0 to 6.5 Earthquake
5. Vulnerability to a 6.0 to 6.5 Earthquake
6. Probability of 6.5 to 7.0 Earthquake
7. Vulnerability to a 6.5 to 7.0 Earthquake
8. Consequence $ \sum (\text{Probability} \times \text{Vulnerability}) \times \text{Consequence}$

*for each class of earthquake
Earthquake hazard risk calculation:

\[R_E = \sum (P_E \times V_E \times C_E) \]

- \(R_E \) = sum of risks associated with each size of earthquake
- \(P_E \) = Probability of size of each earthquake
 (Probability × 20 Year Planning Horizon)
- \(V_E \) = Vulnerability to Earthquake of each size
- \(C_E \) = Consequence of an Earthquake

for each class of earthquake
All-Hazards Approach

Floods

- Highly dependent on location of structures and equipment within system.
- J100 references the use of FEMA Flood Insurance Rate Maps (FIRMs)
- Flood Zone maps were analyzed to determine facilities that fall within the High Risk areas.
- BWWB determined that only one facility fell within the high risk area.
Flood hazard risk calculation:

$$R_F = P_F \times C_F$$

- R_F = Risk associated with a Flood
- P_F = Probability of a Flood

 \(0.01/\text{year} \times 20 \text{ Year Planning Horizon}\)
- C_F = Consequence of a Flood
All-Hazards Approach

Hurricanes

- The Hurricane hazard measures all Category One Hurricanes and greater on the Saffir-Simpson scale.

- After review of the National Hurricane Center Risk Analysis Program for the return period of hurricanes it was determined that the Birmingham metro regional structures are not susceptible specifically to Hurricane damage.

- Damage would be form other related threats (floods and tornadoes)
Risk Reduction

Approach

- Developed a list of potential risk reduction ideas
- Considered Intrusion alarms, access control devices, and surveillance cameras
- Looked at standby-power generators
- Looked at conversion from gaseous chlorine to hypochlorite for disinfection
- Updated our Emergency Response Plan to reflect “All Hazards” approach
Imagine the result

Risk Reduction Alternatives Workshop

- Looked at installing retaining wall/levee for flood prone area
- Looked at redundant power feeds for plants
- Looked at determining fault line designation near critical assets
Next steps

- Developed a list of general and site specific risk reduction ideas to present to key decision makers.

- Evaluated the ideas and formulate a plan for improving the overall security and natural hazard risk reduction of our utility.

- Items will be addressed in the Capital Improvement Plan budgeting process and in Emergency Response training.
Contact Information:

Scott Starkey, EIT, JD, CPP, PSP
Security Manager
Birmingham Water Works Board
P: (205) 244-4360
E: scott.starkey@bwwb.org