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National Research Council Major Findings

1. Our ability to quantify spatial and temporal
variability in recharge and discharge is
Inadequate and must be improved.

2. The roles of groundwater storage, and
recharge and discharge fluxes in the climate
system are poorly understood.

3. Better measurements are needed as well as
better ways to scale measurements




Spatial
variability

| ocal-seale heterogeneity

Interlayering of Sand and organics
Trapped gas

Vegetation zones

Stage changes — shoreline movements

Anthropogenic effects (veg. removal, veg.
enhancement, beaches, prop wash)

Stream mgané&fs, hyporheic effects




Geological
controls
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I
S
¥
X
~
'

Fig. 5. Three-dimensional schematic drawing of the
hypothesized situation at Trout Lake showing a coarse
lens intersecting the lakebed.

Krabbenhoft and Anderson, 1986, Ground Water




Management-
scale
heterogeneity
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Belanger and Kirkner, 1994, Lake
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Water surface

e T TR N T

~ The original half-

™ barrel seepage meter
" David Lee, 1977, Limnology and
Oceanography

Seepage cylindar
.-"’

S

B N T o T o N

Ef ater

e

- ' oo . . " .
L ‘ T Sediment -

e Direct measurement of flux

e Measure flows from ~0.1 to
~500 cm/d (108 to 5x10~
m/s)

e Modified versions can
measure down to ~0.00001
cm/d or up to 5000 cm/d or
more
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Why Is this important?

* It's where all the action is

* More water is lost via GW
than via the outlet

» Greater flushing rate —
implications for water
guality and road-salt
contamination

Gagliano et al., 2009, SAGEEP

Mitchell et al., 2008, SAGEEP
Rosenberry, 2005, L&O-Methods
Rosenberry & Morin, 2004, Ground Water
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f Alaska

- *What is GW discharge relative to other
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Spatial variability




Heterogeneity is a bigger problem yet in fluvial settings

meander

floodplain
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Donald Rosenberry
US Geological Survey
Denver, Colorado, USA

Woessner, 2000
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for use in flowing water

Rosenberry, 2008, J.Hydrology
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Rosenberry & Pitlick, 2009, Hydrol. Proc.




Media eep. =24 cm/d
Range is + 237 to -340
Downward seep. 8 locs.
Upward seep. 16 locs.
Med. down = -12 cm/d
Med. up = +60 cm/d

. - Spatlal varlablllty IS
large
. Hetergenelty IS hugely
controlled by bed +

E topography

l -
If you can map the bed you can have
a good idea of hyporheic exchange

Rosenberry & Pitlick, 2009, Hydrolegical Processes
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Biomass distribution

Oxygen in the sediment
« Metabolism
* Respiration

GW discharge versus
hyporheic exchange Cronin et al., 2007, Freshwater Biology

. e : . e . McCutchan et al., 2002,mLi%noIo and Oceanograph
Nitrification/denitrification ay graphy




Temporal variability affects TemPO r'al

e Physical conditions in the substrate VGr'IGbIIITy
e Geochemistry

* Biology

Steady state would
miss this transience
and the resulting
effects on chemistry
and biology
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But does this matter?
and if so, on what temporal scale?

Lake Oneida, NY

Schneider et al., 2005,
JHydrol.




It depends When will it

17
Flux rate (cm/d) Bag-attachment time ever end!”
0.1 0.25 to 2 days

1 to 10 hours
10 to 60 minutes
~1to 10 minutes

e
: ———— z

e Temporal variability is
time integrated.

e This measurement
method leads to the
concept that seepage
rates change very
little.




Individual seepage meter Reinforced by

52 53 H H
averaging multiple
5.2 8.7 g g p

0.85 0.49 measurements and

_ o c report the mean
Rosenberry, 2005, Limnology and Oceanography-Methods

Table 1
Statistical Summary of Specific Discharge Data Using Adjusted 1999 Specific Discharge Measurements

N Median Mean Standard Deviation Standard Error CV (%) Maximum Minimum

ATl (admsted) [EEAN [ 34 3l (AN &) o3 .7 —(12
1999 (adjusted) 171 .35 0.41 .31 .02 T6 1.41 —.01
20000 170 0.17 (.28 .30 0.02 109 1.72 —0.02

Mote: Values in pms. Megative values (N = 4) indicate outflow from the lake.

Simpkins, 2006, Ground Water

Table 1. Average seepage rates (+1q, 77 Or 4 stations in the Indian River Lagoon.

Average Seepage (cm/day)
11-12 May 2003 11-12 June 2003 12-14 July 2003 25-27 Sept 2003
Station rate + rate + rate + rate +

BRL2
Easl #1 0.78 1.34
West #2 3.31 0.78

Cable et al., 2006, Limnology and Oceanography-Methods




paudpeter \ Automated sensors
mounts

inside /*;’ p & provide much greater
o o £ temporal resolution

ESM and piezofheter
used-in conjunction

~ Cable from
‘seepage meter
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Thunderstorm and wind
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—Seepage
rate

Lake stage

\

16 mm rainfall
\

2-min. averages

Rosenberry & Morin, 2004 Ground Water

Relative lake stage, cm







Small 4 mm rainstorm

Rained 17:30 to 21:30
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Seepage response is fast W UM
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Chemical loading could
come via release of
chemicals in near-shore
sediments with a bigger rain.
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Evapotranspiration (and rain?

—Seepage, cmid

—— el lake stage, cm
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— Seepage, cmid

—— Fel. hurmidity

—— Hel. lake stage, cm

/ |

L [T Al i

~10 percent diurnal change
In seepage even where
seepage is fast

Could be reversals in
seepage if seepage is slow

Residence time implications

Biological and geochemical
implications
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Lake seiche
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One qitheWes;tern
Hemlsphere S ' most important
igratory bird habitats.”
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. The formation of a multi-
. agency task force to determine
levels of anthropogenic
compounds, including

. selenium”
Utah DWQ
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Who knows?
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— Seepage

— Rel. river stage
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15 Average seepage =
0.29 cm/day
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Bioirrigation

Linear

Bicirrigating organism velocity,

Common name Species o dlay !
* . Ghost shrimp! Calfianasa 5p. 0.2
: , 0 SR Mud shrimp? Upogebig afifs (1) 22

" Maboy.clams, - e L

o P P 1 & i Lugworm?® Arenicola g 1.6
J Plumed waorm? Digpairg wipreg 1.3

Cable et al., 2006, L&OM
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|
Seepage is small and downward. No problem for fry hanging
out in the gravel.

River stage

1 Seepage, cm/d
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Until nighttime when river stage drops and
seepage becomes upward

9/280:00 9,/28 6:00




So who cares?

MERS

Benthic invertebrates
Endangered species
Fish

Ecologists

Geochemists

Geomorphologists

Engineers (and water suppliers)
Hydrologists and hydrogeologists
Resource managers




Ground Water
and
Surface Water
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But seepage can
vary substantially
over time in some
places

Extended hydrologic drought
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Output in a controlled environment
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Tedious and labor When will 1t
Intensive ever end!?




Rosenberry, 2005,
Limnology and
Oceanography-Methods.
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