Water Quality Assessment Parkerson Mill Creek Auburn, Alabama Lee County

· all

October 1997

Environmental Indicators Section Field Operations Division Alabama Department of Environmental Management

Parkerson Mill Creek Auburn, AL

Introduction

.

The city of Auburn in Lee County has an NPDES permit (AL0050237) to discharge treated wastewater to Parkerson Mill Creek downstream of Lee County Road 10. Parkerson Mill Creek is a tributary to Chewacla Creek and located in the Tallapoosa River basin.

At the request of the Municipal Branch of the Water Division of the Alabama Department of Environmental Management (ADEM), staff members of the Environmental Indicators Section of Field Operations Division conducted a study to document the effects of the wastewater discharge on the in-stream macroinvertebrate community of Parkerson Mill Creek. This effort included aquatic macroinvertebrate sampling, habitat assessment, toxicity testing and chemical analyses.

The Aquatic macroinvertebrate sampling and habitat assessments along with the chemical sample collection were conducted on October 15, 1997. The toxicity portion of the study was initiated on November 18, 1997.

Sampling Locations and Methodology

The following sampling locations were chosen for Parkerson Mill Creek (see Figure 1). In addition, an established ecoregional reference stream with similar stream characteristics and habitat types was sampled and compared to Parkerson Mill Creek to further assess the conditions of the stream.

PM-1 (control)	T18N, R25E, Sec 24, NW 1/4 Parkerson Mill Creek approximately 0.3 mile downstream of Lee County Road 10, immediately upstream of the Auburn Southside WWTP effluent mixing zone.
PM-1a	T18N, R25E, Sec 24, NW 1/4 Parkerson Mill Creek just downstream of the Auburn Southside WWTP effluent mixing zone.
PM-3	T18N, R25E, Sec 24, NW 1/4 Parkerson Mill Creek approximately 0.25 mile downstream of the Auburn Southside WWTP outfall.
HCR-1 (ecoregional reference)	T21S, R10E, Sec 29, SW 1/4 Hurricane Creek just upstream of the bridge on an unnamed gravel road located off Alabama Highway 77.

Macroinvertebrate samples were collected using the intensive Multihabitat Bioassessment method (MB-I) described in the ADEM Standard Operating Procedures and Quality Control Assurance Manual, Volume 2 (1996). Habitat quality was assessed using the modified Barbour & Stribling (1996) habitat assessment form. All macroinvertebrate assessments were calculated using the Biological Condition Scoring Criteria (BCSC) (EPA 1989). Table 1 provides a simplified interpretation of the biological metrics used to evaluate this stream. Individual station metrics are listed in Figure 3.

Page 1 of 4

In-stream water samples collected for field parameters and chemical analyses were grab collections using the methodology outlined in the ADEM Standard Operating Procedures and Quality Control Assurance Manual, Volume 1, (1994).

Samples collected from the WWTP discharge for toxicity testing were 24-hour composite samples taken at the permitted sampling point. The toxicity test was conducted as specified in NPDES permit number AL0050237 and per methodology outlined in ADEM Standard Operating Procedures and Quality Control Assurance Manual, Volume 4, (1994).

Sample handling techniques, physical data collection and chain-of-custody procedures utilized during this assessment were as described in the *ADEM Standard Operating Procedures and Quality Control Assurance Manual, Volumes 1*(1994), *2*(1996) & *4*(1994). Chain-of-custody was maintained by locking the samples in a Departmental vehicle when not in sight of a Field Operations Division employee.

Discussion and Results

A. Physical

Parkerson Mill Creek at the studied reaches was estimated to have hardwood canopy of varying amounts partially shading the stream. Parkerson Mill Creek is a rapidly moving non-braided stream comprised mainly of sandy substrate with run depths of approximately 0.5-1.5 feet and pools of 2-2.5 feet. Multiple habitats suitable for colonization by aquatic macroinvertebrates are present at each sampling location. Habitat assessments indicate that all locations have similar habitat quality (Table 2). However, the score for the most downstream station (PM-3) is less similar than those of the two upstream stations. Evaluating the individual assessment parameters indicates that this is largely due to changes in substrate composition between the control (PM-1) and downstream locations as well as changes in stream morphology. The ecoregional reference site HCR-1 was similar to the study stations in stream characteristics and habitat types. The habitat quality (Table 2) of two of the three study locations was within ninety percent of the ecoregional reference station. The station with the lowest habitat assessment was still within seventy-five percent of the ecoregional reference station. EPA suggests sites are considered similar when habitat assessments are at least seventy-five percent comparable.

B. Chemical

The Water Use Classification for Parkerson Mill Creek is Fish & Wildlife, which specifies that the waters be suitable for fishing, propagation of fish, aquatic life, and wildlife, and any other usage except for swimming, and water-contact sports or as a source of water supply for drinking or food processing purposes (*Rules and Regulations: Water Quality Criteria and Use Classifications*, Water Division-Water Quality Program, ADEM, Ch.335-6-10).

Page 2 of 4

Parkerson Mill Creek Auburn, AL

The field parameters measured at each station were pH, conductivity, dissolved oxygen, turbidity and water temperature (Figure 2). Results showed little change in the pH, dissolved oxygen, conductivity, or turbidity between stations (Table 3). The lower conductivity below the Auburn Southside WWTP discharge at PM-1a was possibly a recording error. The water temperature at PM-1a was found to exceed the temperature criterion included in the Water Use Classification of Fish &Wildlife. The criterion for water temperature states that the maximum in-stream temperature rise above ambient water temperature due to the addition of artificial heat by a discharger shall not exceed 5° F in streams, lakes, and reservoirs in non-coastal and estuarine areas.

Water samples were also collected for laboratory analyses and results are provided in Table 3. At locations below the effluent discharge, several parameters increased when compared to the control station PM-1. Among those were total dissolved solids (TSS) and chloride. Nutrient levels were also affected by the effluent discharge. Levels of ammonia, phosphate, total Kjeldahl nitrogen and total organic nitrogen (TON) increased at PM-1a. The downstream station (PM-3) had a higher level of nitrate and TON than any of the other studied stations, possibly influenced by the WWTP sludge field that runs adjacent to that segment of the creek. The concentration of zinc at PM-1a (0.072 mg/L) and at PM-3 (0.069 mg/L) were higher than the control station PM-1 (<0.030). The concentration of copper at PM-3 (0.032 mg/l) was higher than either of the other stations (<0.020 mg/L).

The National Criteria for in-stream zinc concentrations as described in *Quality Criteria* for Water (EPA 440/5-86-001, 1986) are calculated values that take into consideration instream hardness and are based on the one-hour average concentration and four-day average concentration for acute and chronic limits, respectively. These criteria indicate that the zinc concentration at PM-1a (72 μ g/L) was below the acute limit of 79.2 μ g/L and equaled the chronic limit of 71.8 μ g/L. The zinc concentration at PM-3 (69 μ g/L) was below both the acute (80.8 μ g/L) and chronic (73.2 μ g/L) limits. The National Criteria for in-stream copper concentrations as described in *Quality Criteria for Water* (EPA 440/5-86-001, 1986) indicate that the copper concentration at PM-3 (32 μ g/L) exceeded both the acute limit of 11.0 μ g/L and the chronic limit of 8.1 μ g/L.

C. Aquatic Macroinvertebrate Assessment

.....

Aquatic macroinvertebrate data were analyzed according to the Biological Condition Scoring Criteria (BCSC) developed by EPA (Plafkin 1989). The control (PM-1) was considered slightly impaired when compared to the ecoregional reference station HCR-1. PM-1a was evaluated as slightly impaired, in comparison to the control PM-1 and moderately impaired in comparison to the ecoregional reference station HCR-1 (Table 2).

Page 3 of 4

PM-3, the most downstream station, was also evaluated as slightly impaired when compared to the control PM-1 and moderately impaired when compared to the ecoregional reference HCR-1 (Table 2).

D. Bioassay

Short-term chronic toxicity tests conducted on the Auburn Southside WWTP effluent indicated that there was a significant difference to *Ceriodaphnia dubia* and *Pimephales promelas* survival when exposed to a 100% effluent concentration (Appendix A). This effluent concentration is similar to the measured in-stream waste concentration of approximately 100% at the time of aquatic macroinvertebrate and chemical sample collection.

The National Criteria for in-stream chlorine concentrations as described in *Quality Criteria for Water* (EPA 440/5-86-001, 1986) is based on the four-day average concentration for chronic limits. These criteria indicate that the chlorine concentration in the toxicity sample (0.49 mg/l) was above the chronic limit of 11 µg/L (0.011mg/l).

Effluent samples were also collected for laboratory analyses in conjunction with the toxicity test. Results summarized in Table 3 indicated that dissolved and total levels of zinc were detectable in the effluent sample collected on November 18, 1997.

Conclusions

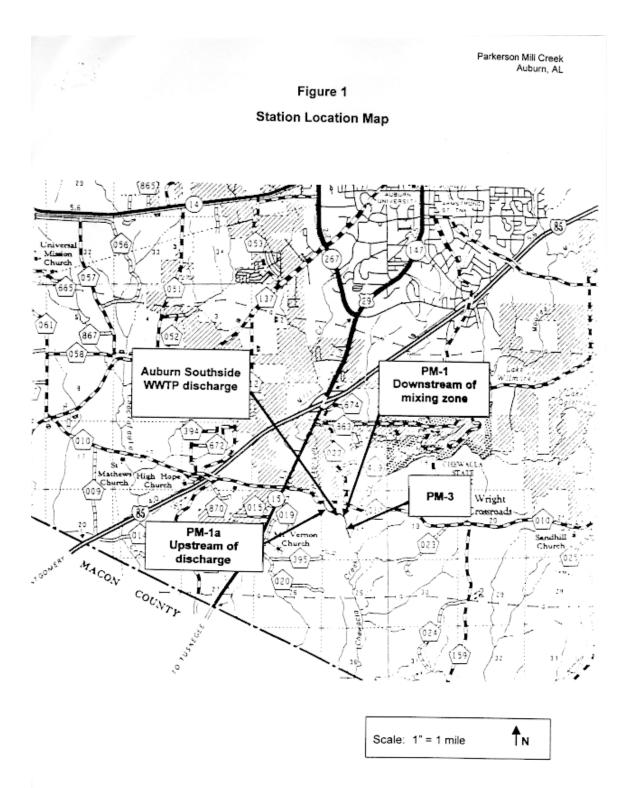
The results of this study indicate the water quality of Parkerson Mill Creek below the Auburn Southside WWTP to be slightly impaired compared to the upstream control station. However, the results also indicate slight impairment of the control station suggesting impact in the upper watershed. Slight degradation to the macroinvertebrate community below the discharge was evidenced by decreased taxa richness and increased pollution tolerance of the community at PM-1a. Although nutrient concentrations increased below the discharge, there was no associated increase in total number of organisms collected (Figure 4). These results are indicative of an invertebrate community negatively impacted by toxic wastes (Welsh 1992). In addition, the results of the short-term chronic toxicity tests indicated a toxic effect present in the effluent. Associated water samples suggest that increased trace metal toxicity and/or chloride may be causing the slight impairment. The data from PM-3, further downstream from the WWTP, suggest that the stream has not recovered from the impacts of the WWTP, however the decrease in habitat may be exacerbating the water quality impacts. The presence of copper at PM-3 suggests an additional source of impact. The adjacent WWTP sludge fields may be causing impairment despite seemingly adequate riparian buffer zones.

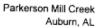
Page 4 of 4

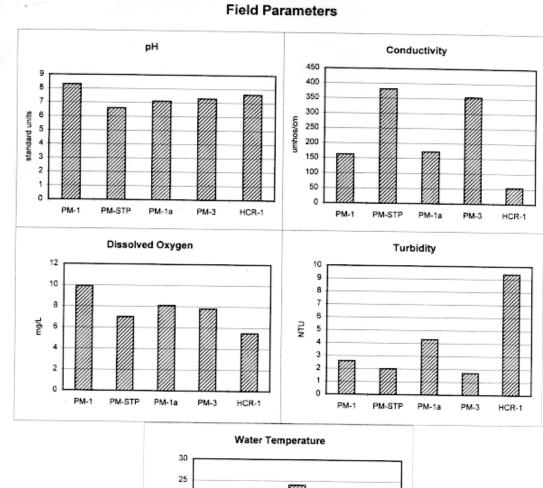
TABLE 1 Biometric Interpretation

Parkerson Mill Creek Auburn, AL

	RANGE	INTERPRETATION
Habitat Assessment	170-220	Optimal
	118-169	Sub-optimal
	60-117	Marginal
	0-59	Poor
Total Taxa Richness		Generally Increases with
EPT Taxa Index		Increasing Water Quality
Biotic Index		Generally Increases with
	-	Increasing Water Quality
Community Loss Ind	ex	Generally Increases with
		Decreasing Water Quality
Percent Contribution	of Dominant Taxon	Generally Decreases with
		Decreasing Water Quality
Ratio of EPT and Chi	ronomidae Organism	Chironomids Increase with
Ratio of EPT and Chi Abundances	ronomidae Organism	Chironomids Increase with Decreasing Water Quality
Abundances		
Abundances	ronomidae Organism notional Feeding Types %Shredders	
Abundances	nctional Feeding Types	Decreasing Water Quality
Abundances	nctional Feeding Types %Shredders %Scrapers %Predators	Decreasing Water Quality Percentages and Composition
Abundances	nctional Feeding Types %Shredders %Scrapers %Predators %Collector Gatherers	Decreasing Water Quality
Abundances	Actional Feeding Types %Shredders %Scrapers %Predators %Collector Gatherers %Collector Filterers	Decreasing Water Quality Percentages and Composition should be similar to background
Abundances	nctional Feeding Types %Shredders %Scrapers %Predators %Collector Gatherers	Decreasing Water Quality Percentages and Composition should be similar to background station for similar stream sizes
Abundances % Contribution of Fur	Actional Feeding Types %Shredders %Scrapers %Predators %Collector Gatherers %Collector Filterers %Macrophyte Piercers %Others BIOLOGICAL CO	Decreasing Water Quality Percentages and Composition should be similar to background station for similar stream sizes
Abundances & Contribution of Fur % Comparison to Reference Score	Actional Feeding Types %Shredders %Scrapers %Predators %Collector Gatherers %Collector Filterers %Macrophyte Piercers %Others BIOLOGICAL CO Biological Condition Category	Decreasing Water Quality Percentages and Composition should be similar to background station for similar stream sizes and habitat composition ONDITION SCORING CRITERIA Attributes
Abundances % Contribution of Fur % Comparison to	Actional Feeding Types %Shredders %Scrapers %Predators %Collector Gatherers %Collector Filterers %Macrophyte Piercers %Others BIOLOGICAL CO Biological Condition	Decreasing Water Quality Percentages and Composition should be similar to background station for similar stream sizes and habitat composition ONDITION SCORING CRITERIA Attributes Comparable to best situation within ecoregion.
Abundances & Contribution of Fur % Comparison to Reference Score	Actional Feeding Types %Shredders %Scrapers %Predators %Collector Gatherers %Collector Filterers %Macrophyte Piercers %Others BIOLOGICAL CO Biological Condition Category	Decreasing Water Quality Percentages and Composition should be similar to background station for similar stream sizes and habitat composition ONDITION SCORING CRITERIA Attributes
Abundances % Contribution of Fur % Comparison to Reference Score	Actional Feeding Types %Shredders %Scrapers %Predators %Collector Gatherers %Collector Filterers %Macrophyte Piercers %Others BIOLOGICAL CO Biological Condition Category	Decreasing Water Quality Percentages and Composition should be similar to background station for similar stream sizes and habitat composition DNDITION SCORING CRITERIA <u>Attributes</u> Comparable to best situation within ecoregion. Balanced trophic structure Optimum community structure for stream size and habitat Community structure less than expected
Abundances % Contribution of Fur % Comparison to <u>Reference Score</u> >81%	Actional Feeding Types %Shredders %Scrapers %Predators %Collector Gatherers %Collector Filterers %Macrophyte Piercers %Others BIOLOGICAL CO Biological Condition Category Nonimpaired	Decreasing Water Quality Percentages and Composition should be similar to background station for similar stream sizes and habitat composition DNDITION SCORING CRITERIA Attributes Comparable to best situation within ecoregion. Balanced trophic structure Optimum community structure for stream size and habitat
Abundances % Contribution of Fur % Comparison to <u>Reference Score</u> >81%	Actional Feeding Types %Shredders %Scrapers %Predators %Collector Gatherers %Collector Filterers %Macrophyte Piercers %Others BIOLOGICAL CO Biological Condition Category Nonimpaired	Decreasing Water Quality Percentages and Composition should be similar to background station for similar stream sizes and habitat composition DNDITION SCORING CRITERIA Attributes Comparable to best situation within ecoregion. Balanced trophic structure Optimum community structure for stream size and habitat Community structure less than expected Composition lower than expected due to loss of intolerant sop


TABLE 2 Aquatic Macroinvertebrate Data


	PM-1 (Control)	PM-1a	PM-3	HCR-1 (Ref.)
Habitat Assessment	117	126	89	118
Habitat Quality (% comparability to Reference site)	99%	94%	75%	S all the
Habitat Quality (% comparability to Control Site)		93%	76%	
Total Taxa Richness	34	24	28	48
Biotic Index	5.89	7.71	6.11	4.14
EPT/EPT+Chironomid	0.25	0.00	0.02	0.86
Percent Contribution of Dominate Taxa	33	47	78	20
EPT Index	8	2	4	13
Percent Shredders(CPOM)	0.62	0.42	0.86	0.12
Community Loss Index Compared to Control		0.70	0.46	
Community Loss Index Compared to Reference	0.94	1.58	1.25	
Biological Condition (Category) Compared to Control		Slightly Impaired	Slightly Impaired	
Biological Condition(Category) Compared to Reference	Slightly Impaired	Moderately Impaired	Moderately	


TABLE 3 Chemical Analyses & Field Parameters

Parameter	PM-1	PM-STP	PM-STP1	PM-1a	PM-3	HCR-1
Date Collected	10/15/97	10/15/97	11/18/97	10/15/97	10/15/97	10/17/97
Organics (ug/L)		1.1.1.1.1.5.5	A PARTICIPALITY		and the second	STATISTICS OF THE OWNER
Diazinon	<0.01	<0.01	< 0.01	< 0.01	< 0.01	-
Ethion	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	
Malathion	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	-
Methyl Parathion	< 0.012	< 0.012	< 0.012	< 0.012	< 0.012	
Paration	< 0.015	<0.015	< 0.015	<0.015	< 0.015	
Phosdrin	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	
Miscellaneous Inorganics (mg/l)	11.15、1、15、15.25	Contraction for	Sec. P. Property	A CONTRACTOR OF STREET,	Sector Sector
Total Alkalinity	61.0	58.0	64	56.0	54.0	9.0
Hardness	63.2	62.9	80	63.1	64.6	4.9
BOD	0.7	0.4	6.0	0.6	1.3	0.5
Hexavalent Chromium	<0.020	< 0.020	< 0.020	< 0.020	<0.020	< 0.020
Total Dissolved Solids	85	234	-	218	203	49
Total Suspended Solids	<1.0	1	1	2	<1.0	<1.0
Chloride	10.5	42.2	-	39.7	37.4	3.8
Nutrients (mg/L)	And the second states of the	her and stering	the state of the	Street Street St.	and the second second	0.0
Ammonia	< 0.3	0.69	< 0.3	0.47	0.15	< 0.3
Nitrate	0.32	4.17	-	4.16	4.57	0.01
Phosphate	0.071	1.21	-	1.10	1.06	0.05
Total Kjeldahl Nitrogen	<0.15	0.79	-	0.74	0.65	<0.15
Total Organic Nitrogen	< 0.2	0.10	-	0.27	0.50	<0.13
Trace Metals (mg/L)	and the state of the second	aller and shall be		State State and State State	0.00	-0.2
Arsenic	< 0.0100	<0.0100	<0.0100	<0.0100	<0.0100	1225.022566
Cadmium	< 0.0030	< 0.0030	< 0.0030	<0.0030	<0.0030	
Calcium	13.2	17.5		17.2	17.5	
Chromium	< 0.015	< 0.015	< 0.015	< 0.015	<0.015	-
Copper	< 0.020	<0.020	<0.020	<0.020	0.032	
ead	< 0.0020	<0.0020	<0.0020	<0.0020	<0.0020	
Magnesium	7.349	4.657	-	4.903	5.067	-
Mercury	< 0.0005	<0.0005	<0.0005	<0.0005	<0.0005	· ·
Nickel	< 0.009	< 0.009	< 0.009	<0.0003	<0.0005	
Silver	<0.015	<0.015	<0.015	<0.015	<0.009	-
Zinc	< 0.030	0.080	0.74	0.072	0.069	
Fecal Coliform (colonies/100		States and the second s	0.74	0.072	0.009	-
ecal Coliform Bacteria	Est.18	<1	- 1	Est 1	Est.57	1000
Field Parameters	Contra Contractor	Spars of reaction theory	ALC: A CALL STATE OF ALC		Lat.57	-
low (cfs)	0	6.4	C TODO DE LANA	6.4	5.1	5.4
H (standard units)	8.3	6.6	7.3	7,1	7.3	5.1
Conductivity(umhos/cm)	162	381	342	1722	355	7.6
Dissolved Oxygen(mg/L)	9.9	7.0		8.1	7.8	54
urbidity (NTU)	2.6	2.0		4.3	1.7	5.5
Vater Temperature (C)	18	24	-	4.5	1.7	9.4

1 This sample is a composite sample taken during the toxicity test. 2 Possible recording error.

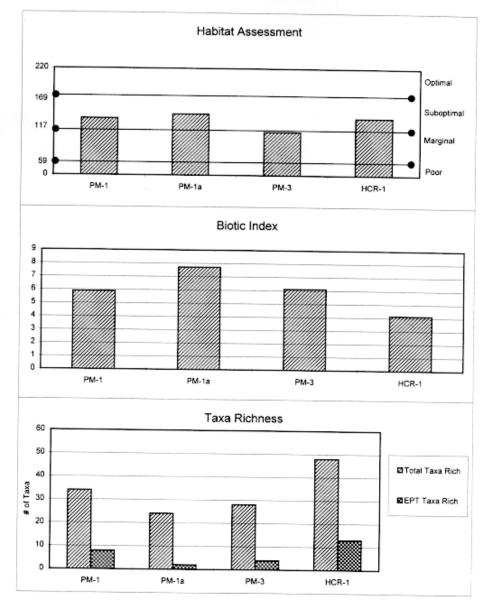
PM-1a

PM-3

HCR-1

Degrees Celsius

20


PM-1

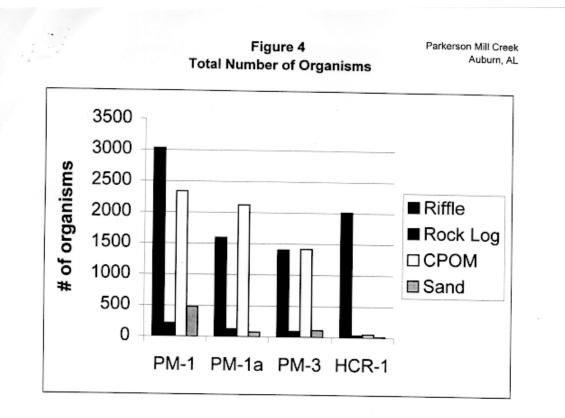

PM-STP

Figure 2

Figure 3 Individual Metrics

		Stations			
	PM-1	PM-1a	PM-3	HCR-1	
Riffle	3030	1596	1404	2010	
Rock Log	218	128	95	34	
CPOM	2340	2124	1416	50	
Sand	481	79	113	11	

Parkerson Mill Creek Auburn, AL

APPENDIX A

1

Toxicity Test Report

ALABAMA DEPARTMENT OF ENVIRONMENTAL MANAGEMENT FIELD OPERATIONS DIVISION ENVIRONMENTAL INDICATORS SECTION BIOASSAY UNIT

TOXICITY TEST REPORT

1. GENERAL					
NPDES PERMIT NO.:	0050237	DSN:	001	COUNTY:	Lee
Facility Name:	Auburn - Southside WWTP	-		_	
Receiving Water:	Parkerson Mill Creek			Design Flow	·:
Test Type:	24-Hour Acute Screening. A	chronic scre	eening test wa	as planned, but	mortality was observed at 24h.
Test Id. #:	971118-02				

Test Organism	Date/Time Started YYMMDD HHMM	Date/Time Ended YYMMDD HHMM	Control Validity (Acceptable/Unacceptable)
Ceriodaphnia dubia	971118 1614	971119 1450	Acceptable
Pimephales promelas	971118 1415	971119 1420	Acceptable

2A. SUMMARY OF RESULTS FOR SCREENING TEST

			Test Number										
Test	Effluent		(1)	(2)				(3)			(4)		
Org.	Conc.	Surv	Repro	Grow	Surv	Repro	Grow	Surv	Repro	Grow	Surv	Repro	Grow
C. d.	100%	FAIL		N/A									
Р. р.	100%	FAIL	N/A										

3. LABORATORY ANALYSES OF UNDILUTED SAMPLES(S)

Sample Id.	pН	Alkalinity	5		TRC
	su	mg/L as CaCO3	mg/L as CaCO3	umhos/cm @ °C	mg/L
971118-02	7.3	64	80	342 at 24.7	0.49

4. SAMPLE COLLECTION:

Were split samples collected?: <u>no</u> Were samples collected as specified in NPDES Permit (Location and/or Type)? <u>yes</u>

Sample Id.	Sample(s) Collected	Arrival	Used in Test(s)
	YYMMDD HHMM to YYMMDD HHMM	Temp (°C)	YYMMDD to YYMMDD
971118-02	971117 1005 to 971118 0950	3	971118 to

5.CONTROL/DILUTION WATER

Carboy	Preperation	Begin Use	Initial Water Chemistries						
#	YYMMDD	YYMMDD	pH (su)	Alkalinity (mg/L)	Hardness (mg/L)	Conductivity @ °C (umhos/cm)			
C-4	971117	971118	8.2	69	70	153 at 22.6			

PERMITTEE:	Auburn - Southside WWTP	NPDES #:	0050237	DSN:	001	TEST Id #:	971118-02

6. TOXICITY TEST INFORMATION

Test Organism	Organism Age	Organism Source	Org./Test Vessel	Replicates/Conc.
C.d.	<8h	ADEM In-house cultures	1	10
P.p.	<24h	ADEM In-house cultures	10	4

Test Organism	Temperature Range (°C)	D.O. Range (mg/L)	pH Range (su)	Light Intensity Average (ft-c)
C.d.	24.9 - 25.8	7.6 - 8.7	7.3 - 7.9	65
P.p.	24.5 - 24.9	3.9 - 8.7	7.3 - 7.3	60

7. FEEDING: Fed Daily

Brine Shrimp	Fed 0.15 mL Suspension of Newly Hatched Larvae 2 Times Daily.
YCT	Fed 0.15 mL Suspension Containing 1800 mg/L TSS Daily.
Algae	Fed <u>0.15</u> mL Suspension Containing <u>3.3 x 10^7</u> Algal Cells/mL Daily.

8. REFERENCE TOXICANT TESTS

TOXICANT - Sodium Chloride (NaCl)

Test Organism	Test Date YYMMDD	Results LC50 (mg/L)	95% Confidence Interval (mg/L)
C.d.	971118	1945.00	1802.59/2098.66
P.p.	971119	7256.43	6995.63/7526.96

9. TEST CONDITION VARIABILITY

A. Deviations From Standard Test Conditions: Light intensity was not recorded on 971118. The P. promelas control organisms were loaded with a pipet that had been used to load another test. These deviations did not adversely affect the test results.

B. Test Solution Manipulations or Test Modifications

Dechlorination Aeration during the test

Aeration prior to test initiation or sample renewal

	Filtration
	pH adjustment
\boxtimes	NO sample modifications

PERMITTEE:	Auburn - Southside WWTP	NPDES #:	0050237	DSN:	001	TEST Id #:	971118-02	

10A. ACUTE SCREENING TOXICITY TESTS RESULTS:

TEST ORGANISM: Ceriodaphnia dubia	ACUTE TOXICITY INDICA	ATED? FAIL
Solution Concentration (%)	% Survival	
Control (0%)	100	1
100	0	-
		J
STATISTICAL ANALYSES (Using Survival data as p	roportion surviving that is arc sine transform	ned): COMMENTS:
No Statistical Analysis Necessary		Acute mortality might be due to high chlorine

TEST ORGANISM: Pimephales promelas ACUTE TOXICITY INDICATED? FAIL

Solution Concentration (%)	% Survival
Control (0%)	100
100	25

STATISTICAL ANALYSES (Using Survival data as proportion surviving that is arc sine transformed):	COMMENTS:
Shapiro Wilk's Test (Normality) Test Statistic: 0.899 Critical Value: 0.749 Normally Distributed \Box Yes (if test stat is > critical value) GOTO VARIANCE F-TEST \Box Oi f test stat is < critical value) GOTO WILCOXON RANK SUM TEST	Acute mortality might be due to high chlorine concentration in the sample.
F-TEST – could not be run	
T-TESTt Statistic: 5.669 Critical t value: 1.94 Significant Difference \boxtimes YES (if t stat is > critical t) FAIL \square NO (if t stat is < critical t) PASS	
WILCOXON RANK SUM TEST or MODIFIED T-TEST Sample Rank Sum: 10.0 # of reps 4 Critical Rank Sum: 11.0 Significant Difference	